1887
Volume 34, Issue 5
  • E-ISSN: 1365-2117
PDF

Abstract

[

Seismic‐stratigraphic analysis of Resolution Guyot as a prime examples of the Cretaceous Mid‐Pacific atolls revealed controls from the Cretaceous eustasy on the evolution and karstification of the Cretaceous Mid‐Pacific atolls along with other factors including changes in subsidence and production rates and later magmatic activity(ies).

, Abstract

Atolls are faithful recorders helping us understand eustatic variations, the evolution of carbonate production through time, and changes in magmatic hotspots activity. Several early Cretaceous Mid‐Pacific atolls were previously investigated through ocean drilling, but due to the low quality of vintage seismic data available, few spatial constraints exist on their stratigraphic evolution and large‐scale diagenesis. Here, we present results from an integrated core‐log‐seismic study at Resolution Guyot and comparison with modern and ancient analogues. We identify six seismic‐stratigraphic units: (1) platform initiation with aggradation and backstepping through the Hauterivian which ended by platform emersion; (2) reflooding of the platform with progradation and aggradation through the Barremian till the early‐Aptian when ocean anoxic event 1a resulted in incipient drowning; (3) platform backstepping till the mid‐Aptian when the platform shifted to progradation and aggradation till the mid‐Albian; (4) platform emersion; (5) reflooding with backstepping ending at the latest‐Albian by platform emersion; and (6) final drowning. The stratigraphic surfaces bounding these units are coeval with some of the Cretaceous eustatic events, which suggest an eustatic control on the evolution of this atoll and confirm that several previously reported sea‐level variations in the early Cretaceous are driven by eustasy. Changes in subsidence and carbonate production rates and suspected later magmatism have also impacted the stratigraphic evolution. The suspected later magmatism could lead to environmental perturbations and potentially platform demise. Contrary to previous studies, we identify two emersion events during the mid‐ and late‐Albian which resulted in intensive meteoric dissolution and karstification. The platform margin syndepositional fractures interacted with the subaerial exposure events by focusing the dissolution which formed vertically stacked flank‐margin fracture‐cave system. The study gives a unique insight into the interplay between eustasy, subsidence, and volcanic activity(ies) on long‐term evolution of early Cretaceous shallow‐marine carbonates. It also documents the impact and distribution of hypogenic and epigenic fluid‐flow in atolls serving as an analogue for isolated carbonate platforms.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12670
2022-09-15
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/bre/34/5/bre12670.html?itemId=/content/journals/10.1111/bre.12670&mimeType=html&fmt=ahah

