1887
Volume 28, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

The Tombador Formation exhibits depositional sequence boundaries placed at the base of extensive amalgamated fluvial sand sheets or at the base of alluvial fan conglomeratic successions that indicate basinward shifts of facies. The hierarchy system that applies to the Tombador Formation includes sequences of different orders, which are defined as follows: sequences associated with a particular tectonic setting are designated as ‘first order’ and are separated by first‐order sequence boundaries where changes in the tectonic setting are recorded; second‐order sequences represent the major subdivisions of a first‐order sequence and reflect cycles of change in stratal stacking pattern observed at 102 m scales (i.e., 200–300 m); changes in stratal stacking pattern at 101 m scales indicate third‐order sequences (i.e., 40–70 m); and changes in stratal stacking pattern at 100 m scales are assigned to the fourth order (i.e., 8–12 m). Changes in palaeogeography due to relative sea level changes are recorded at all hierarchical levels, with a magnitude that increases with the hierarchical rank. Thus, the Tombador Formation corresponds to one‐first‐order sequence, representing a distinct intracratonic sag basin fill in the polycyclic history of the Espinhaço Supergroup in Chapada Diamantina Basin. An angular unconformity separates fluvial‐estuarine to alluvial fan deposits and marks the second‐order boundary. Below the angular unconformity the third‐order sequences record fluvial to estuarine deposition. In contrast, above the angular unconformity these sequences exhibit continental alluvial successions composed conglomerates overlain by fluvial and eolian strata. Fourth‐order sequences are recognized within third‐order transgressive systems tract, and they exhibit distinct facies associations depending on their occurrence at estuarine or fluvial domains. At the estuarine domain, they are composed of tidal channel, tidal bar and overlying shoreface heterolithic strata. At the fluvial domain the sequences are formed of fluvial deposits bounded by fine‐grained or tidal influenced intervals. Fine grained intervals are the most reliable to map in fourth‐order sequences because of their broad laterally extensive sheet‐like external geometry. Therefore, they constitute fourth‐order sequence boundaries that, at the reservoir approach, constitute the most important horizontal heterogeneity and, hence, the preferable boundaries of production zones. The criteria applied to assign sequence hierarchies in the Tombador Formation are based on rock attributes, are easy to apply, and can be used as a baseline for the study of sequence stratigraphy in Precambrian and Phanerozoic basins placed in similar tectonic settings.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12117
2015-04-01
2024-04-28
Loading full text...

Full text loading...

References

  1. Ainsworth, R.B. (2005) Sequence stratigraphic‐based analysis of reservoir connectivity: influence of depositional architecture – a case study form a marginal marine depositional setting. Petrol. Geosci., 11, 257–276.
    [Google Scholar]
  2. Ainsworth, R.B. (2006) Sequence stratigraphic‐based analysis of reservoir connectivity: influence of sealing faults – a case study from a marginal marine depositional setting. Petrol. Geosci., 12, 127–141.
    [Google Scholar]
  3. Alkmim, F.F. (2004) O que faz de um cráton um cráton? O cráton de São Francisco e as revelações Almeidianas ao delimitá‐lo. In: Geologia do continente Sul‐Americano: evolução da obra de Fernando Flávio Marques de Almeida (Ed. by V.Manteso‐Neto , A.Bartorelli , C.D.R.Carneiro & B.B.B.Brito Neves ), pp. 17–35. Editora Beca, São Paulo.
    [Google Scholar]
  4. Alkmim, F.F. & Martins‐Neto, M. (2012) Proterozoic first‐order sequence sedimentary sequences of the São Francisco craton, eastern Brazil. Mar. Pet. Geol., 33, 127–139.
    [Google Scholar]
  5. Allen, G.P. & Posamentier, H.W. (1993) Sequence stratigraphy and facies model of an incised valley fill: the Gironde estuary, France. J. Sed. Pet., 63(3), 378–391.
    [Google Scholar]
  6. Almeida, F.F.M. (1977) O craton de São Francisco. Rev. Bras. Geoc., 7 (4), 349–364.
    [Google Scholar]
  7. Araújo, A.J.S. (2012) Análise estratigráfica das Formações Açuruá e Tombador nas proximidades de Barra da Estiva, Chapada Diamantina – Bahia. Unpublished Monography, Universidade Federal da Bahia, 40 pp.
