1887
Volume 32, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

Lacustrine rift basins commonly preserve a fairly complete record of the sediment source‐to‐sink (S2S) system, and consequently may form an ideal natural laboratory for establishing quantitative relationships between the various elements within the S2S system. The tectonic‐activity rate in the source (e.g., fault‐growth rate and fault‐activity rate), accommodation space and depositional system in the sink (e.g., areal extent and volume, as well as the depositional dip of the fan‐ and braid‐deltas) are genetically related and their quantitative correlations are explored. The Palaeogene succession on the southwestern margin of the Huanghekou Depressionin the Bohai Bay Basin, one of the largest lacustrine rift basins in eastern China, was chosen to study these relationships, using 3‐D seismic, core and well‐log data. The tectonic activity was strongly related to the sediment supply, accommodation space and morphology of the sink area. Three different rates of tectonic activity are identified; these led to changes in the basic features of the S2S system that influenced each other. In Members 4 and 3 (lower unit) of the Shahejie Fm. (40.44–44.7 Ma), strong tectonic activity led to significant uplift, resulting in the widest exposure of the provenance area to erosion, to a high sediment‐supply rate, to a steep slope and to a large accommodation space which controlled the development of several fan‐deltas with steep progradational angles. In Member 3 (upper unit) of Shahejie Fm. (37.89–40.44 Ma) and Member 3 of Dongying Fm. (30.2–33.28 Ma), decreased tectonic activity led to slower uplifting, resulting in a wider alluvial plain, longer transport distances, a lower sediment‐supply rate and less accommodation space, so that braid‐deltas with larger volumes and a gentler slope developed; In Members 1 and 2 of Shahejie Fm. (33.28–37.89 Ma) and Member 2 of Dongying Fm. (26.71–30.2 Ma), still further decreasing tectonic activity led to a still lower sediment‐supply rate, a more gentle depositional slope, less accommodation space, and the development of several braid‐deltas with a gentle angle. The quantitative relationships established here advance our understanding of the relationships within lacustrine source‐to‐sink systems, especially for tectonically controlled rift basins.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12374
2019-06-17
2024-04-26
Loading full text...

Full text loading...

References

  1. Allen, P. A. (2008a). From landscapes into geological history. Nature, 451, 274–276. https://doi.org/10.1038/nature06586
    [Google Scholar]
  2. Allen, P. A. (2008b). Time scales of tectonic landscapes and their sediment routing systems. In: Landscape evolution: Denudation, climate and tectonics over different time and space scales (Ed. by Gallagher, K., Jones, S. J., & Wainwright, J.). Geological Society, London, Special Publications, 296, 7–28.
    [Google Scholar]
  3. Allen, P. A., Armitage, J. J., Carter, A., Duller, R. A., Michael, N. A., Sinclair, H. D., … Whittaker, A. C. (2013). The Qs problem: Sediment volumetric balance of proximal foreland basin systems. Sedimentology, 60, 102–130.
    [Google Scholar]
  4. Amorosi, A., Maselli, V., & Trincardi, F. (2016). Onshore to offshore anatomy of a late Quaternary source‐to‐sink system (Po Plain‐Adriatic Sea, Italy). Earth‐Science Reviews, 153, 212–237. https://doi.org/10.1016/j.earscirev.2015.10.010
    [Google Scholar]
  5. Anderson, J. B., Wallace, D. J., Simms, A. R., Rodriguez, A. B., Weight, R. W. R., & Taha, Z. P. (2016). Recycling sediments between source and sink during a eustatic cycle: Systems of late Quaternary northwestern Gulf of Mexico Basin. Earth‐Science Reviews, 153, 111–138. https://doi.org/10.1016/j.earscirev.2015.10.014
    [Google Scholar]
  6. Anthony, E. J., & Julian, M. (1999). Source‐to‐sink sediment transfers, environmental engineering and hazard mitigation in the steep Var River catchment, French Riviera, southeastern France. Geomorphology, 31, 337–354. https://doi.org/10.1016/S0169-555X(99)00088-4
    [Google Scholar]
  7. Athy, L. F. (1930). Density, porosity, and compaction of sedimentary rocks. AAPG Bulletin, 14, 1–24.
    [Google Scholar]
  8. Bhattacharya, J. P., Copeland, P., Lawton, T. F., & Holbrook, J. (2016). Estimation of source area, river palaeo‐discharge, palaeoslope, and sediment budgets of linked deep‐time depositional systems and implications for hydrocarbon potential. Earth‐Science Reviews, 153, 77–110.
