1887
Volume 31, Issue 1
  • E-ISSN: 1365-2117

Abstract

Abstract

Use of deep‐water sediments in submarine fans to reconstruct changing erosion onshore is based on the premise of relatively simple transport between source and sink. However, debate continues regarding the degree of sediment buffering and recycling in the sediment transport process. In this study, we investigate the origin of sediment in the Indus Submarine Canyon since the Last Glacial Maximum (LGM; ~20 ka) using zircon U‐Pb dates. Zircon grains in the submarine canyon are resolvably different from those at the river mouth, at least before 6.6 ka, implying a disconnection between the river mouth and the canyon up to that time. Sand may be stored near the river mouth as sea level rose, while finer‐grained sediment was directly transferred into deeper water. Since 1 ka the upper canyon has shown big and rapid provenance changes, most notably a sharp increase in erosion from Nanga Parbat, whose influence is minor in the modern river. Such rapid changes imply a lack of buffering in the recent past. The modern river contrasts with sediments in the canyon in terms of its zircon U‐Pb age populations and may be influenced by significant anthropogenic impact on the terrestrial drainage basin, especially damming.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12313
2018-10-05
2020-05-26
Loading full text...

Full text loading...

References

  1. Alizai, A., Carter, A., Clift, P. D., VanLaningham, S., Williams, J. C., & Kumar, R. (2011). Sediment provenance, reworking and transport processes in the Indus River by U‐Pb dating of detrital zircon grains. Global and Planetary Change, 76, 33–55. https://doi.org/10.1016/j.gloplacha.2010.11.008
    [Google Scholar]
  2. van der Beek, P., Robert, X., Mugnier, J.‐L., Bernet, M., Huyghe, P., & Labrin, E. (2006). Late Miocene‐Recent exhumation of the central Himalaya and recycling in the foreland basin assessed by apatite fission‐track thermochronology of Siwalik sediments, Nepal. Basin Research, 18(4), 413–434. https://doi.org/10.1111/j.1365-2117.2006.00305.x
    [Google Scholar]
  3. Bignold, S. M., & Treloar, P. J. (2003). Northward subduction of the Indian Plate beneath the Kohistan island arc, Pakistan Himalaya: New evidence from isotopic data. Journal of the Geological Society, 160, 377–384. https://doi.org/10.1144/0016-764902-068
    [Google Scholar]
  4. Blöthe, J. H., Munack, H., Korup, O., Fülling, A., Garzanti, E., Resentini, A., & Kubik, P. W. (2014). Late quaternary valley infill and dissection in the Indus River, westernTibetan Plateau margin. Quaternary Science Reviews, 94, 102–119. https://doi.org/10.1016/j.quascirev.2014.04.011
    [Google Scholar]
  5. Bollinger, L., Avouac, J. P., Beyssac, O., Catlos, E. J., Harrison, T. M., Grove, M., … Sapkota, S. (2004). Thermal structure and exhumation history of the Lesser Himalaya in central Nepal. Tectonics, 23(5), 19.
    [Google Scholar]
  6. Borg, I., & Groenen, P. J. (2005). Modern multidimensional scaling: Theory and applications. New York, NY: Springer.
    [Google Scholar]
  7. Camoin, G. F., Montaggioni, L. F., & Braithwaite, C. J. R. (2004). Late glacial to post glacial sea levels in the western Indian Ocean. Marine Geology, 206(1–4), 119–146. https://doi.org/10.1016/j.margeo.2004.02.003
    [Google Scholar]
  8. Carter, A., & Bristow, C. S. (2003). Linking hinterland evolution and continental basin sedimentation by using detrital zircon thermochronology; a study of the Khorat Plateau basin, eastern Thailand. Basin Research, 15, 271–285. https://doi.org/10.1046/j.1365-2117.2003.00201.x
    [Google Scholar]
  9. Castelltort, S., & Van Den Driessche, J. (2003). How plausible are high‐frequency sediment supply‐driven cycles in the stratigraphic record?Sedimentary Geology, 157, 3–13. https://doi.org/10.1016/S0037-0738(03)00066-6
    [Google Scholar]
  10. Catlos, E. J., Harrison, T. M., Kohn, M. J., Grove, M., Ryerson, F. J., Manning, C. E., & Upreti, B. N. (2001). Geochronologic and thermobarometric constraints on the evolution of the Main Central Thrust, central Nepal Himalaya. Journal of Geophysical Research, 106(B8), 16177–16204. https://doi.org/10.1029/2000JB900375