  8. Babinski, M., Van Schmus, W.R., Chemale, F.Jr., Brito Neves, B.B. & Rocha, A.J.D. (1993) Idade isocrônica Pb/Pb em rochas carbonáticas da Formação Caboclo, em Morro do Chapéu. In: Anais do 2° Simpósio do Craton do São Francisco, Salvador, pp. 160–163.
    [Google Scholar]
  9. Babinski, M., Brito Neves, B.B., Machado, N., Noce, C.M., Uhlein, A. & Van Schmus, W.R. (1994) Problemas da metodologia U/Pb em zircões de vulcânicas continentais: caso do Grupo Rio dos Remédios, Supergrupo Espinhaço, no Estado da Bahia. In: Anais 42# Congresso Brasileiro de Geologia, Sociedade Brasileira de Geologia, Balneário Camboriú, vol. 2, pp. 409–410.
    [Google Scholar]
  10. Babinski, M., Pedreira, A.J., Brito Neves, B.B. & Van Schmus, W.R. (1999a) Contribuição à geocronologia da Chapada Diamantina. 7° Simpósio Nacional de Estudos Tectônicos. Brazilian Geological Society, Lençóis, pp. 118–120. Sociedade Brasileira de Geologica, Lençóis.
    [Google Scholar]
  11. Babinski, M., Pedreira, A.J., Neves, B.B.B. & Van Schmus, W.R. (1999b) Contribuição à Geocronologia da Chapada Diamantina. In: Anais do 7 Simpósio Nacional de Estudos Tectônicos, pp. 118–120. Sociedade Brasileira de Geologia, Lençóis.
    [Google Scholar]
  12. Ballance, P.F. (1984) Sheet‐flow dominated gravel fans on the non‐marine middle Cenozoic Simmler Formation, central California. Sed. Geol., 38, 337–359.
    [Google Scholar]
  13. Bállico, M.B. (2012) Análise de facies e sequências deposicionais em sistemas continentais e estuarinos do topo da Formação Tombador, Mesoproterozóico, Chapada Diamantina, Brasil. Unpublished MsC Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre.
  14. Battilani, G.A., Varajão, A.D. & Gomes, N.S. (1999) Metamorphic degree variation in proterozoic sandstones of the Tombador Formation, Bahia State, Brazil. Zbl. Geol. Paläont. Teil I, 7–8, 917–926.
    [Google Scholar]
  15. Blair, T.C. (2000) Sedimentology and progressive tectonic unconformities of the sheetflood‐dominated Hells Gate alluvial fan, Death Valley, California. Sed. Geol., 132, 233–262.
    [Google Scholar]
  16. Blair, T.C. & McPherson, J.G. (1994a) Alluvial fan processes and forms. In: Geomorphology of Deserts Environments (Ed. by A.D.Abrahams & A.Parsons ), pp. 354–402. Chapman & Hall, London.
    [Google Scholar]
  17. Blair, T.C. & McPherson, J.G. (1994b) Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J. Sed. Res., 64, 451–490.
    [Google Scholar]
  18. Blissenbach, E. (1954) Geology of alluvial fans in semi‐arid regions. Geol. Soc. Am. Bull., 65, 139–148.
    [Google Scholar]
  19. Boyd, R., Dalrymple, R.W. & Zaitlin, B.A. (2006) Estuarine and incised‐valley facies models. In: Facies Models Revisited (Ed. by H.Posamentier & R.Walker ), SEPM Spec. Public . 84, 171–235.
    [Google Scholar]
  20. Bristow, C.S. (1993) The interaction between channel geometry, water flow, sediment transport and deposition in braided rivers. In: Braided rivers (Ed. by J.L.Best & C.L.Bristow ), Spec. Publ. Geol. Soc. London 75, 13–72.
    [Google Scholar]
  21. Bruun, P. (1962) Sea‐level rise as a cause of shore erosion. American Society of Civil Engineers Proceedings. J. Waterw. Harbors Div., 88, 117–130.
    [Google Scholar]
  22. Cant, D.J. & Walker, R.G. (1978) Fluvial process and facies sequences in the sandy braided South Saskatchewan River, Canada. Sedimentology, 25, 625–648.