    [Google Scholar]
  9. Blum, M. D., & Hattier‐Womack, J. (2009). Climate change, sea‐level change, and fluvial sediment supply to deepwater depositional systems. External Controls on Deep Water Depositional Systems: SEPM Special Publication, 92, 15–39.
    [Google Scholar]
  10. Blum, M. D., Milliken, K. T., Pecha, M. A., Snedden, J. W., Frederick, B. C., & Galloway, W. E. (2017). Detrital-zircon records of Cenomanian, Paleocene, and Oligocene Gulf of Mexico drainage integration and sediment routing: Implications for scales of basin-floor fans. Geosphere, 13, 2169–2205. https://doi:10.1130/GES01410.1
    [Google Scholar]
  11. Blum, M., & Pecha, M. (2014). Mid‐Cretaceous to Paleocene North American drainage reorganization from detrital zircons. Geology, 42, 607–610. https://doi.org/10.1130/G35513.1
    [Google Scholar]
  12. Bohacs, K. M., Carroll, A. R., Neal, J. E., & Mankiewicz, P. J. (2000). Lake‐basin type, source potential, and hydrocarbon character: An integrated‐sequence stratigraphic‐geochemical framework. In: Lake basins through space and time (Ed. by Gierlowski‐Kordesch, E. H., Kelts, K. R.). AAPG Studies in Geology, 46, 3–34.
    [Google Scholar]
  13. Brown, L. F., Jr., & Fisher, W. L. (1977). Seismic‐stratigraphic interpretation of depositional systems: examples from Brazilian rift and Pull‐Apart Basin. In: Seismic stratigraphy – Applications to hydrocarbon exploration. Tulsa, Oklahoma, U.S.A. (Ed. by Payton, C.E.). AAPG Memoir, 26, 213–248.
    [Google Scholar]
  14. Carroll, A. R., Chetel, L. M., & Smith, M. E. (2006). Feast to famine: Sediment supply control on Laramide Basin fill. Geology, 34, 197–200. https://doi.org/10.1130/G22148.1
    [Google Scholar]
  15. Castelltort, S., & Van denDriessche, J. (2003). How plausible are high‐frequency sediment supply‐driven cycles in the stratigraphic record?Sedimentary Geology, 157, 3–13. https://doi.org/10.1016/S0037-0738(03)00066-6
    [Google Scholar]
  16. Catuneanu, O., Abreu, V., Bhattacharya, J. P., Blum, M. D., Dalrymple, R. W., Eriksson, P. G., … Winker, C. (2009). Towards the standardization of sequence stratigraphy. Earth‐Science Reviews, 92, 1–33. https://doi.org/10.1016/j.earscirev.2008.10.003
    [Google Scholar]
  17. Chen, D., Pang, X., Jiang, Z., Zeng, J., Qiu, N., & Li, M. (2009). Reservoir characteristics and their effects on hydrocarbon accumulation in lacustrine turbidites in the Jiyang Super‐depression, Bohai Bay Basin, China. Marine and Petroleum Geology, 26, 149–162. https://doi.org/10.1016/j.marpetgeo.2008.03.003
    [Google Scholar]
  18. Cope, T., Luo, P., Zhang, X., Zhang, X. J., Song, J. M., Zhou, G., & Shultz, M. R. (2010). Structural controls on facies distribution in a small half‐graben basin: Luanping Basin, northeast China. Basin Research, 22, 33–44. https://doi.org/10.1111/j.1365-2117.2009.00417.x
    [Google Scholar]
  19. Covault, J. A., Craddock, W. H., Romans, B. W., Fildani, A., & Gosai, M. (2013). Spatial and temporal variations in landscape evolution: Historic and longer‐term sediment flux through global catchments. The Journal of Geology, 121, 35–56. https://doi.org/10.1086/668680
    [Google Scholar]
  20. Covault, J. A., Romans, B. W., Graham, S. A., Fildani, A., & Hilley, G. E. (2011). Terrestrial source to deep‐sea sink sediment budgets at high and low sea levels: Insights from tectonically active southern California. Geology, 39, 619–622. https://doi.org/10.1130/G31801.1
    [Google Scholar]
  21. DeCelles, P. G., Kapp, P., Ding, L., & Gehrels, G. E. (2007). Late cretaceous to mid‐tertiary basin evolution in the central Tibetan plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geological Society of America Bulletin, 119, 654–680.