    [Google Scholar]
  11. Chirouze, F., Huyghe, P., Chauvel, C., van der Beek, P., Bernet, M., & Mugnier, J.‐L. (2015). Stable drainage pattern and variable exhumation in the Western Himalaya since the Middle Miocene. Journal of Geology, 123, 1–20. https://doi.org/10.1086/679305
    [Google Scholar]
  12. Cliff, R. A., Graham, C. M., & Harte, B. (1985). Isotopic dating in metamorphic belts. Journal of the Geological Society of London, 142, 97–110. https://doi.org/10.1144/gsjgs.142.1.0097
    [Google Scholar]
  13. Clift, P. D., & Blusztajn, J. S. (2005). Reorganization of the western Himalayan river system after five million years ago. Nature, 438(7070), 1001–1003. https://doi.org/10.1038/nature04379
    [Google Scholar]
  14. Clift, P. D., Campbell, I. H., Pringle, M. S., Carter, A., Zhang, X., Hodges, K. V., … Allen, C. M. (2004). Thermochronology of the modern Indus River bedload; new insight into the control on the marine stratigraphic record. Tectonics, 23, TC5013.
    [Google Scholar]
  15. Clift, P. D., Carter, A., Krol, M., & Kirby, E. (2002). Constraints on India; Eurasia collision in the Arabian Sea region taken from the Indus Group, Ladakh Himalaya, India. In P. D.Clift , D.Kroon , C.Gaedicke , & J.Craig (Eds.), The tectonic and climatic evolution of the Arabian Sea region (pp. 97–116). Special Publications. London: Geological Society.
    [Google Scholar]
  16. Clift, P. D., & Giosan, L. (2014). Sediment fluxes and buffering in the post‐glacial Indus Basin. Basin Research, 25, 1–18.
    [Google Scholar]
  17. Clift, P. D., Giosan, L., Blusztajn, J., Campbell, I. H., Allen, C., Pringle, M., … Lückge, A. (2008). Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon. Geology, 36(1), 79–82. https://doi.org/10.1130/G24315A.1
    [Google Scholar]
  18. Clift, P. D., Giosan, L., Henstock, T., & Tabrez, A. R. (2014). Sediment storage and reworking on the shelf and in the canyon of the Indus River‐fan system since the last glacial maximum. Basin Research, 26, 183–202. https://doi.org/10.1111/bre.12041
    [Google Scholar]
  19. Clift, P. D., Lee, J. I., Hildebrand, P., Shimizu, N., Layne, G. D., Blusztajn, J., … Khan, A. A. (2002). Nd and Pb isotope variability in the Indus River system; implications for sediment provenance and crustal heterogeneity in the western Himalaya. Earth and Planetary Science Letters, 200(1–2), 91–106. https://doi.org/10.1016/S0012-821X(02)00620-9
    [Google Scholar]
  20. Clift, P. D., Shimizu, N., Layne, G. D., Blusztajn, J. S., Gaedicke, C., Schlüter, H.‐U., … Amjad, S. (2001). Development of the Indus Fan and its significance for the erosional history of the western Himalaya and Karakoram. Geological Society of America Bulletin, 113, 1039–1051. https://doi.org/10.1130/0016-7606(2001)113<1039:DOTIFA>2.0.CO;2
    [Google Scholar]
  21. DeCelles, P. G., Gehrels, G. E., Najman, Y., Martin, A. J., Carter, A., & Garzanti, E. (2004). Detrital geochronology and geochemistry of Cretaceous‐Early Miocene strata of Nepal: Implications for timing and diachroneity of initial Himalayan orogenesis. Earth and Planetary Science Letters, 227(3–4), 313–330. https://doi.org/10.1016/j.epsl.2004.08.019
    [Google Scholar]
  22. DeCelles, P. G., Gehrels, G. E., Quade, J., LaReau, B., & Spurlin, M. (2000). Tectonic implications of U‐Pb zircon ages of the Himalayan orogenic belt in Nepal. Science, 288(5465), 497–499. https://doi.org/10.1126/science.288.5465.497
    [Google Scholar]
  23. Donelick, R. A. (2005). Apatite fission‐track analysis. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, 58, 49–94. https://doi.org/10.2138/rmg.2005.58.3
    [Google Scholar]
  24. East, A. E., Clift, P. D., Carter, A., Alizai, A., & VanLaningham, S. (2015). Fluvial‐eolian interactions in sediment routing and sedimentary signal buffering: An example from the Indus Basin and Thar Desert. Journal of Sedimentary Research, 85, 715–728. https://doi.org/10.2110/jsr.2015.42
