1887
Volume 31, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

Deep‐marine deposits provide a valuable archive of process interactions between sediment gravity flows, pelagic sedimentation and thermohaline bottom‐currents. Stratigraphic successions can also record plate‐scale tectonic processes (e.g. continental breakup and shortening) that impact long‐term ocean circulation patterns, including changes in climate and biodiversity. One such setting is the Exmouth Plateau, offshore NW Australia, which has been a relatively stable, fine‐grained carbonate‐dominated continental margin from the Late Cretaceous to Present. We combine extensive 2D (~40,000 km) and 3D (3,627 km2) seismic reflection data with lithologic and biostratigraphic information from wells to reconstruct the tectonic and oceanographic evolution of this margin. We identified three large‐scale seismic units (SUs): (a) SU‐1 (Late Cretaceous)—500 m‐thick, and characterised by NE‐SW‐trending, slope‐normal elongate depocentres (c. 200 km long and 70 km wide), with erosional surfaces at their bases and tops, which are interpreted as the result of contour‐parallel bottom‐currents, coeval with the onset of opening of the Southern Ocean; (b) SU‐2 (Palaeocene—Late Miocene)—800 m‐thick and characterised by: (a) very large (amplitude, c. 40 m and wavelength, c. 3 km), SW‐migrating, NW‐SE‐trending sediment waves, (b) large (4 km‐wide, 100 m‐deep), NE‐trending scours that flank the sediment waves and (c) NW‐trending, 4 km‐wide and 80 m‐deep turbidite channel, infilled by NE‐dipping reflectors, which together may reflect an intensification of NE‐flowing bottom currents during a relative sea‐level fall following the establishment of circumpolar‐ocean current around Antarctica; and (c) SU‐3 (Late Miocene—Present)—1,000 m‐thick and is dominated by large (up to 100 km3) mass‐transport complexes (MTCs) derived from the continental margin (to the east) and the Exmouth Plateau Arch (to the west), and accumulated mainly in the adjacent Kangaroo Syncline. This change in depositional style may be linked to tectonically‐induced seabed tilting and folding caused by collision and subduction along the northern margin of the Australian plate. Hence, the stratigraphic record of the Exmouth Plateau provides a rich archive of plate‐scale regional geological events occurring along the distant southern (2,000 km away) and northern (1,500 km away) margins of the Australian plate.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12328
2018-12-06
2020-01-26
Loading full text...

Full text loading...

References

  1. Akhurst, M. C., Stow, D. A., & Stoker, M. S. (2002). Late quaternary glacigenic contourite, debris flow and turbidite process interaction in the faroe‐shetland channel, NW European continental Margin. Geological Society, London, Memoirs, 22, 73–84. https://doi.org/10.1144/GSL.MEM.2002.022.01.07
    [Google Scholar]
  2. Alfaro, E., & Holz, M. (2014). Seismic geomorphological analysis of deepwater gravity‐driven deposits on a slope system of the southern Colombian Caribbean margin. Marine and Petroleum Geology, 57, 294–311. https://doi.org/10.1016/j.marpetgeo.2014.06.002
    [Google Scholar]
  3. Armandita, C., Morley, C. K., & Rowell, P. (2015). Origin, structural geometry, and development of a giant coherent slide: The south Makassar Strait mass transport complex. Geosphere, 11, 376–403. https://doi.org/10.1130/GES01077.1
    [Google Scholar]
  4. Bagguley, J., & Prosser, S. (1999). The interpretation of passive margin depositional processes using seismic stratigraphy: Examples from offshore Namibia. Geological Society, London, Special Publications, 153, 321–344. https://doi.org/10.1144/GSL.SP.1999.153.01.20
    [Google Scholar]
  5. Baillie, P., Powell, C. M., Li, Z., & Ryall, A. (1994). The tectonic framework of Western Australia’s neoproterozoic to recent sedimentary basins. The Sedimentary Basins of Western Australia: Proceedings of Petroleum Exploration Society of Australia Symposium.
  6. Barron, E. J., & Peterson, W. H. (1991). The cenozoic ocean circulation based on ocean general circulation model results. Palaeogeography, Palaeoclimatology, Palaeoecology, 83, 405–28. https://doi.org/10.1016/0031-0182(91)90073-Z
    [Google Scholar]
  7. Beu, A., Griffin, M., & Maxwell, P. (1997). Opening of drake passage gateway and late miocene to pleistocene cooling reflected in southern ocean molluscan dispersal: evidence from New Zealand and Argentina. Tectonophysics, 281, 83–97. https://doi.org/10.1016/S0040-1951(97)00160-1
    [Google Scholar]
  8. Blumsack, S., & Weatherly, G. (1989). Observations of the nearby flow and a model for the growth of Mudwaves. Deep Sea Research Part A. Oceanographic Research Papers, 36, 1327–1339. https://doi.org/10.1016/0198-0149(89)90086-1
    [Google Scholar]
  9. Boyd, R., Williamson, P., & Haq, B. (1993). Seismic stratigraphy and passive‐margin evolution of the southern Exmouth plateau. In H. W.Posamentier, C. P.Summerhayes, B. U.Haq, & G. P.Allen (Eds.), Sequence stratigraphy and facies associations (18, pp. 579–603). Oxford, UK: Blackwell Scientific Publications.
    [Google Scholar]
  10. Brown, A. R. (2011). Interpretation of three‐dimensional seismic data. Tulsa, OK: The American Association of Petroleum Geologists and the Society of Exploration Geophysicists.