    [Google Scholar]
  22. Dill, F. G., Kharel, B. D., Singh, V. K., Piys, B., Busch, K., & Geyh, M. (2001). Sedimentology and palaeogeography evolution of the intermontane Kathmandu Basin, Nepal, during the Pliocene and Quaternary. Implication for formation of deposits of economic interest. Journal of Asian Earth Sciences, 19, 777–804.
    [Google Scholar]
  23. Galloway, W. E. (1986). Growth faults and fault‐related structures of prograding terrigenous clastic continental margins. Gulf Coast Association of Geological Societies Transactions, 36, 121–128.
    [Google Scholar]
  24. Galloway, W. E., Whiteaker, T. L., & Ganey‐Curry, P. E. (2011). History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin. Geosphere, 7, 938–973. https://doi.org/10.1130/GES00647.1
    [Google Scholar]
  25. Glider, S. A., Leloup, P. H., & Courtillot, V. (1999). Tectonic evolution of Tancheng ‐Lujiang (Tan‐Lu) fault via Middle Triassic to Early Cenozoic paleomagnetic. Journal of Geophysical Research, 104(B7), 15365–15390.
    [Google Scholar]
  26. Gupta, S., Cowie, P. A., Dawers, N. H, & Underhill, J. R. (1998). A mechanism to explain rift-basin subsidence and stratigraphic patterns through fault-array evolution. Geology, 26, 595–598. https://doi: 10.1130/0091-7613(1998)026<0595:AMTERB>2.3.CO;2
    [Google Scholar]
  27. Hadlari, T., Midwinter, D., Galloway, J. M., Dewing, K., & Durbano, A. M. (2016). Mesozoic rift to post‐rift tectonostratigraphy of the Sverdrup Basin, Canadian Arctic. Marine and Petroleum Geology, 76, 148–158. https://doi.org/10.1016/j.marpetgeo.2016.05.008
    [Google Scholar]
  28. Hadlari, T., Rainbird, R. H., & Donaldson, J. A. (2006). Alluvial, eolian and lacustrine sedimentology of a Paleoproterozoic half‐graben, Baker Lake Basin, Nunavut, Canada. Sedimentary Geology, 190, 47–70. https://doi.org/10.1016/j.sedgeo.2006.05.005
    [Google Scholar]
  29. Helland‐Hansen, W., Sømme, T. O., Martinsen, O. J., Lunt, I., & Thurmond, J. (2016). Deciphering earth's natural hourglasses: Perspectives on source‐to‐sink analysis. Journal of Sedimentary Research, 86, 1008–1033. https://doi.org/10.2110/jsr.2016.56
    [Google Scholar]
  30. Hovius, N. (1998). Controls on sediment supply by large rivers. In: Relative role of eustasy, climate and tectonism in continental rocks: Tulsa, Oklahoma. (Ed. By Shanley, K.W. & McCabe, P. J). SEPM Special Publication, 59, 2–16.
    [Google Scholar]
  31. Hovius, N., & Leeder, M. (1998). Clastic sediment supply to basins. Basin research, 10, 1–5. https://doi.org/10.1046/j.1365-2117.1998.00061.x
    [Google Scholar]
  32. Hsiao, L. Y., Graham, S. A., & Tilander, N. (2004). Seismic reflection imaging of a major strike‐slip fault zone in a rift system: Palaeogene structure and evolution of the Tan ‐Lu fault system, Liaodong Bay, Bohai, offshore China. AAPG Bulletin, 88, 71–97.
    [Google Scholar]
  33. Hsiao, L. Y., Graham, S. A., & Tilander, N. (2010). Stratigraphy and sedimentation in a rift basin modified by synchronous strike–slip deformation: Southern Xialiao basin, Bohai, offshore China. Basin Research, 22, 61–78. https://doi.org/10.1111/j.1365-2117.2009.00449.x
    [Google Scholar]
  34. Jervey, M. T. (1988). Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. In: Sea‐level changes: An integrated approach (Ed. by Wilgus, C. K., Hastings, B. S., Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A. & Van Wagoner, J. C.). Society of Economic Paleontologists and Mineralogists, Special Publication, 42, 47–69.