    [Google Scholar]
  25. Eshel, G., Levy, G. J., Mingelgrin, U., & Singer, M. J. (2004). Critical evaluation of the use of laser diffraction for particle‐size distribution analysis. Soil Science Society of America Journal, 68(3), 736–743. https://doi.org/10.2136/sssaj2004.7360
    [Google Scholar]
  26. Fildani, A., McKay, M. P., Stockli, D., Clark, J., Dykstra, M. L., Stockli, L., & Hessler, A. M. (2016). The ancestral Mississippi drainage archived in the late Wisconsin Mississippi deep‐sea fan. Geology, 44, 179–482.
    [Google Scholar]
  27. Fildani, A., Normark, W. R., Kostic, S., & Parker, G. (2006). Channel formation by flow stripping: Large‐scale scour features along the Monterey East Channel and their relation to sediment waves. Sedimentology, 53(6), 1265–1287. https://doi.org/10.1111/j.1365-3091.2006.00812.x
    [Google Scholar]
  28. Garzanti, E., Baud, A., & Mascle, G. (1987). Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India). Geodinamica Acta, 1(4/5), 297–312. https://doi.org/10.1080/09853111.1987.11105147
    [Google Scholar]
  29. Garzanti, E., Vezzoli, G., Ando, S., Paparella, P., & Clift, P. D. (2005). Petrology of Indus River sands; a key to interpret erosion history of the western Himalayan syntaxis. Earth and Planetary Science Letters, 229(3–4), 287–302. https://doi.org/10.1016/j.epsl.2004.11.008
    [Google Scholar]
  30. Giosan, L., Clift, P. D., Macklin, M. G., Fuller, D. Q., Constantinescu, S., Durcan, J. A., … Syvitski, J. P. M. (2012). Fluvial landscapes of the Harappan civilization. Proceedings of the National Academy of Sciences, 109(26), 1688–1694. https://doi.org/10.1073/pnas.1112743109
    [Google Scholar]
  31. Giosan, L., Constantinescu, S., Clift, P. D., Tabrez, A. R., Danish, M., & Inam, A. (2006). Recent morphodynamics of the Indus delta shore and shelf. Continental Shelf Research, 26, 1668–1684. https://doi.org/10.1016/j.csr.2006.05.009
    [Google Scholar]
  32. Hildebrand, P. R., Searle, M. P., Shakirullah, Zafarali Khan, & van Heijst, H. J. (2000). Geological evolution of the Hindu Kush, NW Frontier Pakistan; active margin to continent‐continent collision zone. In M. A.Khan , P. J.Treloar , M. P.Searle , & M. Q.Jan (Eds.), Tectonics of the Nanga Parbat syntaxis and the Western Himalaya (pp. 277–293). Special Publication. London: Geological Society.
    [Google Scholar]
  33. Hodges, K. (2003). Geochronology and thermochronology in orogenic systems. In R.Rudnick (Ed.), The Crust (pp. 263–292). Amsterdam: Elsevier‐Science.
    [Google Scholar]
  34. Hodges, K. V., & Silverberg, D. S. (1988). Thermal evolution of the Greater Himalaya, Garhwal, India. Tectonics, 7(3), 583–600. https://doi.org/10.1029/TC007i003p00583
    [Google Scholar]
  35. Huyghe, P., Galy, A., Mugnier, J.‐L., & France‐Lanord, C. (2001). Propagation of the thrust system and erosion in the Lesser Himalaya: Geochemical and sedimentological evidence. Geology, 29(11), 1007–1010. https://doi.org/10.1130/0091-7613(2001)029<1007:POTTSA>2.0.CO;2
    [Google Scholar]
  36. Jagger, M. D., Max, M. D., Aftalion, M., & Leake, B. E. (1988). U‐Pb zircon ages of basic rocks and gneisses intruded into the Dalradian rocks of Cashel, Connemara, western Ireland. Journal of the Geological Society of London, 145(4), 645–648. https://doi.org/10.1144/gsjgs.145.4.0645
    [Google Scholar]
  37. Jagoutz, O. E., Burg, J.‐P., Hussain, S., Dawood, H., Pettke, T., Iizuka, T., & Maruyama, S. (2009). Construction of the granitoid crust of an island arc part I: Geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan). Contributions to Mineralogy and Petrology, 158, 739–755. https://doi.org/10.1007/s00410-009-0408-3
    [Google Scholar]
  38. Jerolmack, D. J., & Paola, C. (2010). Shredding of environmental signals by sediment transport. Geophysical Research Letters, 37(19), L19401.
    [Google Scholar]
  39. Jonell, T. N., Owen, L. A., Carter, A., Schwenniger, J.‐L., & Clift, P. D. (2017). Quantifying episodic erosion and transient storage on the western margin of the Tibetan Plateau, upper Indus River. Quaternary Research, 89, 281–306.