    [Google Scholar]
  23. Castro, M.R. (2003) Estratigrafia de Sequências na Formação Tombador, Grupo Chapada Diamantina, Bahia. Unpublished PhD Thesis, Universidade São Paulo.
  24. Catuneanu, O. (2006) Principles of Sequence Stratigraphy. Elsevier, Amsterdam. 375 p.
    [Google Scholar]
  25. Catuneanu, O. & Eriksson, P.G. (1999) The sequence stratigraphic concept and the Precambrian rock record: an example from the 2.7–2.1 Ga Transvaal Supergroup, Kaapvaal craton. Prec. Res., 97, 215–251.
    [Google Scholar]
  26. Catuneanu, O., Galloway, W.E., Kendall, C.G.S.T.C., Miall, A.D., Posamentier, H.W., Strasser, A. & Tucker, M.E. (2011) Sequence stratigraphy: methodology and nomenclature. Newsl. Stratigrap. Special Issue, 44 (3), 173–245.
    [Google Scholar]
  27. Catunenau, O., Martins‐Neto, M.A. & Eriksson, P.G. (2005) Precambrian sequence stratigraphy. Sed. Geol., 176(1–2), 67–95.
    [Google Scholar]
  28. Chemale, F.Jr., Dussin, I.A., Martins, M.S., Alkmim, F.F. & Queiroga, G. (2010) The Espinhaço Supergroup in Minas Gerais: a Stenian Basin? In: VII South American Symposium on Isotope Geology, pp. 552–555. Departamento Nacional de Pesquisa Mineral ‐DNPM, Brasilia.
    [Google Scholar]
  29. Collinson, J.D. (1996) Alluvial sediments. In: Sedimentary Environments: Processes, Facies and Stratigraphy (Ed.by H.G.Reading ), pp. 37–82, Blackwell Science, London.
    [Google Scholar]
  30. Costa, L.A.M. & Inda, H.A.V. (1982) O aulacógeno do Espinhaço. Rev. Ciências da Terra, 1, 13–18.
    [Google Scholar]
  31. Dalrymple, R.W. (2010) Tidal depositional systems. In: Facies Models 4 (Ed. by N.P.James & R.W.Dalrymple ), Geol. Ass. Can . 6, 201–231.
    [Google Scholar]
  32. Dalrymple, R.W., Narbonne, G.M. & Smith, L. (1985) Eolian action and the distribution of Cambrian shales in North America. Geology, 13, 607–610.
    [Google Scholar]
  33. Dalrymple, R.W., Knight, R.J., Zaitlin, B.A. & Middleton, G.V. (1990) Dynamics and facies model of a macrotidal sand‐bar complex. Cobequid Bay‐Salmon River Estuary. Sedimentology, 37, 577–612.
    [Google Scholar]
  34. Danderfer, A. (1990) Análise descritiva e cinemática do Supergrupo Espinhaço na região da Chapada Diamantina, BA. Unpublished MsC Thesis, Universidade Federal de Ouro Preto, UFOP.
  35. Danderfer, A. & Dardenne, M.A. (2002) Tectonoestratigrafia da bacia Espinhaço na porção centro‐norte do cráton do São Francisco: registro de uma evolução polihistórica descontínua. Rev. Brasil. Geocienc., 32(4), 449–460.
    [Google Scholar]
  36. Danderfer, A., De Waele, B., Pedreira, A.J. & Nalini, H.A. (2009) New geochronological constraints on the geological evolution of Espinhaço basin within the São Francisco Craton – Brazil. Prec. Res., 170, 116–128.
    [Google Scholar]
  37. Davies, T.R.H. (1986) Large debris flows: a macro‐viscous phenomenon. Acta Mech., 63, 161–178.
    [Google Scholar]
  38. Davies, T.R.H. (1990) Debris‐flow surges—experimental simulation. J. Hydrol., 29, 18–46.
    [Google Scholar]
  39. Delgado, I.M., Souza, J.D., Silva, L.C., Filho, N.C.S., Santos, R.A., Pedreira, A.J., Guimarães, J.T., Angelim, L.A.A., Vasconcelos, A.M., Gomes, I.P., Filho, J.V.L., Valente, C.R., Perrota, M.M. & Heineck, C.A. (2003) Geotectônica do Escudo Atlântico. In: Geologia, Tectônica e Recursos Minerais do Brasil (Ed. by L.A.Bizzi , C.Schobbenhaus , R.M.Vidotti & J.H.Gonçalves ), pp. 253–261. CPRM, Brasília.