References

  1. Arnaud, H. M., Flood, P. G., & Strasser, A. (1995). Resolution Guyot (Hole 866A, Mid‐Pacific Mountains): facies evolution and sequence stratigraphy: Northwest Pacific atolls and guyots. In Proceedings of the Ocean Drilling Program. Scientific results (Vol. 143, pp. 133–159).
  2. Arnaud‐Vanneau, A., Bergersen, D. D., Camoin, G. F., Ebren, P., & Haggerty, J. A. (1995). A model for depositional sequences and systems tracts on small, mid‐ocean carbonate platforms: Examples from Wodejebato (sites 873‐877) and Limalok (site 871) Guyots. In Proceedings of the Ocean Drilling Program. Scientific results (Vol. 144, pp. 819–840).
  3. Bachtel, S. L., Kissling, R. D., Martono, D., Rahardjanto, S. P., Dunn, P. A., & MacDonald, B. A. (2004). Seismic stratigraphic evolution of the miocene pliocene segitiga platform, east natuna sea, indonesia: The origin, growth, and demise of an isolated carbonate platform. Seismic Imaging of Carbonate Reservoirs and Systems: AAPG Memoir, 81, 309–328.
    [Google Scholar]
  4. Baker, P. E., Castillo, P. R., & Condliffe, E. (1995). Petrology and geochemistry of igneous rocks from Allison and Resolution guyots, Sites 865 and 866: Northwest Pacific atolls and guyots. In Proceedings of the Ocean Drilling Program. Scientific results (Vol. 143, pp. 245–261).
  5. Basso, M., Kuroda, M. C., Afonso, L. C. S., & Vidal, A. C. (2018). Three‐dimensional seismic geomorphology of paleokarst in the cretaceous macaé group carbonates, campos basin, Brazil. Journal of Petroleum Geology, 41(4), 513–526. https://doi.org/10.1111/jpg.12719
    [Google Scholar]
  6. Behbehani, S., Hollis, C., Holland, G., Singh, P., & Edwards, K. (2019). A seismically controlled seal breach in a major hydrocarbon province: A study from the Mauddud Formation in the Bahrah field, Kuwait. Marine and Petroleum Geology, 107, 255–277. https://doi.org/10.1016/j.marpetgeo.2019.04.017
    [Google Scholar]
  7. Berndt, C. (2005). Focused fluid flow in passive continental margins. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363(1837), 2855–2871.
    [Google Scholar]
  8. Berndt, C., Bünz, S., & Mienert, J. (2003). Polygonal fault systems on the mid‐Norwegian margin: A long‐term source for fluid flow. Geological Society, London, Special Publications, 216(1), 283–290. https://doi.org/10.1144/GSL.SP.2003.216.01.18
    [Google Scholar]
  9. Betzler, C., Lindhorst, S., Hübscher, C., Lüdmann, T., Fürstenau, J., & Reijmer, J. (2011). Giant pockmarks in a carbonate platform (Maldives, Indian Ocean). Marine Geology, 289(1–4), 1–16. https://doi.org/10.1016/j.margeo.2011.09.004
    [Google Scholar]
  10. Betzler, C., Lindhorst, S., Lüdmann, T., Weiss, B., Wunsch, M., & Braga, J. C. (2015). The leaking bucket of a Maldives atoll: Implications for the understanding of carbonate platform drowning. Marine Geology, 366, 16–33. https://doi.org/10.1016/j.margeo.2015.04.009
    [Google Scholar]
  11. Bialik, O. M., Samankassou, E., Meilijson, A., Waldmann, N. D., Steinberg, J., Karcz, K., & Makovsky, Y. (2021). Short‐lived early Cenomanian volcanic atolls of Mt. Carmel, northern Israel. Sedimentary Geology, 411, 105805. https://doi.org/10.1016/j.sedgeo.2020.105805
    [Google Scholar]
  12. Bialik, O. M., Zammit, R., & Micallef, A. (2021). Architecture and sequence stratigraphy of the Upper Coralline Limestone formation, Malta—Implications for Eastern Mediterranean restriction prior to the Messinian Salinity Crisis. The Depositional Record, 7(2), 256–270. https://doi.org/10.1002/dep2.138
    [Google Scholar]
  13. Bodin, S., Meissner, P., Janssen, N. M., Steuber, T., & Mutterlose, J. (2015). Large igneous provinces and organic carbon burial: Controls on global temperature and continental weathering during the Early Cretaceous. Global and Planetary Change, 133, 238–253. https://doi.org/10.1016/j.gloplacha.2015.09.001
    [Google Scholar]
  14. Bover‐Arnal, T., Pascual‐Cebrian, E., Skelton, P. W., Gili, E., & Salas, R. (2015). Patterns in the distribution of Aptian rudists and corals within a sequence‐stratigraphic framework (Maestrat Basin, E Spain). Sedimentary Geology, 321, 86–104. https://doi.org/10.1016/j.sedgeo.2015.03.008
    [Google Scholar]