    [Google Scholar]
  35. Johnson, T. C., Halfman, J. D., Rosendahl, B. R., & Lister, G. S. (1987). Climatic and tectonic effects on sedimentation in a rift‐valley lake; evidence from high‐resolution seismic profiles, Lake Turkana, Kenya. Geological Society of America Bulletin, 98, 439–447. https://doi.org/10.1130/0016-7606(1987)98<439:CATEOS>2.0.CO;2
    [Google Scholar]
  36. Katz, B. J., & Liu, X. C. (1998). Summary of the AAPG research symposium on lacustrine basin exploration in China and Southeast Asia. AAPG Bulletin, 82, 1300–1307.
    [Google Scholar]
  37. Kertznus, V., & Kneller, B. (2009). Clinoform quantification for assessing the effects of external forcing on continental margin development. Basin Research, 21, 738–758. https://doi.org/10.1111/j.1365-2117.2009.00411.x
    [Google Scholar]
  38. Leeder, M. R., & Gawthorpe, R. L. (1987) Sedimentary models for extensionin tilt‐block/half‐graben basins. In: Extensional tectonics. (Ed. By Coward, M. P., Dewey, J. F. & Hancock, P. L.). Geological Society, London, Special Publications, 28, 139–152.
    [Google Scholar]
  39. Leeder, M. R. (2011). Tectonic sedimentology: Sediment systems deciphering global to local tectonics. Sedimentology, 58, 2–56. https://doi.org/10.1111/j.1365-3091.2010.01207.x
    [Google Scholar]
  40. Leeder, M. R., Harris, T., & Kirkby, M. J. (1998). Sediment supply and climatechange: Implications for basin stratigraphy. Basin Research, 10, 7–18. https://doi.org/10.1046/j.1365-2117.1998.00054.x
    [Google Scholar]
  41. Lemons, D. R., & Chan, M. A. (1999). Facies architecture and sequence stratigraphy of fine‐grained lacustrine deltas along the eastern margin of late Pleistocene Lake Bonneville, northern Utah and southern Idaho. AAPG Bulletin, 83, 635–665.
    [Google Scholar]
  42. Lemons, D. R., Milligan, M. R., & Chan, M. A. (1996). Paleoclimatic implications of late Pleistocene sediment yield rates for the Bonneville basin, northern Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 123, 147–159. https://doi.org/10.1016/0031-0182(95)00117-4
    [Google Scholar]
  43. Li, S. L., Zhu, X. M., Liu, Q. H., Xu, C. G., Du, X. F., & Li, H. Y. (2017). Evaluation and prediction of favorable reservoirs in source‐to‐sink systems of the Palaeogene, Shaleitian Uplift. Earth Science, 42, 1994–2009.
    [Google Scholar]
  44. Lin, C. S., Kenneth, E., Li, S. T., Wan, Y. X., Ren, J. Y., & Zhang, Y. M. (2001). Sequence architecture, depositional systems, and controls on development of lacustrine basin fills in part of the Erlian basin, northeast China. AAPG Bulletin, 85, 2017–2043.
    [Google Scholar]
  45. Lin, C. S., Xia, Q. L., Shi, H. S., & Zhou, X. H. (2015). Geomorphological evolution, source to sink system and basin analysis. Earth Science Frontier, 22, 9–22 (in Chinese with English abstract).
    [Google Scholar]
  46. Lin, C. S., Yang, H. J., Liu, J. Y., Rui, Z. F., Cai, Z. Z., & Zhu, Y. F. (2012). Distribution and erosion of the Paleozoic tectonic unconformities in the Tarim Basin, Northwest China: Significance for the evolution of paleo‐uplifts and tectonic geography during deformation. Journal of Asian Earth Sciences, 46, 1–19. https://doi.org/10.1016/j.jseaes.2011.10.004
    [Google Scholar]
  47. Liro, L. M. (1993). Sequence stratigraphy of a lacustrine system: Upper Fort Union Formation (Paleocene), Wind River Basin, Wyoming, U.S.A. In: Siliciclastic sequence stratigraphy: Recent developments and applications (Ed. By Weimer, P. & Posamentier, H. W.). AAPG Memoir, 58, 317–334.