    [Google Scholar]
  11. Bull, S., Cartwright, J., & Huuse, M. (2009). A review of kinematic indicators from mass‐transport complexes using 3d seismic data. Marine and Petroleum Geology, 26, 1132–1151. https://doi.org/10.1016/j.marpetgeo.2008.09.011
    [Google Scholar]
  12. Cathro, D. L., AustinJr, J. A., & Moss, G. D. (2003). Progradation along a deeply submerged oligocenemiocene heterozoan carbonate shelf: how sensitive are clinoforms to sea level variations?AAPG Bulletin, 87, 1547–1574. https://doi.org/10.1306/05210300177
    [Google Scholar]
  13. Cathro, D. L., & Karner, G. D. (2006). Cretaceous‐tertiary inversion history of the dampier sub‐basin, Northwest Australia: Insights from quantitative basin modelling. Marine and Petroleum Geology, 23, 503–526. https://doi.org/10.1016/j.marpetgeo.2006.02.005
    [Google Scholar]
  14. Christensen, B. A., Renema, W., Henderiks, J., De Vleeschouwer, D., Groeneveld, J., Castañeda, I. S., … Ishiwa, T. (2017). Indonesian throughflow drove Australian climate from humid pliocene to arid pleistocene. Geophysical Research Letters, 44, 6914–6925. https://doi.org/10.1002/2017GL072977
    [Google Scholar]
  15. Clark, I., Cartwright, J., Prather, B., Deptuck, M., Mohrig, D., Van Hoorn, B., & Wynn, R. (2012) Interactions between coeval sedimentation and deformation from the Niger delta deepwater fold belt. In B.Prather, M. E.Deptuck, D.Mohrig, B. V.Hoorn, & R.Wynn (Eds.), Application of the principles seismic geomorphology to continental slope and base‐of‐slope systems: Case studies from seafloor and near‐seafloor analogues, SEPM Special Publication, 99, 243–267. SEPM (Society for Sedimentary Geology).
    [Google Scholar]
  16. Collins, L. B., James, N. P., & Bone, Y. (2014). Carbonate shelf sediments of the western continental margin of Australia. Geological Society, London, Memoirs, 41, 255–272.
    [Google Scholar]
  17. Covault, J. A., Romans, B. W., Graham, S. A., Fildani, A., & Hilley, G. E. (2011). Terrestrial source to deep‐sea sink sediment budgets at high and low sea levels: Insights from tectonically active Southern California. Geology, 39, 619–622. https://doi.org/10.1130/G31801.1
    [Google Scholar]
  18. Davies, T., & Laughton, A. (1972). Sedimentary processes in the North Atlantic. Initial Reports of the Deep Sea Drilling Project, 12, 905–934.
    [Google Scholar]
  19. Day, K., Gale, J., & Smallwood, J. (2010). Deepwater Exmouth plateau, North Carnarvon basin: Preliminary investigations into ridge and furrow features. The APPEA Journal, 50, 731–731. https://doi.org/10.1071/AJ09095
    [Google Scholar]
  20. Duncan, J., & Wright, S. (2005). Soil strength and slope stability. Hoboken, NJ: John Wiley & Sons Ltd.
    [Google Scholar]
  21. Ercilla, G., Juan, C., Hernandez‐Molina, F. J., Bruno, M., Estrada, F., Alonso, B., … lí Farran, M., Llave, E. & Garcia, M., (2016). Significance of bottom currents in deep‐sea morphodynamics: An example from the Alboran Sea. Marine Geology, 378, 157–170. https://doi.org/10.1016/j.margeo.2015.09.007
    [Google Scholar]
  22. Esmerode, E. V., Lykke‐Andersen, H., & Surlyk, F. (2008). Interaction between bottom currents and slope failure in the late cretaceous of the Southern Danish Central Graben, North Sea. Journal of the Geological Society, 165, 55–72. https://doi.org/10.1144/0016-76492006-138
    [Google Scholar]
  23. Exon, N., Haq, B., & Von Rad, U. (1992). Exmouth plateau revisited: Scientific drilling and geological framework. In U.VonRad, B. U.Haq, R. B.Kidd, & S. B.O’Connell (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 122, 3–20. College Station, TX: Ocean Drilling Program.
    [Google Scholar]
  24. Exon, N. F., & Willcox, J. B. (1980). The Exmouth plateau: Stratigraphy, structure, and petroleum potential. Canberra, Australia: Australian Government Publishing Service.
    [Google Scholar]
  25. Falvey, D., & Veevers, J. (1974). Physiography of the Exmouth and Scott Plateaus, Western Australia, and adjacent Northeast Wharton basin. Marine Geology, 17, 21–59. https://doi.org/10.1016/0025-3227(74)90046-2
    [Google Scholar]
  26. Faugères, J.‐C., & Stow, D. A. (1993). Bottom‐current‐controlled sedimentation: A synthesis of the contourite problem. Sedimentary Geology, 82, 287–297. https://doi.org/10.1016/0037-0738(93)90127-Q
    [Google Scholar]
  27. Faugères, J.‐C., & Stow, D. (2008). Contourite drifts: Nature, evolution and controls. Developments in Sedimentology, 60, 257–288.