  15. Breislin, C., Crowley, S., Banks, V. J., Marshall, J. D., Millar, I. L., Riding, J. B., & Hollis, C. (2020). Controls on dolomitization in extensional basins: An example from the Derbyshire Platform, U.K. Journal of Sedimentary Research, 90(9), 1156–1174. https://doi.org/10.2110/jsr.2020.58
    [Google Scholar]
  16. Budd, D. A., Frost, E. L.III, Huntington, K. W., & Allwardt, P. F. (2013). Syndepositional deformation features in high‐relief carbonate platforms: Long‐lived conduits for diagenetic fluids. Journal of Sedimentary Research, 83(1), 12–36. https://doi.org/10.2110/jsr.2013.3
    [Google Scholar]
  17. Burgess, P. M., Winefield, P., Minzoni, M., & Elders, C. (2013). Methods for identification of isolated carbonate buildups from seismic reflection data. AAPG Bulletin, 97(7), 1071–1098. https://doi.org/10.1306/12051212011
    [Google Scholar]
  18. Cartwright, J., Huuse, M., & Aplin, A. (2007). Seal bypass systems. AAPG Bulletin, 91(8), 1141–1166. https://doi.org/10.1306/04090705181
    [Google Scholar]
  19. Cartwright, J., & Santamarina, C. (2015). Seismic characteristics of fluid escape pipes in sedimentary basins: Implications for pipe genesis. Marine and Petroleum Geology, 65, 126–140. https://doi.org/10.1016/j.marpetgeo.2015.03.023
    [Google Scholar]
  20. Chen, L., Chiang, H. T., Wu, J. N., Chiao, L. Y., Shyu, C. T., Liu, C. S., Wang, Y., & Chen, S. C. (2020). The focus thermal study around the spreading centre of southwestern Okinawa trough. Tectonophysics, 796, 228649.
    [Google Scholar]
  21. Clark, R. W., Sager, W. W., & Zhang, J. (2018). Seismic stratigraphy of the Shatsky Rise sediment cap, northwest Pacific, and implications for pelagic sedimentation atop submarine plateaus. Marine Geology, 397, 43–59. https://doi.org/10.1016/j.margeo.2017.11.019
    [Google Scholar]
  22. Corfield, R. I., Carmichael, S., Bennett, J., Akhter, S., Fatimi, M., & Craig, T. (2010). Variability in the crustal structure of the West Indian Continental Margin in the Northern Arabian Sea. Petroleum Geoscience, 16(3), 257–265. https://doi.org/10.1144/1354‐079309‐902
    [Google Scholar]
  23. Courgeon, S., Bourget, J., & Jorry, S. J. (2016). A Pliocene‐Quaternary analogue for ancient epeiric carbonate settings: The Malita intrashelf basin (Bonaparte Basin, northwest Australia). AAPG Bulletin, 100(4), 565–595. https://doi.org/10.1306/02011613196
    [Google Scholar]
  24. Courgeon, S., Jorry, S. J., Camoin, G. F., BouDagher‐Fadel, M. K., Jouet, G., Révillon, S., Bachèlery, P., Pelleter, E., Borgomano, J., Poli, E., & Droxler, A. W. (2016). Growth and demise of Cenozoic isolated carbonate platforms: New insights from the Mozambique Channel seamounts (SW Indian Ocean). Marine Geology, 380, 90–105. https://doi.org/10.1016/j.margeo.2016.07.006
    [Google Scholar]
  25. Courgeon, S., Jorry, S. J., Jouet, G., Camoin, G., BouDagher‐Fadel, M. K., Bachèlery, P., Caline, B., Boichard, R., Révillon, S., Thomas, Y., Thereau, E., & Guérin, C. (2017). Impact of tectonic and volcanism on the Neogene evolution of isolated carbonate platforms (SW Indian Ocean). Sedimentary Geology, 355, 114–131. https://doi.org/10.1016/j.sedgeo.2017.04.008
    [Google Scholar]
  26. Cross, N. E., van Veen, L. J., Al‐Enezi, A., Singh, S., & van Beusekom, G. (2021). Seismic geomorphology of karst in Cretaceous to Early Cenozoic carbonates of North Kuwait. Marine and Petroleum Geology, 128, 104947. https://doi.org/10.1016/j.marpetgeo.2021.104947
    [Google Scholar]
  27. Droste, H. J., Van Buchem, F. S. P., Al‐Husseini, M. I., & Maurer, F. (2010). Sequence‐stratigraphic framework of the Aptian Shu’aiba Formation in the Sultanate of Oman. Barremian‐Aptian stratigraphy and hydrocarbon habitat of the eastern Arabian Plate. GeoArabia Special Publication, 4, 229–283.
    [Google Scholar]
  28. Droxler, A. W., & Jorry, S. J. (2021). The origin of modern atolls: Challenging darwin's deeply ingrained theory. Annual Review of Marine Science, 13, 537–573. https://doi.org/10.1146/annurev‐marine‐122414‐034137
    [Google Scholar]
  29. Eberli, G. P., Anselmetti, F. S., Betzler, C., Van Konijnenburg, J. H., & Bernoulli, D. (2004). Carbonate platform to basin transitions on seismic data and in outcrops: Great Bahama Bank and the Maiella platform margin, Italy. Seismic Imaging of Carbonate Reservoirs and Systems: AAPG Memoir, 81, 207–250.