    [Google Scholar]
  48. Liu, H., Lin, C. S., Guo, R. B., Zhu, M., & Cui, Y. Q. (2015b). Characteristics of the Palaeozoic slope break system and its control on stratigraphic‐lithologic traps: An example from the Tarim Basin, western China. Journal of Palaeogeography, 4, 284–304.
    [Google Scholar]
  49. Liu, H., Meng, J., & Banerjee, S. (2017). Estimation of palaeo‐slope and sediment volume of a lacustrine rift basin: A semi‐quantitative study on the southern steep slope of the Shijiutuo Uplift, Bohai Offshore Basin, China. Journal of Asian Earth Sciences, 147, 148–163. https://doi.org/10.1016/j.jseaes.2017.07.028
    [Google Scholar]
  50. Liu, H., Meng, J., Zhang, Y. Z., & Yang, L. (2019). Pliocene seismic stratigraphy and deep‐water sedimentation in the Qiongdongnan Basin, South China Sea: Source‐to‐sink systems and hydrocarbon accumulation significance. Geological Journal, 54, 392–408. https://doi.org/10.1002/gj.3188
    [Google Scholar]
  51. Liu, H., Wang, Y. M., Xin, R. C., & Wang, Y. (2006). Study on the slope break belts in the Jurassic down‐warped lacustrine basin in western‐margin area, Junggar Basin, northwestern China. Marine and Petroleum Geology, 23, 913–930.
    [Google Scholar]
  52. Liu, H., Xia, Q. L., Somerville, I. D., Wang, Y., Zhou, X. H., Niu, C. M., … Zhang, X. T. (2015a). Palaeogene of the Huanghekou Sag in the Bohai Bay Basin, NE China: Deposition‐erosion response to a slope break system of rift lacustrine basins. Geological Journal, 50, 71–92.
    [Google Scholar]
  53. Martinsen, O. J., Lien, T., & Jackson, C. (2005). Cretaceous and Palaeogeneturbidite systems in the North Sea and Norwegian Sea basins:source, staging area and basin physiography controls on reservoirdevelopment. In: PetroleumGeology: North‐West Europe and Global Perspectives: Proceedingsof the 6th Petroleum Geology Conference. (Ed. By Dore´, A. G. & Vining, B. A.). Geological Society, London, 1147–1164.
    [Google Scholar]
  54. Martinsen, O. J., Sømme, T. O., Thurmond, J. B., Helland‐Hansen, W., & Lunt, I. (2010). Source‐to‐sink systems on passive margins: Theory and practice with an example from the Norwegian continental margin. Geological Society, London, Petroleum Geology Conference Series, 7, 913–920. https://doi.org/10.1144/0070913
    [Google Scholar]
  55. Martins‐Neto, M. A. (1996). Lacustrine fan‐deltaic sedimentation in a Proterozoic rift basin: The Sopa‐BrumadinhoTectonosequence, southeastern Brazil. Sedimentary Geology, 106, 65–96. https://doi.org/10.1016/0037-0738(95)00152-2
    [Google Scholar]
  56. Masini, E., Manatschal, G., Mohn, G., Ghienne, J. F., & Lafont, F. (2011). The tectono‐sedimentary evolution of a supra‐detachment rift basin at a deep‐water magma‐poor rifted margin: The example of the Samedan Basin preserved in the Err nappe in SE Switzerland. Basin Research, 23, 652–677. https://doi.org/10.1111/j.1365-2117.2011.00509.x
    [Google Scholar]
  57. Meade, R. H. (1982). Source, sinks, and storage of river sediment in the Atlantic drainage of the United States. The Journal of Geology, 90, 235–252.
    [Google Scholar]
  58. Metivier, F., & Gaudemer, Y. (1999). Stability of output fluxes of large rivers in south and East Asia during the last 2 million years: Implications on floodplain processes. Basin Research, 11, 293–303. https://doi.org/10.1046/j.1365-2117.1999.00101.x
    [Google Scholar]
  59. Milliken, K. T., Blum, M. D., Snedden, J. W., & Galloway, W. E. (2018). Application of fluvial scaling relationships to reconstruct drainage‐basin evolution and sediment routing for the Cretaceous and Paleocene of the Gulf of Mexico. Geosphere, 14, 1–19. https://doi.org/10.1130/GES01374.1
    [Google Scholar]
  60. Mitchum, R. M., Jr., Vail, P. R., & Sangree, J. B. (1977). Part Six: Stratigraphic interpretation of seismic reflection patterns in depositional sequence. In: Seismic stratigraphy – Applications to hydrocarbon exploration. Tulsa, Oklahoma, U.S.A. (Ed. By Payton C. E.). AAPG Memoir, 26, 117–134.