    [Google Scholar]
  28. Faugères, J.‐C., Stow, D. A., Imbert, P., & Viana, A. (1999). Seismic features diagnostic of contourite drifts. Marine Geology, 162, 405–38. https://doi.org/10.1016/S0025-3227(99)00068-7
    [Google Scholar]
  29. Flood, R. D. (1988). A lee wave model for deep‐sea mudwave activity. Deep Sea Research Part A. Oceanographic Research Papers, 35, 973–983. https://doi.org/10.1016/0198-0149(88)90071-4
    [Google Scholar]
  30. Gamboa, D., Alves, T., Cartwright, J., & Terrinha, P. (2010). MTD distribution on a ‘Passive’ continental margin: The Espírito Santo Basin (Se Brazil) during the palaeogene. Marine and Petroleum Geology, 27, 1311–1324. https://doi.org/10.1016/j.marpetgeo.2010.05.008
    [Google Scholar]
  31. García, M., Ercilla, G., & Alonso, B. (2009). Morphology and sedimentary systems in the central Bransfield basin, Antarctic Peninsula: Sedimentary dynamics from shelf to basin. Basin Research, 21, 295–314.
    [Google Scholar]
  32. García, M., Hernández‐Molina, F., Llave, E., Stow, D., León, R., Fernández‐Puga, M., … Somoza, L. (2009). Contourite erosive features caused by the Mediterranean outflow water in the Gulf of Cadiz: Quaternary tectonic and oceanographic implications. Marine Geology, 257, 24–40.
    [Google Scholar]
  33. Gee, M., Gawthorpe, R., & Friedmann, S. (2006). Triggering and evolution of a giant submarine landslide, offshore Angola, revealed by 3d seismic stratigraphy and geomorphology. Journal of Sedimentary Research, 76, 9–19. https://doi.org/10.2110/jsr.2006.02
    [Google Scholar]
  34. Gee, M., Uy, H., Warren, J., Morley, C., & Lambiase, J. (2007). The Brunei slide: A giant submarine landslide on the North West Borneo Margin revealed by 3d seismic data. Marine Geology, 246, 9–23. https://doi.org/10.1016/j.margeo.2007.07.009
    [Google Scholar]
  35. Golovchenko, X., Borella, P. E., & O'Connell, S. B. (1992). Sedimentary cycles on the Exmouth plateau. In U.VonRad, B. U.Haq, R. B.Kidd, & S. B.O’Connell (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 122, 279–291. College Station, TX: Ocean Drilling Program.
    [Google Scholar]
  36. Gradstein, F. M., Ogg, J. G., Schmitz, M., & Ogg, G. (2012). The geologic time scale 2012. Elsevier.
    [Google Scholar]
  37. Gruetzner, J., & Uenzelmann‐Neben, G. (2016). Contourite drifts as indicators of cenozoic bottom water intensity in the Eastern Agulhas Ridge Area, South Atlantic. Marine Geology, 378, 350–360. https://doi.org/10.1016/j.margeo.2015.12.003
    [Google Scholar]
  38. Haller, C., Hallock, P., Hine, A. C., & Smith, C. G. (2018). Benthic foraminifera from the Carnarvon Ramp reveal variability in Leeuwin Current activity (Western Australia) since the Pliocene. Marine Micropaleontology, 142, 25–39. https://doi.org/10.1016/j.marmicro.2018.05.005
    [Google Scholar]
  39. Hampton, M. A., Lee, H. J., & Locat, J. (1996). Submarine landslides. Reviews of Geophysics, 34, 33–59. https://doi.org/10.1029/95RG03287
    [Google Scholar]
  40. Haq, B. U., Boyd, R. L., Exon, N. F., & von Rad, U. (1992). Evolution of the central Exmouth plateau: A post‐drilling perspective. In U.VonRad, B. U.Haq, R. B.Kidd, & S. B.O’Connell (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 122, 801–816. College Station, TX: Ocean Drilling Program.
    [Google Scholar]
  41. Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the triassic. Science, 235, 1156–1167. https://doi.org/10.1126/science.235.4793.1156
    [Google Scholar]
  42. Heinio, P., & Davies, R. (2006). Degradation of compressional fold belts: Deep‐water Niger delta. AAPG Bulletin, 90, 753–770. https://doi.org/10.1306/11210505090
    [Google Scholar]
  43. Hengesh, J. V., Dirstein, J. K., & Stanley, A. J. (2013). Landslide geomorphology along the Exmouth plateau continental margin, North West Shelf, Australia. Australian Geomechanics, 48, 71–92.
    [Google Scholar]
  44. Hernández‐Molina, F., Larter, R., Rebesco, M., & Maldonado, A. (2006). Miocene reversal of bottom water flow along the Pacific Margin of the Antarctic Peninsula: Stratigraphic evidence from a contourite sedimentary tail. Marine Geology, 228, 93–116.
    [Google Scholar]
  45. Hernández‐Molina, F., Llave, E., & Stow, D. (2008). Continental slope contourites. Developments in Sedimentology, 60, 379–408.
    [Google Scholar]
  46. Hernández‐Molina, F. J., Llave, E., Stow, D., García, M., Somoza, L., Vázquez, J. T., … León, R. (2006). The contourite depositional system of the Gulf of Cadiz: A sedimentary model related to the bottom current activity of the Mediterranean outflow water and its interaction with the continental margin. Deep Sea Research Part II: Topical Studies in Oceanography, 53, 1420–1463.