    [Google Scholar]
  40. Denny, C.S. (1967) Fans and pediments. Am. J. Sci., 265, 81–105.
    [Google Scholar]
  41. Derby, O.A. (1906) The serra of Espinhaço, Brazil. J. Geol., 14, 314–401.
    [Google Scholar]
  42. Dominguez, J.M.L. (1992) Estratigrafia de sequências aplicada a terrenos pré‐Cambrianos: exemplos para o Estado da Bahia. Rev. Bras. Geocien., 22(4), 422–436.
    [Google Scholar]
  43. Dominguez, J.M.L. & Wanless, H.R. (1991) Facies architecture of a falling sea‐level strandplain, Doce River coast, Brazil. In: Shelf Sand and Sandstone Bodies: Geometry, Facies and Sequence Stratigraphy (Ed. by D.J.P.Swift , G.F.Oertel , R.W.Tillman & J.A.Thorne ), Spec. Publ. Int. Ass. Sediment . 14, 259–281.
    [Google Scholar]
  44. Eriksson, P.G. & Catuneanu, O. (2004) Third‐order sequence stratigraphy in the Palaeoproterozoic Daspoort Formation (Pretoria Group, Transvaal Supergroup), Kaapvaal craton. In: The Precambrian Earth: Tempos and Events (Ed. by P.G.Eriksson , W.Altermann , D.R.Nelson , W.U.Mueller & O.Catuneanu ), pp. 724–735. Elsevier, Amsterdam.
    [Google Scholar]
  45. Eriksson, K.A. & Simpson, E.L. (2004) Precambrian Tidalites: recognition and significance. In: The Precambrian Earth: Tempos and Events (Ed. by P.G.Eriksson , W.Altermann , D.R.Nelson , W.U.Mueller , O.Catuneanu ), pp. 631–642. Elsevier, Amsterdam.
    [Google Scholar]
  46. Eriksson, P.G., Condie, K.C., Tisgaard, H., Mueller, W.U., Altermann, W., Miall, A.D., Aspler, L.B., Catuneanu, O. & Chiarenzelli, J.R. (1998) Precambrian clastic sedimentation systems. Sed. Geol., 120, 5–53.
    [Google Scholar]
  47. Eriksson, P.G., Catuneanu, O., Nelson, D.R. & Popa, M. (2005a) Controls on Precambrian sea level change and sedimentary cyclicity. Sed. Geol., 176, 43–65.
    [Google Scholar]
  48. Eriksson, P.G., Catuneanu, O., Els, B.G., Bumpy, A.J., Van Rooy, J.L. & Popa, M. (2005b) Kaapval craton: changing first‐ and second‐order controls on sea level from c. 3.0 Ga to 2.0 Ga. Sed. Geol., 176, 121–148.
    [Google Scholar]
  49. Eriksson, K.A., Simpson, E.L. & Mueller, W. (2006) An unusual fluvial to tidal transition in the mesoarchean Moodis Group, South Africa: A response to high tidal range and active tectonics. Sed. Geol., 190, 13–24.
    [Google Scholar]
  50. Fanti, F. & Catuneanu, O. (2010) Fluvial sequence stratigraphy: the Waipiti Formation, West‐Central Alberta, Canada. J. Sed. Res., 80, 320–338.
    [Google Scholar]
  51. Galloway, W.E. (1989) Genetic stratigraphic sequences in basin analysis, I. Architecture and genesis of flooding‐surface bounded depositional units. AAPG Bull., 73, 125–142.
    [Google Scholar]
  52. Gruber, L., Pimentel, M.M., Brito Neves, B.B., Armstrong, R. & Fuck, R.A. (2011) Proveniência U‐Pb em zircão (SHRIMP) da Formação Tombador, Grupo Chapada Diamantina, BA. Anais do XIII Congr. Bras. Geoquímica, pp. 1155–1158.