    [Google Scholar]
  40. Khan, M. A., Stern, R. J., Gribble, R. F., & Windley, B. F. (1997). Geochemical and isotopic constraints on subduction polarity, magma sources, and palaeogeography of the Kohistan intra‐oceanic arc, northern Pakistan Himalaya. Journal of the Geological Society, London, 154, 935–946. https://doi.org/10.1144/gsjgs.154.6.0935
    [Google Scholar]
  41. Kolla, V., & Coumes, F. (1987). Morphology, internal structure, seismic stratigraphy, and sedimentation of Indus Fan. AAPG Bulletin, 71, 650–677.
    [Google Scholar]
  42. Krol, M. A., Zeitler, P. K., Poupeau, G., & Pecher, A. (1996). Temporal variations in the cooling and denudation history of the Hunza plutonic complex, Karakoram Batholith, revealed by Ar‐40/Ar‐39 thermochronology. Tectonics, 15(2), 403–415. https://doi.org/10.1029/95TC02424
    [Google Scholar]
  43. Li, G., Tian, Y., Kohn, B. P., Sandiford, M., Xu, Z., & Cai, Z. (2015). Cenozoic low temperature cooling history of the Northern Tethyan Himalaya in Zedang, SE Tibet and its implications. Tectonophysics, 643, 80–93. https://doi.org/10.1016/j.tecto.2014.12.014
    [Google Scholar]
  44. Li, Y., Clift, P. D., Boning, P., Blustajn, J., Murray, R. W., Ireland, T., … Giosan, L., (2018). Continuous signal propagation in the indus submarine canyon since the last deglacial. Marine Geology. in revision. http://adsabs.harvard.edu/abs/2016AGUFMEP41E..04L
    [Google Scholar]
  45. Limmer, D. R., Böning, P., Giosan, L., Ponton, C., Köhler, C. M., Cooper, M. J., … Clift, P. D. (2012). Geochemical record of holocene to recent sedimentation on the Western Indus continental shelf, Arabian Sea. Geochemistry Geophysics Geosystems, 13, Q01008. https://doi.org/10.1029/2011GC003845.
    [Google Scholar]
  46. Métivier, F., & Gaudemer, Y. (1999). Stability of output fluxes of large rivers in South and East Asia during the last 2 million years; implications of floodplain processesBasin Research, 11(4), 293–303. https://doi.org/10.1046/j.1365-2117.1999.00101.x
    [Google Scholar]
  47. Miles, P. R., & Roest, W. R. (1993). Earliest seafoor spreading magnetic anomalies in the north Arabian Sea and the ocean‐continent transition. Geophysical Journal International, 115, 1025–1031. https://doi.org/10.1111/j.1365-246X.1993.tb01507.x
    [Google Scholar]
  48. Munack, H., Blöthe, J. H., Fülöp, R. H., Codilean, A. T., Fink, D., & Korup, O. (2016). Recycling of pleistocene valley fills dominates 135 ka of sediment flux, upper Indus River. Quaternary Science Reviews, 149, 122–134.
    [Google Scholar]
  49. Najman, Y. (2006). The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth‐Science Reviews, 74(1–2), 1–72.
    [Google Scholar]
  50. Najman, Y., Appel, E., Boudagher‐Fadel, M., Bown, P., Carter, A., Garzanti, E., … Vezzoli, G. (2010). Timing of India‐Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research, 115, B12416, https://doi.org/10.1029/2010JB007673.
    [Google Scholar]
  51. Najman, Y., Bickle, M., Garzanti, E., Pringle, M., Barfod, D., Brozovic, N., … Ando, S. (2009). Reconstructing the exhumation history of the Lesser Himalaya, NW India, from a multitechnique provenance study of the foreland basin Siwalik Group. Tectonics, 28(5), 1–15.
    [Google Scholar]
  52. Paces, J.B., & Miller, J.D. (1993). Precise U‐Pb ages of duluth complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. Journal of Geophysical Research, 98(B8), 13997–14013. https://doi.org/10.1029/93JB01159
    [Google Scholar]
  53. Pankhurst, R. J., & Pidgeon, R. T. (1976). Inherited isotope systems in the source region pre‐history of early Caledonian granites in the Dalradian Series of Scotland. Earth and Planetary Science Letters, 31(1), 55–68. https://doi.org/10.1016/0012-821X(76)90096-0
    [Google Scholar]
  54. Prins, M. A., Postma, G., Cleveringa, J., Cramp, A., & Kenyon, N. H. (2000). Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: The Indus Fan. Marine Geology, 169, 327–349. https://doi.org/10.1016/S0025-3227(00)00086-4
    [Google Scholar]