    [Google Scholar]
  47. Hernández‐Molina, F. J., Soto, M., Piola, A. R., Tomasini, J., Preu, B., Thompson, P., … Morales, E. (2016). A contourite depositional system along the Uruguayan continental margin: Sedimentary, oceanographic and paleoceanographic implications. Marine Geology, 378, 333–349. https://doi.org/10.1016/j.margeo.2015.10.008
    [Google Scholar]
  48. Hofstra, M., Peakall, J., Hodgson, D., & Stevenson, C. (2018). Architecture and morphodynamics of subcritical sediment waves in an ancient channel‐lobe transition zone. Sedimentology. https://doi.org/10.1111/sed.12468
    [Google Scholar]
  49. Houben, A. J., Bijl, P. K., Pross, J., Bohaty, S. M., Passchier, S., Stickley, C. E., … van de Flierdt, T. (2013). Reorganization of southern ocean plankton ecosystem at the onset of Antarctic glaciation. Science, 340, 341–344. https://doi.org/10.1126/science.1223646
    [Google Scholar]
  50. Hull, J. N. F., & Griffiths, C. M. (2002). Sequence Stratigraphic Evolution of the Albian to Recent Section of the Dampier Sub‐Basin, Northwest Shelf, Australia. The Sedimentary Basins of Western Australia 3: Proceedings of the Petroleum Exploration Society of Australia Symposium, Perth.
  51. Huneke, H., & Mulder, T. (2010). Deep‐sea sediments. Amsterdam, The Netherlands: Elsevier.
    [Google Scholar]
  52. Hyndman, R., & Spence, G. (1992). A seismic study of methane hydrate marine bottom simulating reflectors. Journal of Geophysical Research: Solid Earth, 97, 6683–6698. https://doi.org/10.1029/92JB00234
    [Google Scholar]
  53. Imbert, P., & Ho, S. (2012). Seismic‐scale funnel‐shaped collapse features from the paleocene‐eocene of the North West Shelf of Australia. Marine Geology, 332, 198–221. https://doi.org/10.1016/j.margeo.2012.10.010
    [Google Scholar]
  54. James, N. P., Bone, Y., Kyser, T. K., Dix, G. R., & Collins, L. B. (2004). The importance of changing oceanography in controlling late quaternary carbonate sedimentation on a high‐energy, tropical, oceanic ramp: North‐Western Australia. Sedimentology, 51, 1179–1205. https://doi.org/10.1111/j.1365-3091.2004.00666.x
    [Google Scholar]
  55. Johnson, D. A., & Damuth, J. E. (1979). Deep thermohaline flow and current‐controlled sedimentation in the amirante passage: Western Indian Ocean. Marine Geology, 33, 405–44. https://doi.org/10.1016/0025-3227(79)90131-2
    [Google Scholar]
  56. Kähler, G., & Stow, D. A. (1998). Turbidites and contourites of the palaeogene lefkara formation, Southern Cyprus. Sedimentary Geology, 115, 215–231. https://doi.org/10.1016/S0037-0738(97)00094-8
    [Google Scholar]
  57. Karas, C., Nürnberg, D., Tiedemann, R., & Garbe‐Schönberg, D. (2011). Pliocene indonesian throughflow and leeuwin current dynamics: Implications for Indian Ocean Polar Heat Flux. Paleoceanography, 26, PA2217. https://doi.org/10.1029/2010PA001949
    [Google Scholar]
  58. Karner, G. D., & Driscoll, N. W. (1999). Style, timing and distribution of tectonic deformation across the Exmouth Plateau, Northwest Australia, determined from stratal architecture and quantitative basin modelling. Geological Society, London, Special Publications, 164, 271–311. https://doi.org/10.1144/GSL.SP.1999.164.01.14
    [Google Scholar]
  59. Keep, M., Harrowfield, M., & Crowe, W. (2007). The neogene tectonic history of the North West Shelf, Australia. Exploration Geophysics, 38, 151–174. https://doi.org/10.1071/EG07022
    [Google Scholar]
  60. Keep, M., Powell, C., & Baillie, P. (1998). Neogene deformation of the North West Shelf, Australia. The Sedimentary Basins of Western Australia, 2, 81–91.
    [Google Scholar]
  61. Kelman, A. P., Nicoll, R. S., Kennard, J. M., Mory, A. J., Mantle, D. J., Poidevin, S. L., … Edwards, D. (2013). Northern carnarvon basin biozonation and stratigraphy, chart 36. Canberra, Australia: Geoscience Australia.
    [Google Scholar]
  62. Knutz, P. (2008). Palaeoceanographic significance of contourite drifts. Developments in Sedimentology, 60, 511–535.
    [Google Scholar]
  63. Krastel, S., Wefer, G., Hanebuth, T. J., Antobreh, A. A., Freudenthal, T., Preu, B., … Winkelmann, D. (2011). Sediment dynamics and geohazards off Uruguay and the De La Plata river region (Northern Argentina and Uruguay). Geo‐Marine Letters, 31, 271–283. https://doi.org/10.1007/s00367-011-0232-4
    [Google Scholar]
  64. Kuhnert, H., Bickert, T., & Paulsen, H. (2009). Southern ocean frontal system changes precede Antarctic ice sheet growth during the middle Miocene. Earth and Planetary Science Letters, 284, 630–638. https://doi.org/10.1016/j.epsl.2009.05.030
    [Google Scholar]
  65. Livermore, R., Hillenbrand, C. D., Meredith, M., & Eagles, G. (2007). Drake passage and cenozoic climate: An open and shut case?Geochemistry, Geophysics, Geosystems, 8(1), n/a–n/a. https://doi.org/10.1029/2005GC001224
    [Google Scholar]
  66. Llave, E., Jané, G., Maestro, A., López‐Martínez, J., Hernández‐Molina, F. J., & Mink, S. (2018). Geomorphological and sedimentary processes of the glacially influenced Northwestern Iberian continental margin and abyssal plains. Geomorphology, 312, 60–85. https://doi.org/10.1016/j.geomorph.2018.03.022
    [Google Scholar]
  67. Locat, J., & Lee, H. J. (2002). Submarine landslides: Advances and challenges. Canadian Geotechnical Journal, 39, 193–212. https://doi.org/10.1139/t01-089
    [Google Scholar]
  68. Lonergan, L., Jamin, N. H., Jackson, C.‐A.‐L., & Johnson, H. D. (2013). U‐shaped slope gully systems and sediment waves on the passive margin of Gabon (West Africa). Marine Geology, 337, 80–97. https://doi.org/10.1016/j.margeo.2013.02.001
    [Google Scholar]
  69. Longley, I. M., Buessenschuett, C., Clydsdale, L., Cubitt, C. J., Davis, R. C., Johnson, M. K., … Spry, T. B. (2002). The North West shelf of Australia – A woodside perspective. In M.Keep, & S. J.Moss (Eds.), The sedimentary basins of Western Australia 3: Petroleum Exploration Society of Australia Symposium (pp. 28–88). Perth.