    [Google Scholar]
  61. Muto, T., & Steel, R. J. (2000). The accommodation concept in sequence stratigraphy: Some dimensional problems and possible redefinition. Sedimentary Geology, 130, 1–10. https://doi.org/10.1016/S0037-0738(99)00107-4
    [Google Scholar]
  62. Neal, J., & Abreu, V. (2009). Sequence stratigraphy hierarchy and the accommodation succession method. Geology, 37, 779–782. https://doi.org/10.1130/G25722A.1
    [Google Scholar]
  63. Obrist‐Farner, J., Yang, W., & Hu, X.‐F. (2015). Nonmarine time‐stratigraphy in a rift setting: An example from the Mid‐Permian lower Quanzijie low‐order cycle, Bogda Mountains, NW China. Journal of Palaeogeography, 4, 27–51. https://doi.org/10.3724/SP.J.1261.2015.00066
    [Google Scholar]
  64. Olsen, P. E. (1997). Stratigraphic record of the early Mesozoic breakup of Pangea in the Laurasia‐Gondwana rift system. Annual Reviews of Earth and Planetary Science, 25, 337–401. https://doi.org/10.1146/annurev.earth.25.1.337
    [Google Scholar]
  65. Perlmutter, M. A., & Matthews, M. D. (1989). Global cyclostratigraphy: A model, quantitative dynamic stratigraphy. In T. A.Cross (Ed.), Quantitative dynamic stratigraphy (pp. 233–260). New Jersey, Prentice‐Hall: Englewood Cliffs.
    [Google Scholar]
  66. Perrie, R., & Qiublier, J. (1974). Thickness changes in sedimentary layers during compaction history, methods for quantitative evolution. AAPG Bulletin, 58, 507–520.
    [Google Scholar]
  67. Ravnas, R., & Steel, R. J. (1998). Architecture of marine rift‐basin successions. AAPG Bulletin, 82, 110–146.
    [Google Scholar]
  68. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. P. (2016). Environmental signal propagation in sedimentary systems across timescales. Earth‐Science Reviews, 153, 7–29. https://doi.org/10.1016/j.earscirev.2015.07.012
    [Google Scholar]
  69. Schellart, W. P., & Lister, G. S. (2005). The role of East Asian active margin in widespread and strike‐slip deformation in East Asia. Journal of the Geological Society, 162, 959–972.
    [Google Scholar]
  70. Scholz, C. A., & Rosendahl, B. R. (1990). Coarse‐clastic facies and stratigraphic sequence models from lakes Malawi and Tanganyika, East Africa. In: Lacustrine basin exploration: Case studies and modern analogs (Ed. By Katz, B. J.). AAPG Memoir, 50, 137–149.
    [Google Scholar]
  71. Simon, B., Guillocheau, F., Robin, C., Dauteuil, O., Nalpas, T., Pickford, M., … Bez, M. (2017). Deformation and sedimentary evolution of the Lake Albert Rift (Uganda, East African Rift System). Marine and Petroleum Geology, 86, 17–37. https://doi.org/10.1016/j.marpetgeo.2017.05.006
    [Google Scholar]
  72. Snedden, J. W., Galloway, W. E., Milliken, K. T., Xu, J., Whiteaker, T., & Blum, M. D. (2018). Validation of empirical source‐to‐sink scaling relationships in a continental‐scale system: The Gulf of Mexico basin Cenozoic record. Geosphere, 14, 768–784. https://doi.org/10.1130/GES01452.1
    [Google Scholar]
  73. Sømme, T. O., Helland‐Hansen, W., Martinsen, O. J., & Thurmond, J. B. (2009). Relationships between morphological and sedimentological parameters in source‐to‐sink systems: A basis for predicting semi‐quantitative characteristics in subsurface systems. Basin Research, 21, 361–387. https://doi.org/10.1111/j.1365-2117.2009.00397.x
    [Google Scholar]
  74. Sømme, T. O., & Jackson, C.‐ A.‐L. (2013). Source‐to‐sink analysis of ancient sedimentary systems using a subsurface case study from the Møre‐Trøndelag area of southern Norway: Part 2 – Sediment dispersal and forcing mechanisms. Basin Research, 25, 512–531. https://doi.org/10.1111/bre.12014
    [Google Scholar]
  75. Sømme, T. O., Jackson, C.‐ A.‐L., & Vaksdal, M. (2013). Source‐to‐sink analysis of ancient sedimentary systems using a subsurface case study from the Møre‐Trøndelag area of southern Norway: Part 1‐depositional setting and fan evolution. Basin Research, 25, 489–511. https://doi.org/10.1111/bre.12013
    [Google Scholar]
  76. Strecker, U., Steidtmann, J. R., & Smithson, S. B. (1999). A conceptual tectonostratigraphic model for seismic facies migrations on a fluvio‐lacustrine extensional basin. AAPG Bulletin, 83, 43–61.