  55. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. P. (2016). Environmental signal propagation in sedimentary systems across timescales. Earth‐Science Reviews, 153, 7–29. https://doi.org/10.1016/j.earscirev.2015.07.012
    [Google Scholar]
  56. Searle, M. P. (1996). Cooling history, erosion, exhumation and kinematics of the Himalaya‐Karakoram‐Tibet orogenic belt. In A.Yin , & T. M.Harrison (Eds.), The tectonic evolution of Asia (pp. 110–137). Cambridge: Cambridge University Press.
    [Google Scholar]
  57. Searle, M. P., Law, R. D., Jessup, M., & Simpson, R. L. (2006). Crustal structure and evolution of the Greater Himalaya in Nepal – South Tibet: Implications for channel flow and ductile extrusion of the middle crust. In R. D.Law , M. P.Searle , & L.Godin (Eds.), Channel flow, ductile extrusion and exhumation in continental collision zones (pp. 355–378). Special Publication. London: Geological Society.
    [Google Scholar]
  58. Searle, M. P., & Tirrul, R. (1991). Structure and thermal evolution of the Karakoram crust. Journal of the Geological Society, 148, 65–82. https://doi.org/10.1144/gsjgs.148.1.0065
    [Google Scholar]
  59. Sundell, K. E., & Saylor, J. E. (2017). Unmixing detrital geochronology age distributions. Geochemistry, Geophysics, Geosystems, 18, 2872–2886. https://doi.org/10.1002/2016GC006774
    [Google Scholar]
  60. Sweet, M. L., & Blum, M. D. (2016). Connections between fluvial to shallow marine environments and submarine canyons: Implications for sediment transfer to deep water. Journal of Sedimentary Research, 86(10), 1147–1162. https://doi.org/10.2110/jsr.2016.64
    [Google Scholar]
  61. Vermeesch, P. (2004). How many grains are needed for a provenance study?Earth and Planetary Science Letters, 224, 351–441.
    [Google Scholar]
  62. Vermeesch, P., Resentini, A., & Garzanti, E. (2016). An R package for statistical provenance analysis. Sedimentary Geology, 336, 14–25. https://doi.org/10.1016/j.sedgeo.2016.01.009
    [Google Scholar]
  63. Wallis, D., Carter, A., Phillips, R. J., Parsons, A. J., & Searle, M. P. (2016). Spatial variation in exhumation rates across Ladakh and the Karakoram: New apatite fission track data from the Eastern Karakoram, NW India. Tectonics, 35, 704–721. https://doi.org/10.1002/2015TC003943
    [Google Scholar]
  64. Webb, A. A. G. (2013). Preliminary palinspastic reconstruction of Cenozoic deformation across the Himachal Himalaya (northwestern India). Geosphere, 9, 572–587. https://doi.org/10.1130/GES00787.1
    [Google Scholar]
  65. Zeitler, P. K., Chamberlain, C. P., & Smith, H. A. (1993). Synchronous anatexis, metamorphism, and rapid denudation at Nanga‐Parbat (Pakistan Himalaya). Geology, 21(4), 347–350. https://doi.org/10.1130/0091-7613(1993)021<0347:SAMARD>2.3.CO;2
    [Google Scholar]
  66. Zeitler, P. K., Sutter, J. F., Williams, I. S., Zartman, R. E., & Tahirkheli, R. A. K. (1989). Geochronology and temperature history of the Nanga Parbat‐Haramosh Massif, Pakistan. In L. L.Malinconico , & R. J.Lillie (Eds.), Tectonics of the Western Himalayas (pp. 1–22). Special Paper. Geological Society of America: Boulder, CO.
    [Google Scholar]
  67. Zhang, Q., Willems, H., Ding, L., Gräfe, K.‐U., & Appel, E. (2012). Initial India‐Asia continental collision and Foreland basin evolution in the Tethyan Himalaya of Tibet: Evidence from stratigraphy and paleontology. Journal of Geology, 120(2), 175–189. https://doi.org/10.1086/663876
    [Google Scholar]
  68. Zhuang, G., Najman, Y., Guillot, S., Roddaz, M., Antoine, P.‐O., Métais, G., … Solangi, S. H. (2015). Constraints on the collision and the pre‐collision tectonic configuration between India and Asia from detrital geochronology, thermochronology, and geochemistry studies in the lower Indus basin, Pakistan. Earth and Planetary Science Letters, 432, 363–373. https://doi.org/10.1016/j.epsl.2015.10.026
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12313
Loading
/content/journals/10.1111/bre.12313
Loading

Data & Media loading...

Supplements

 

PDF
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error