  53. Guadagnin, F., Chemale, F.Jr., Magalhães, A.J.C., Santana, A., Dussin, I. & Takehara, L. (2013) Age constraints on crystal‐tuff from the Espinhaço Supergroup – Insights into the Paleoproterozoic to Mesoproterozoic intracratonic basin cycles of the Congo‐ São Francisco Craton. Gond. Res., doi: org/10.1016/j.gr.2013.10.009
    [Google Scholar]
  54. Guimarães, J.T., Santos, R.A. & Melo, R.C. (2008) Geologia da Chapada Diamantina Ocidental (Projeto Ibitiara–Rio de Contas). Salvador, Companhia Baiana de Pesquisa Mineral – CBPM/Companhia Pesquisa de Recursos Minerais – CPRM. Série Arquivos Abertos, 31, 64.
    [Google Scholar]
  55. Hadlari, T., Rainbird, R.H. & Donaldson, J.A. (2006) Alluvial, eolian and lacustrine sedimentology of a Paleoproterozoic half‐graben, Baker Lake Basin, Nunavut, Canada. Sed. Geol., 190, 47–70.
    [Google Scholar]
  56. Hampton, B.A. & Horton, B.K. (2007) Sheetflow fluvial processes in a rapidly subsiding basin, Altiplano plateau, Bolivia. Sedimentology, 54, 1121–1147.
    [Google Scholar]
  57. Hunter, R.E. (1977) Terminology of cross‐stratified sedimentary layers and climbing‐ripple structures. J. Sed. Petrol., 47, 697–706.
    [Google Scholar]
  58. Inda, H.A.V. & Barbosa, J.F. (1978) Texto explicativo para o mapa geológico do Estado da Bahia escala 1:1.000.000. SME/COM. Salvador, 137p.
  59. Jardim De Sá, E.F. (1981) A Chapada Diamantina e a Faixa Santo Onofre: um exemplo de tectônica intra‐placa no Proterozóico Médio do Craton do São Francisco. In: Geologia e Recursos Minerais do Estado da Bahia (Ed. by H.A.V.Inda , M.M Marinho & F.B.Duarte ) Secretaria de Minas e Energia do Estado da Bahia, Textos Básicos 4, 111–120.
    [Google Scholar]
  60. Jardim De Sá, E.F., Bartels, R.L., Brito Neves, B.B. & Mcreath, I. (1976) Geocronologia e o modelo tectono‐magmático da Chapada Diamantina e Espinhaço Setentrional, Bahia. XXIX Congr. Bras.Geol. Anais, 4, 205–257.
    [Google Scholar]
  61. Kocurek, G. & Havholm, K.G. (1993) Eolian sequence stratigraphy – a conceptual framework. In: Siliciclastic Sequence Stratigraphy. Recent Developments and Applications (Ed. by P.W.Weimer & H.W.Posamentier ), AAPG Memoir 58, 393–409.
    [Google Scholar]
  62. Kocurek, G. & Lancaster, N. (1999) Aeolian system sediment state: theory and Mojave Desert Kelso dune field example. Sedimentology, 46, 505–515.
    [Google Scholar]
  63. Kokureck, G. & Nielson, J. (1986) Conditions favourable for the formation of warm‐climate eolian and sandsheets. Sedimentology, 33, 795–816.
    [Google Scholar]
  64. Loureiro, H.S.C., Bahiense, I.C., Neves, J.P., Guimarães, J.T., Teixeira, L.R., Santos, R.A. & Melo, R.C. (2009) Geologia e recursos minerais da parte norte do corredor de deformação do Paramirim (Projeto Barra‐Oliveira dos Brejinhos): Salvador, Companhia Baiana de Pesquisa Mineral – CBPM, Companhia Pesquisa de Recursos Minerais – CPRM. Série Arquivos Abertos, 33, 122p.
    [Google Scholar]
  65. Lowe, D.R. (1988) Suspended‐load fallout rate as an independent variable in the analysis of current structures. Sedimentology, 35, 765–776.
    [Google Scholar]
  66. Major, J.J. (1997) Depositional processes in large‐scale debris‐flow experiments. J. Geol., 105, 345–366.
    [Google Scholar]
  67. Marconato, A., Almeida, R.P., Turra, B.B. & Fragoso‐Cesar, A.R.S. (2014) Pre‐vegetation fluvial floodplains and channel‐belts in the Late Neoproterozoic‐Cambrian Santa Bárbara group (Southern Brazil). Sed. Geol., 300, 49–61.