    [Google Scholar]
  70. Marchès, E., Mulder, T., Gonthier, E., Cremer, M., Hanquiez, V., Garlan, T., & Lecroart, P. (2010). Perched lobe formation in the Gulf of Cadiz: Interactions between gravity processes and contour currents (Algarve Margin, Southern Portugal). Sedimentary Geology, 229, 81–94. https://doi.org/10.1016/j.sedgeo.2009.03.008
    [Google Scholar]
  71. Martorelli, E., Bosman, A., Casalbore, D., & Falcini, F. (2016). Interaction of down‐slope and along‐slope processes off Capo Vaticano (Southern Tyrrhenian Sea, Italy), with particular reference to contourite‐related landslides. Marine Geology, 378, 43–55. https://doi.org/10.1016/j.margeo.2016.01.005
    [Google Scholar]
  72. Martos, Y. M., Maldonado, A., Lobo, F. J., Hernández‐Molina, F. J., & Pérez, L. F. (2013). Tectonics and palaeoceanographic evolution recorded by contourite features in southern drake passage (Antarctica). Marine Geology, 343, 76–91. https://doi.org/10.1016/j.margeo.2013.06.015
    [Google Scholar]
  73. Masson, D., Wynn, R., & Talling, P. (2010). Large landslides on passive continental margins: Processes, hypotheses and outstanding questions. In D. C.Mosher, C.Shipp, L.Moscardelli, J. D.Chaytor, C. D. P.Baxter, H. J.Lee, & R.Urgeles (Eds.), Submarine mass movements and their consequences (pp. 153–165). Dordrecht, The Netherlands: Springer.
    [Google Scholar]
  74. McGowran, B., Li, Q., Cann, J., Padley, D., McKirdy, D. M., & Shafik, S. (1997). Biogeographic impact of the leeuwin current in Southern Australia since the late middle eocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 136, 19–40. https://doi.org/10.1016/S0031-0182(97)00073-4
    [Google Scholar]
  75. Michels, K. H., Rogenhagen, J., & Kuhn, G. (2001). Recognition of contour‐current influence in mixed contourite‐turbidite sequences of the Western Weddell Sea, Antarctica. Marine Geophysical Researches, 22, 465–485.
    [Google Scholar]
  76. Miller, K. G., Wright, J. D., & Fairbanks, R. G. (1991). Unlocking the ice house: Oligocene‐miocene oxygen isotopes, eustasy, and margin erosion. Journal of Geophysical Research: Solid Earth, 96, 6829–6848.
    [Google Scholar]
  77. Moscardelli, L., & Wood, L. (2016). Morphometry of mass‐transport deposits as a predictive tool. GSA Bulletin, 128, 47–80.
    [Google Scholar]
  78. Moscardelli, L., Wood, L., & Mann, P. (2006). Mass‐transport complexes and associated processes in the offshore area of Trinidad and Venezuela. AAPG Bulletin, 90, 1059–1088. https://doi.org/10.1306/02210605052
    [Google Scholar]
  79. Mulder, T., Lecroart, P., Hanquiez, V., Marches, E., Gonthier, E., Guedes, J.‐C., … Voisset, M. (2006). The western part of the Gulf of Cadiz: Contour currents and turbidity currents interactions. Geo‐Marine Letters, 26, 31–41. https://doi.org/10.1007/s00367-005-0013-z
    [Google Scholar]
  80. Mulder, T., Lecroart, T., Voisset, M., Schönfeld, J., Le Drezen, E., Gonthier, E., … Hernandez‐Molina, F. (2002). Past deep‐ocean circulation and the paleoclimate record‐Gulf of Cadiz. EOS, Transactions American Geophysical Union, 83, 481–488. https://doi.org/10.1029/2002EO000337
    [Google Scholar]
  81. Müller, R., Dutkiewicz, A., Seton, M., & Gaina, C. (2013). Seawater chemistry driven by supercontinent assembly, breakup, and dispersal. Geology, 41, 907–910. https://doi.org/10.1130/G34405.1
    [Google Scholar]
  82. Müller, R., Dyksterhuis, S., & Rey, P. (2012). Australian paleo‐stress fields and tectonic reactivation over the past 100 Ma. Australian Journal of Earth Sciences, 59, 13–28. https://doi.org/10.1080/08120099.2011.605801
    [Google Scholar]
  83. Murgese, D. S., & De Deckker, P. (2007). The late quaternary evolution of water masses in the Eastern Indian Ocean between Australia and Indonesia, based on benthic foraminifera faunal and carbon isotopes analyses. Palaeogeography, Palaeoclimatology, Palaeoecology, 247, 382–401. https://doi.org/10.1016/j.palaeo.2006.11.002
    [Google Scholar]
  84. Normark, W. R., Piper, D. J., & Sliter, R. (2006). Sea‐level and tectonic control of middle to late pleistocene turbidite systems in santa monica basin, offshore California. Sedimentology, 53, 867–897. https://doi.org/10.1111/j.1365-3091.2006.00797.x
    [Google Scholar]
  85. Ortiz‐Karpf, A., Hodgson, D. M., Jackson, C. A. L., & McCaffrey, W. D. (2016). Mass‐transport complexes as markers of deep‐water fold‐and‐thrust belt evolution: Insights from the Southern Magdalena Fan, Offshore Colombia. Basin Research, 30, 65–88. https://doi.org/10.1111/bre.12208
    [Google Scholar]
  86. Osborne, M. J., & Swarbrick, R. E. (1997). Mechanisms for generating overpressure in sedimentary basins: A reevaluation. AAPG Bulletin, 81, 1023–1041.