    [Google Scholar]
  77. Syvitski, J. P. M., & Milliman, J. D. (2007). Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. Journal of Geology, 115, 1–19. https://doi.org/10.1086/509246
    [Google Scholar]
  78. Tian, L., Yu, H., Zhou, X., Peng, W., & Wang, Y. (2009). Major control factors of petroleum accumulation in Huanghekou Sag. Xinjiang Petroleum Geology, 30, 319–321 (in Chinese with English abstract).
    [Google Scholar]
  79. Walsh, J. P., Wiberg, P. L., Aalto, R., Nittrouer, C. A., & Kuehl, S. A. (2016). Source‐to‐sink research: Economy of the Earth's surface and its strata. Earth‐Science Reviews, 153, 1–6. https://doi.org/10.1016/j.earscirev.2015.11.010
    [Google Scholar]
  80. Wheeler, H. E. (1964). Baselevel, lithostratigraphic surface and time stratigraphy. Geological Society of America Bulletin, 75, 599–610.
    [Google Scholar]
  81. Williams, G. D. (1993). Tectonics and seismic sequence stratigraphy: an introduction. In: Tectonics and seismic sequence stratigraphy (Ed. by Williams, G.D. & Dobb, A.). Geological Society Special Publications, 71, 1–13.
    [Google Scholar]
  82. Wylliel, M. R., Gregory, A. R., & Gardner, L. W. (1958). An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics, 23, 49–493.
    [Google Scholar]
  83. Xu, J., Snedden, J. W., Stockli, D. F., Fulthorpe, C. S., & Galloway, W. E. (2017). Early Miocene continental‐scale sediment supply to the Gulf of Mexico Basin based on detrital zircon analysis. Geological Society of America Bulletin, 129, 3–22. https://doi.org/10.1130/B31465.1
    [Google Scholar]
  84. Zhang, J., Covault, J., Pyrcz, M., Sharman, G. R., Carvajal, C., & Milliken, K. (2018). Quantifying sediment supply to continental margins: Application to the Paleogene Wilcox Group, Gulf of Mexico. AAPG Bulletin, 102, 1685–1702. https://doi.org/10.1306/01081817308
    [Google Scholar]
  85. Zhou, X. H., Niu, C. M., & Teng, C. Y. (2009). Relationship between faulting and hydrocarbon pooling duringthe Neotectonic movement around the central Bohai Bay. Oil & Gas Geology, 30, 469–482 (in Chinese with English abstract).
    [Google Scholar]
  86. Zhou, X. H., Yu, Y. X., Tang, L. J., Lv, D. Y., & Wang, Y. B. (2010). Cenozoic offshore basin architecture and division of structural elements in Bohai Sea. China Offshore Oil and Gas, 22, 285–289 (in Chinese with English abstract).
    [Google Scholar]
  87. Zhu, H. T., Yang, X. H., Liu, K. Y., & Zhou, X. H. (2014). Seismic‐based sediment provenance analysis in continental lacustrine rift basins: An example from the Bohai Bay Basin, China. AAPG Bulletin, 98, 1995–2018. https://doi.org/10.1306/05081412159
    [Google Scholar]
  88. Zhu, X. M., Pan, R., Li, S. L., Wang, H. B., Zhang, X., Ge, J. W., & Lu, Z. Y. (2018). Seismic sedimentology of sand‐gravel bodies on the steep slope of rift basins – A case study of the Shahejie Formation, Dongying Sag, Eastern China. Interpretation, 6, SD13‐SD27. https://doi.org/10.1190/INT-2017-0154.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12374
Loading
/content/journals/10.1111/bre.12374
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error