    [Google Scholar]
  68. Martins‐Neto, M.A. (2009) Sequence stratigraphic framework of Proterozoic successions in eastern Brazil. Mar. Pet. Geol., 26, 163–176.
    [Google Scholar]
  69. Martins‐Neto, M.A., Pedrosa Soares, A.C. & Lima, S.A.A. (2001) Tectono‐sedimentary evolution of sedimentar basins from Late Paleoproterozoic to Late Neoproterozoic in the São Francisco craton and Araçuaí fold belt, eastern Brazil. Sed. Geol., 141/142, 343–370.
    [Google Scholar]
  70. McCormick, D.S. & Grotzinger, J.P. (1993) Distinction of marine from alluvial facies in the Paleoproterozoic (1.9 Ga) Burnside Formation, Kilihigok Basin, N.W.T., Canada. J. Sed. Pet., 63, 398–419.
    [Google Scholar]
  71. Mckie, T., Jolley, S.J. & Kristensen, M.B. (2010) Stratigraphic and structural compartmentalization of dryland fluvial reservoirs: Triassic Heron Cluster, Central North Sea. In: Reservoir Compartmentalization (Ed. by S.J.Jolley , Q.J.Fisher , R.B.Ainsworth , P.Vrolijk & S.Delisle ), Spec. Publ. Geol. Soc ., 347, 165–198.
    [Google Scholar]
  72. Miall, A.D. (1978) Lithofacies types and vertical profile models in braided rivers deposits: a summary. In: Fluvial Sedimentology (Ed. by A.D.Miall ), Can. Soc. Pet. Geol . 5, 597–604.
    [Google Scholar]
  73. Miall, A.D. (1985) Architectural‐Elements Analysis: a New Method of Facies Analysis Applied to Fluvial Deposits. Earth Sci. Rev., 22, 261–308.
    [Google Scholar]
  74. Miall, A.D. (1996) The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology. 582 pp. SpringerVerlag, Berlin.
    [Google Scholar]
  75. Mountney, N.P. (2012) A stratigraphic model to account for complexity in Aeolian dune and interdune successions. Sedimentology, 59, 964–989.
    [Google Scholar]
  76. Nemec, W. & Postma, G. (1993) Quaternary alluvial fans in southwestern Crete: sedimentation processes and geomorphic evolution. In: Alluvial Sedimentation (Ed. by M.Marzo & C.Puigdefabregas ), Spe. Publ. Intr. Ass. Sediment . 17, 235–276.
    [Google Scholar]
  77. Nemec, W. & Steel, R.J. (1984) Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass flow deposits. In: Sedimentology of Gravels and Conglomerates (Ed. by E.H.Koster & R.J.Steel ), Can. Soc. Pet. Geol . 10, 1–31.
    [Google Scholar]
  78. Nummendal, D. & Swift, D.J.P. (1987) Transgressive stratigraphy at sequence‐bounding unconformities: some principles derived from Holocene and Cretaceous examples. In: Sea‐level Fluctuation and Coastal Evolution (Ed. by D.Nummendal , O.H.Pilkey & J.D.Howard ), Spec. Publ. SEPM 41, 241–260.
    [Google Scholar]
  79. Pedreira, A.J.C.L. (1994) O Supergrupo Espinhaço na Chapada Diamantina Centro‐Oriental, Bahia: Sedimentação, Estratigrafia e Tectônica. Unpublished PhD Thesis, Universidade São Paulo.
  80. Pedreira, A.J. & De Waele, B. (2008) Contemporaneous evolution of the Palaeoproterozoic‐Mesoproterozoic sedimentary basins of the São Francisco‐Congo Craton. In: West Gondwana: Pre‐Cenozoic Correlations Across the South Atlantic Region (Ed. by R.J.Pankhurst , R.A.J.Trouw , B.B.Brito Neves & M.J.De Wit ), Geol. Soc. Spec. Publ ., 294, 33–48.
    [Google Scholar]
  81. Plink‐Björklund, P. (2005) Stacked fluvial and tide‐dominated estuarine deposits in high‐frequency (fourth‐order) sequences of the Eocene Central Basin, Spitsbergen. Sedimentology, 52, 391–428.
    [Google Scholar]
  82. Pyrcz, M.J., Catuneanu, O. & Deutsch, C.V. (2005) Stochastic surface‐based modeling of turbidite lobes. AAPG Bul., 89(2), 177–192.