    [Google Scholar]
  87. Pearce, A. (1991). Eastern boundary currents of the southern hemisphere. Journal of the Royal Society of Western Australia, 74, 35–45.
    [Google Scholar]
  88. Pérez, L. F., Bohoyo, F., Hernández‐Molina, F. J., Casas, D., Galindo‐Zaldívar, J., Ruano, P., & Maldonado, A. (2016). Tectonic activity evolution of the scotia‐Antarctic plate boundary from mass transport deposit analysis. Journal of Geophysical Research: Solid Earth, 121, 2216–2234. https://doi.org/10.1002/2015JB012622
    [Google Scholar]
  89. Pérez, L. F., Maldonado, A., Bohoyo, F., Hernández‐Molina, F. J., Vázquez, J. T., Lobo, F. J., & Martos, Y. M. (2014). Depositional processes and growth patterns of isolated oceanic basins: The protector and Pirie basins of the Southern Scotia Sea (Antarctica). Marine Geology, 357, 163–181. https://doi.org/10.1016/j.margeo.2014.08.001
    [Google Scholar]
  90. Pérez, L. F., Maldonado, A., Hernández‐Molina, F. J., Lodolo, E., Bohoyo, F., & Galindo‐Zaldívar, J. (2017). Tectonic and oceanographic control of sedimentary patterns in a small oceanic basin: Dove basin (Scotia Sea, Antarctica). Basin Research, 29, 255–276. https://doi.org/10.1111/bre.12148
    [Google Scholar]
  91. Pickering, K. T., Hiscott, R. N., & Hein, F. J. (1989). Deep‐marine environments: Clastic sedimentation and tectonics. Crows Nest, Australia: Allen & Unwin Australia.
    [Google Scholar]
  92. Poulsen, C. J., Barron, E. J., Arthur, M. A., & Peterson, W. H. (2001). Response of the mid‐cretaceous global oceanic circulation to tectonic and CO2 forcings. Paleoceanography and Paleoclimatology, 16, 576–592.
    [Google Scholar]
  93. Powell, C. M., Roots, S., & Veevers, J. (1988). Pre‐breakup continental extension in east gondwanaland and the early opening of the Eastern Indian Ocean. Tectonophysics, 155, 261–283. https://doi.org/10.1016/0040-1951(88)90269-7
    [Google Scholar]
  94. Pucéat, E., Lécuyer, C., & Reisberg, L. (2005). Neodymium isotope evolution of NW Tethyan upper ocean waters throughout the cretaceous. Earth and Planetary Science Letters, 236, 705–720. https://doi.org/10.1016/j.epsl.2005.03.015
    [Google Scholar]
  95. Rebesco, M., Hernández‐Molina, F. J., Van Rooij, D., & Wåhlin, A. (2014). Contourites and associated sediments controlled by deep‐water circulation processes: State‐of‐the‐art and future considerations. Marine Geology, 352, 111–154. https://doi.org/10.1016/j.margeo.2014.03.011
    [Google Scholar]
  96. Reed, D. L., Meyer, A. W., Silver, E. A., & Prasetyo, H. (1987). Contourite sedimentation in an intraoceanic forearc system: Eastern Sunda Arc, Indonesia. Marine Geology, 76, 223–241. https://doi.org/10.1016/0025-3227(87)90031-4
    [Google Scholar]
  97. Richardson, S. E. J., Davies, R. J., Allen, M. B., & Grant, S. F. (2011). Structure and evolution of mass transport deposits in the South Caspian Basin, Azerbaijan. Basin Research, 23, 702–719. https://doi.org/10.1111/j.1365-2117.2011.00508.x
    [Google Scholar]
  98. Romans, B. W., Normark, W. R., McGann, M. M., Covault, J. A., & Graham, S. A. (2009). Coarse‐grained sediment delivery and distribution in the Holocene Santa Monica Basin, California: Implications for evaluating source‐to‐sink flux at millennial time scales. Geological Society of America Bulletin, 121, 1394–1408. https://doi.org/10.1130/B26393.1
    [Google Scholar]
  99. Romero‐Otero, G. A., Slatt, R. M., & Pirmez, C. (2010). Detached and shelf‐attached mass transport complexes on the magdalena deepwater fan. In D. C.Mosher, C.Shipp, L.Moscardelli, J. D.Chaytor, C. D. P.Baxter, H. J.Lee, & R.Urgeles (Eds.), Submarine mass movements and their consequences (pp. 593–606). Dordrecht, The Netherlands: Springer.