    [Google Scholar]
  83. Raja Gabaglia, G.P., Rodrigues, E.B., Magalhaes, A.J.C., Arregui, C.D. & Savini, R. (2006) Criteria do recognise sequence orders and tectonic imprint in cyclic siliciclastic record: a key to high‐resolution stratigraphy. IAS Intern. Meeting, Fukuoka, Japan.
  84. Ramaekers, P. & Catuneanu, O. (2004) Development and sequences of the Athabasca Basin, early Proterozoic, Saskatchewan and Alberta, Canada. In: The Precambrian Earth: Tempos and Events (Ed. by P.G.Eriksson , W.Altermann , D.R.Nelson , W.U.Mueller & O.Catuneanu ), pp. 705–723. Elsevier.
    [Google Scholar]
  85. Rebouças, V.O. (2011) Estratigrafia de sequências da Formação Açuruá nas proximidades de Guiné, Chapada Diamantina – Bahia. Unpublished Monography, Universidade Federal da Bahia, Salvador.
  86. Santana, A. (2007) Ciclicidade No Registro Sedimentar do Intervalo Superior do Grupo Paraguaçu, Mesoproterozoico. Unpublished Monography, Universidade Federal da Bahia, Salvador, Chapada Diamantina. 76 pp.
    [Google Scholar]
  87. Santana, R.O. (2009) Estratigrafia de Sequências de alta resolução na base da Formação Tombador, nos arredores de Lençóis. Unpublished Monography, Universidade Federal da Bahia, Salvador, Chapada Diamantina. 126 pp.
    [Google Scholar]
  88. Santos, C.M. (2009) Análise Estratigráfica das Formações Guiné – Tombador, Chapada Diamantina. Unpublished Monography, Universidade Federal da Bahia, Salvador, Bahia. 136 pp.
  89. Savini, R.R. & Raja Gabaglia, G.P. (1997) Curso de Campo da Chapada Diamantina – Guias de Campo. Lençóis (BA). PETROBRAS. 15p.
  90. Scherer, C.M.S. (2002) Preservation of aeolian genetic units by lava flow in the Lower Cretaceous of the Paraná Basin, southern Brazil. Sedimentology, 49, 97–116.
    [Google Scholar]
  91. Scherer, C.M.S., Lavina, E.L.C., Filho, D.C.D., Oliveira, F.M., Bongiolo, D.E. & Aguiar, E.S. (2007) Stratigraphy na facies architecture of the fluvial‐aeolian‐lcustrine Sergi Formation (Upper Jurassic), Recôncavo Basin, Brazil. Sed. Geol., 194, 169–193.
    [Google Scholar]
  92. Schobbenhaus, C. (1996) As tafrogêneses superpostas Espinhaço e Santo Onofre, estado da Bahia: Revisão e novas propostas. Rev. Bras. Geocien., 4, 265–276.
    [Google Scholar]
  93. Schobbenhaus, C. & Kaul, P.F.T. (1971) Contribuição a estratigrafia da Chapada Diamantina, Bahia Central. Mineração e Metalurgia, 53(315), 116–120.
    [Google Scholar]
  94. Schum, S. (1993) River response to base level change: implication for sequence stratigraphy. J. Geol., 101, 279–294.
    [Google Scholar]
  95. Shanley, K.W. & McCabe, P.J. (1994) Perspectives on the sequence stratigraphy of continental strata. AAPG Bul., 78(4), 544–568.
    [Google Scholar]
  96. Silva Born, L.R. (2011) A Formação Tombador na porção nordeste da Chapada Diamantina – BA: Estratigrafia, Faciologia e Ambientes de Sedimentação. Unpublished MsC Thesis, Universidade Federal do Rio Grande do Sul, Brasil.
  97. Silva Filho, C.V.R. (2009) Sistemas deposicionais nas Formações Tombador e Guiné nos arredores do Morro do Pai Inácio, Chapada Diamantina–BA. Unpublished Monography, Universidade Federal da Bahia, 120p.
  98. Simpson, E.L., Dilliard, K.A., Rowell, B.F. & Higgins, D. (2002) The fluvial‐to‐marine transition within the post‐rift Lower Cambrian Hardyston Formation, Eastern Pennsylvania, USA. Sed. Geol., 147, 127–142.