    [Google Scholar]
  100. Romine, K., Durrant, J., Cathro, D., & Bernardel, G. (1997). Petroleum play element prediction for the cretaceous‐tertiary basin phase, northern Carnarvon basin. The APPEA Journal, 37, 315–339. https://doi.org/10.1071/AJ96020
    [Google Scholar]
  101. Salles, T., Marchès, E., Dyt, C., Griffiths, C., Hanquiez, V., & Mulder, T. (2010). Simulation of the interactions between gravity processes and contour currents on the Algarve margin (South Portugal) using the stratigraphic forward model sedsim. Sedimentary Geology, 229, 95–109. https://doi.org/10.1016/j.sedgeo.2009.05.007
    [Google Scholar]
  102. Scarselli, N., McClay, K., & Elders, C. (2013). Submarine Slide and Slump Complexes, Exmouth Plateau, NW Shelf of Australia. The Sedimentary Basins of Western Australia IV: Proceedings of the Petroleum Exploration Society of Australia Symposium, Perth.
  103. Scarselli, N., McClay, K., & Elders, C. (2016). Seismic geomorphology of cretaceous megaslides offshore Namibia (Orange Basin): Insights into segmentation and degradation of gravity‐driven linked systems. Marine and Petroleum Geology, 75, 151–180. https://doi.org/10.1016/j.marpetgeo.2016.03.012
    [Google Scholar]
  104. Scher, H. D., & Martin, E. E. (2006). Timing and climatic consequences of the opening of drake passage. Science, 312(5772), 428–430. https://doi.org/10.1126/science.1120044
    [Google Scholar]
  105. Schwenk, T., & Spieß, V. (2009). Architecture and stratigraphy of the Bengal fan as response to tectonic and climate revealed from high‐resolution seismic data. External controls on deep‐water depositional systems. Special Publication‐SEPM (Society of Sedimentary Geologists), 92, 107–131.
    [Google Scholar]
  106. Seton, M., Müller, R., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., … Maus, S. (2012). global continental and ocean basin reconstructions since 200 Ma. Earth‐Science Reviews, 113, 212–270. https://doi.org/10.1016/j.earscirev.2012.03.002
    [Google Scholar]
  107. Shanmugam, G. (2003). Deep‐marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons. Marine and Petroleum Geology, 20, 471–491. https://doi.org/10.1016/S0264-8172(03)00063-1
    [Google Scholar]
  108. Sinha, D. K., Singh, A. K., & Tiwari, M. (2006). Palaeoceanographic and palaeoclimatic history of Odp Site 763a (Exmouth Plateau), Southeast Indian Ocean: 2.2 Ma record of planktic foraminifera. Current Science, 1363–1369.
    [Google Scholar]
  109. Smith, R. L., Huyer, A., Godfrey, J. S., & Church, J. A. (1991). The leeuwin current off Western Australia, 1986–1987. Journal of Physical Oceanography, 21, 323–345. https://doi.org/10.1175/1520-0485(1991)021<0323:TLCOWA>2.0.CO;2
    [Google Scholar]
  110. Soares, D. M., Alves, T. M., & Terrinha, P. (2014). Contourite drifts on early passive margins as an indicator of established lithospheric breakup. Earth and Planetary Science Letters, 401, 116–131. https://doi.org/10.1016/j.epsl.2014.06.001
    [Google Scholar]
  111. Sømme, T. O., Piper, D. J., Deptuck, M. E., & Helland‐Hansen, W. (2011). linking onshore‐offshore sediment dispersal in the golo source‐to‐sink system (Corsica, France) during the late quaternary. Journal of Sedimentary Research, 81, 118–137. https://doi.org/10.2110/jsr.2011.11
    [Google Scholar]
  112. Spooner, M. I., De Deckker, P., Barrows, T. T., & Fifield, L. K. (2011). The behaviour of the leeuwin current offshore NW Australia during the last five glacial‐interglacial cycles. Global and Planetary Change, 75, 119–132. https://doi.org/10.1016/j.gloplacha.2010.10.015
    [Google Scholar]
  113. Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., Sluijs, A., Röhl, U., Fuller, M., … Williams, G. L. (2004). Timing and nature of the deepening of the Tasmanian Gateway. Paleoceanography, 19(4), n/a–n/a. https://doi.org/10.1029/2004PA001022
    [Google Scholar]
  114. Stow, D. A., Hernández‐Molina, F. J., Llave, E., Sayago‐Gil, M., Díaz del Río, V., & Branson, A. (2009). Bedform‐velocity matrix: The estimation of bottom current velocity from bedform observations. Geology, 37, 327–330. https://doi.org/10.1130/G25259A.1
    [Google Scholar]
  115. Stow, D. A., & Piper, D. J. (1984). Deep‐water fine‐grained sediments: Facies models. Geological Society, London, Special Publications, 15, 611–646. https://doi.org/10.1144/GSL.SP.1984.015.01.38
    [Google Scholar]
  116. Svensen, H., Planke, S., Malthe‐Sørenssen, A., Jamtveit, B., Myklebust, R., Eidem, T. R., & Rey, S. S. (2004). Release of methane from a volcanic basin as a mechanism for initial eocene global warming. Nature, 429, 542. https://doi.org/10.1038/nature02566
    [Google Scholar]
  117. Symons, W. O., Sumner, E. J., Talling, P. J., Cartigny, M. J., & Clare, M. A. (2016). Large‐scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows. Marine Geology, 371, 130–148. https://doi.org/10.1016/j.margeo.2015.11.009
    [Google Scholar]
  118. Tchernia, P. (1980). Descriptive regional oceanography. New York, NY: Pergamon Press.
    [Google Scholar]
  119. Thöle, H., Kuhlmann, G., Lutz, R., & Gaedicke, C. (2016). Late cenozoic submarine slope failures in the Southern North Sea‐evolution and controlling factors. Marine and Petroleum Geology, 75, 272–290. https://doi.org/10.1016/j.marpetgeo.2016.04.028
    [Google Scholar]
  120. Tindale, K., Newell, N., Keall, J., & Smith, N. (1998) Structural evolution and charge history of the Exmouth sub‐basin, northern Carnarvon basin, Western Australia. In P. G.Purcell, & R. R.Purcell (Eds.), The sedimentary basins of Western Australia 2: Proceedings of the Petroleum Exploration Society of Australia, 473–490, Perth.