    [Google Scholar]
  99. Sloss, L.L., Krumbein, W.C. & Dapples, E.C. (1949) Integrated facies analysis. In: Sedimentary Facies in Geologic History (Edited by C.R.Longwell ) Geol. Soc. Am. Mem ., 39, 91–124.
    [Google Scholar]
  100. Sohn, Y.K., Rhee, C.W. & Kim, B.C. (1999) Debris Flow and Hyperconcentrated Flood‐Flow Deposits in an Alluvial Fan, Northwestern Part of the Cretaceous Yongdong Basin, Central Korea. J. Geol., 107, 111–132.
    [Google Scholar]
  101. Swift, D.J.P. (1975) Barrier‐island genesis: evidence from the central Atlantic shelf, eastern USA. Sed. Geol., 14, 1–43.
    [Google Scholar]
  102. Swift, D.J.P., Kofoed, J.W., Saulsbury, F.B. & Sears, P.C. (1972)Holocene evolution of the shelf surface, central and southern Atlantic shelf of North America. In: Shelf sediment Transport: Process and Pattern (Ed. by D.J.P.Swift , D.B.Duane & O.H.Pilkey ), pp. 499–574, Hutchinson & Ross, Stroudsburg, Pennsylvania, Dowden.
    [Google Scholar]
  103. Tirsgaard, H. & Øxnevad, I.E.I. (1998) Preservation of pre‐vegetational mixed fluvio–aeolian deposits in a humid climatic setting: an example from the Middle Proterozoic Eriksfjord Formation, Southwest Greenland. Sed. Geol., 120, 295–317.
    [Google Scholar]
  104. Todd, S.P. (1989) Sream‐driven, high‐density gravelly traction carpets: possible deposits in the Trabeg Conglomerate Formation, SW Ireland and some theoretical considerations of their origin. Sedimentology, 36, 513–530.
    [Google Scholar]
  105. Tunbridge, I.P. (1981) Sandy high‐energy flood sedimentation—some criteria for recognition, with an example from the Devonian of S.W. England. Sed. Geol., 28, 79–95.
    [Google Scholar]
  106. Varajão, A.D. & Gomes, N.S. (1997) Petrological significance of illitic clays in Proterozoic sandstones of the Tombador Formation, Chapada Diamantina. Brazil. Zbl. Geol. Paläont. Teil I, 3–6, 767–778.
    [Google Scholar]
  107. Visser, M.J. (1980) Neap‐spring cycles reflected in Holocene subtidal large‐scale bedforms deposits: a preliminary note. Geology, 8, 543–546.
    [Google Scholar]
  108. Wells, N.A. (1984) Sheet debris flow and sheetflood conglomerates in Cretaceous cool maritime alluvial fans, south Orkney Islands, Antarctica. In: Sedimentology of Gravels and Conglomerates (Ed. by E.H.Koster & R.J.Steel ), Can. Soc. Pet. Geol . 10, 133–145.
    [Google Scholar]
  109. Wells, S.G. & Harvey, A.M. (1987) Sedimentological and geomorphic variations in storm generated alluvial fans, Howgill fells, northwest England. Geol. Soc. Am. Bull., 98, 182–198.
    [Google Scholar]
  110. Went, D.J. (2005) Pre‐vegetation alluvial fan facies and processes: an example from the Cambro‐Ordovician Rozel Conglomerate Formation, Jersey, Channel Islands. Sedimentology, 52, 693–713.
    [Google Scholar]
  111. Williams, G.E. (1971) Flood deposits of the sand‐bed ephemeral streams of central Australia. Sedimentology, 17, 1–4.
    [Google Scholar]
  112. Wonham, J.P., Cyrot, M., Nguyen, T., Louhouamou, J. & Ruau, O. (2010) Integrated approach to geomodelling and dynamic simulation in a complex mixed siliciclastic–carbonate reservoir, N'Kossa field, Offshore Congo. In: Reservoir Compartmentalization (Ed. by S.J.Jolley , Q.J.Fisher , R.B.Ainsworth , P.Vrolijk & S.Delisle ), Spec. Publ. Geol. Soc ., 347, 133–163.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12117
Loading
/content/journals/10.1111/bre.12117
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error