  121. Tournadour, E., Mulder, T., Borgomano, J., Hanquiez, V., Ducassou, E., & Gillet, H. (2015). Origin and architecture of a mass transport complex on the Northwest slope of little Bahama bank (Bahamas): Relations between off‐bank transport, bottom current sedimentation and submarine landslides. Sedimentary Geology, 317, 9–430. https://doi.org/10.1016/j.sedgeo.2014.10.003
    [Google Scholar]
  122. Uenzelmann‐Neben, G. (2002). Contourites on the Agulhas Plateau, SW Indian Ocean: Indications for the evolution of currents since palaeogene times. Geological Society, London, Memoirs, 22, 271–288. https://doi.org/10.1144/GSL.MEM.2002.022.01.20
    [Google Scholar]
  123. Uenzelmann‐Neben, G. (2006). Depositional patterns at drift 7, Antarctic Peninsula: Along‐slope versus down‐slope sediment transport as indicators for oceanic currents and climatic conditions. Marine Geology, 233, 49–62. https://doi.org/10.1016/j.margeo.2006.08.008
    [Google Scholar]
  124. Uenzelmann‐Neben, G., & Gohl, K. (2012). Amundsen sea sediment drifts: Archives of modifications in oceanographic and climatic conditions. Marine Geology, 299, 51–62. https://doi.org/10.1016/j.margeo.2011.12.007
    [Google Scholar]
  125. Vandorpe, T., Van Rooij, D., & De Haas, H. (2014). Stratigraphy and paleoceanography of a topography‐controlled contourite drift in the Pen Duick Area, Southern Gulf of Cádiz. Marine Geology, 349, 136–151. https://doi.org/10.1016/j.margeo.2014.01.007
    [Google Scholar]
  126. Veevers, J., Powell, C. M., & Roots, S. (1991). Review of seafloor spreading around Australia. I. Synthesis of the patterns of spreading. Australian Journal of Earth Sciences, 38, 373–389. https://doi.org/10.1080/08120099108727979
    [Google Scholar]
  127. Viana, A., Faugères, J.‐C., & Stow, D. (1998). Bottom‐current‐controlled sand deposits—A review of modern shallow‐to deep‐water environments. Sedimentary Geology, 115, 53–80. https://doi.org/10.1016/S0037-0738(97)00087-0
    [Google Scholar]
  128. Vinnels, J. S., Butler, R. W., McCaffrey, W. D., & Paton, D. A. (2010). Depositional processes across the Sinú Accretionary Prism, Offshore Colombia. Marine and Petroleum Geology, 27, 794–809. https://doi.org/10.1016/j.marpetgeo.2009.12.008
    [Google Scholar]
  129. Völker, D., Geersen, J., Behrmann, J. H., & Weinrebe, W. R. (2012). Submarine mass wasting off Southern Central Chile: Distribution and possible mechanisms of slope failure at an active continental margin. In Submarine mass movements and their consequences (pp. 379–389). Berlin, Germany: Springer.
    [Google Scholar]
  130. Wells, P. E., & Wells, G. M. (1994). Large‐scale reorganization of ocean currents offshore Western Australia during the late quaternary. Marine Micropaleontology, 24, 157–186. https://doi.org/10.1016/0377-8398(94)90020-5
    [Google Scholar]
  131. Wijeratne, S., Pattiaratchi, C., & Proctor, R. (2018). Estimates of surface and subsurface boundary current transport around Australia. Journal of Geophysical Research: Oceans, 123(5), 3444–3466. https://doi.org/10.1029/2017JC013221.
    [Google Scholar]
  132. Woo, M., & Pattiaratchi, C. (2008). Hydrography and water masses off the Western Australian Coast. Deep Sea Research Part I: Oceanographic Research Papers, 55, 1090–1104. https://doi.org/10.1016/j.dsr.2008.05.005
    [Google Scholar]
  133. Wunsch, M., Betzler, C., Lindhorst, S., Lüdmann, T., & Eberli, G. P. (2017). Sedimentary dynamics along carbonate slopes (Bahamas archipelago). Sedimentology, 64, 631–657. https://doi.org/10.1111/sed.12317
    [Google Scholar]
  134. Wynn, R. B., & Stow, D. A. (2002). Classification and characterisation of deep‐water sediment waves. Marine Geology, 192, 7–22. https://doi.org/10.1016/S0025-3227(02)00547-9
    [Google Scholar]
  135. Young, H. C., Lemon, N. M., & Hull, J. (2001). The middle cretaceous to recent sequence stratigraphic evolution of the exmouth‐barrow margin, Western Australia. The APPEA Journal, 41, 381–413. https://doi.org/10.1071/AJ00018
    [Google Scholar]
  136. Zhu, M., Graham, S., Pang, X., & McHargue, T. (2010). Characteristics of migrating submarine canyons from the middle miocene to present: Implications for paleoceanographic circulation, Northern South China Sea. Marine and Petroleum Geology, 27, 307–319. https://doi.org/10.1016/j.marpetgeo.2009.05.005
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12328
Loading
/content/journals/10.1111/bre.12328
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error