    [Google Scholar]
  30. Eberli, G. P., Anselmetti, F. S., Isern, A. R., & Delius, H. E. I. K. E. (2010). Timing of changes in sea‐level and currents along Miocene platforms on the Marion Plateau, Australia. In: W. A.Morgan, A. D.George, P. M.Harris, J. A.Kupecz, & J. E.Sarg (Eds.), Cenozoic carbonate systems of Australasia (Vol. 95, pp. 219–242). SEPM Society for Sedimentary Geology Special Publication.
    [Google Scholar]
  31. Eberli, G. P., & Betzler, C. (2019). Characteristics of modern carbonate contourite drifts. Sedimentology, 66(4), 1163–1191. https://doi.org/10.1111/sed.12584
    [Google Scholar]
  32. Eberli, G. P., Massaferro, J. L., Sarg, J. F.; American Association of Petroleum Geologists ; Shell International Exploration & Production B.V. (2004). Seismic imaging of carbonate reservoir and systems (Vol. 88, pp. 365). American Association of Petroleum Geologists Memoir.
  33. Erba, E., Channell, J. E., Claps, M., Jones, C., Larson, R., Opdyke, B., & Torricelli, S. (1999). Integrated stratigraphy of the Cismon Apticore (southern Alps, Italy); a" reference section" for the Barremian‐Aptian interval at low latitudes. The Journal of Foraminiferal Research, 29(4), 371–391.
    [Google Scholar]
  34. Esestime, P., Hewitt, A., & Hodgson, N. (2016). Zohr–A newborn carbonate play in the Levantine Basin, East‐Mediterranean. First Break, 34(2). https://doi.org/10.3997/1365‐2397.34.2.83912
    [Google Scholar]
  35. Evans, M. W., Snyder, S. W., & Hine, A. C. (1994). High‐resolution seismic expression of karst evolution within the Upper Floridan aquifer system; Crooked Lake, Polk County, Florida. Journal of Sedimentary Research, 64(2b), 232–244.
    [Google Scholar]
  36. Feng, D., & Chen, D. (2015). Authigenic carbonates from an active cold seep of the northern South China Sea: New insights into fluid sources and past seepage activity. Deep Sea Research Part II: Topical Studies in Oceanography, 122, 74–83. https://doi.org/10.1016/j.dsr2.2015.02.003
    [Google Scholar]
  37. Fiordalisi, E., Marchegiano, M., John, C. M., Oxtoby, N., Rochelle‐Bates, N., do Couto Pereira, G., Machado, V., Dixon, R., Sharp, I., & Schröder, S. (2021). Late Cretaceous volcanism and fluid circulation in the South Atlantic: Insights from continental carbonates in the onshore Namibe Basin (Angola). Marine and Petroleum Geology, 134, 105351. https://doi.org/10.1016/j.marpetgeo.2021.105351
    [Google Scholar]
  38. Flood, P. G., & Chivas, A. R. (1995). Origin of massive dolomite, Leg 143, Hole 866A, Resolution Guyot, Mid‐Pacific Mountains: Northwest Pacific atolls and guyots. In Proceedings of the Ocean Drilling Program. Scientific results (Vol. 143, pp. 161–169).
  39. Fournier, F., Borgomano, J., & Montaggioni, L. F. (2005). Development patterns and controlling factors of Tertiary carbonate buildups: Insights from high‐resolution 3D seismic and well data in the Malampaya gas field (Offshore Palawan, Philippines). Sedimentary Geology, 175(1–4), 189–215. https://doi.org/10.1016/j.sedgeo.2005.01.009
    [Google Scholar]
  40. Frost, E. L.III, & Kerans, C. (2009). Platform‐margin trajectory as a control on syndepositional fracture patterns, Canning Basin, Western Australia. Journal of Sedimentary Research, 79(2), 44–55. https://doi.org/10.2110/jsr.2009.014
    [Google Scholar]
  41. Gale, A. S., Bown, P., Caron, M., Crampton, J., Crowhurst, S. J., Kennedy, W. J., Petrizzo, M. R., & Wray, D. S. (2011). The uppermost Middle and Upper Albian succession at the Col de Palluel, Hautes‐Alpes, France: An integrated study (ammonites, inoceramid bivalves, planktonic foraminifera, nannofossils, geochemistry, stable oxygen and carbon isotopes, cyclostratigraphy). Cretaceous Research, 32(2), 59–130. https://doi.org/10.1016/j.cretres.2010.10.004
    [Google Scholar]
  42. Geng, M., Song, H., Guan, Y., Chen, J., Zhang, R., Zhang, B., & Zhang, X. (2020). Sill‐related seafloor domes in the Zhongjiannan Basin, western South China Sea. Marine and Petroleum Geology, 122, 104669. https://doi.org/10.1016/j.marpetgeo.2020.104669
    [Google Scholar]
  43. Gili, E., & Götz, S. (2018). Paleoecology of rudists. In: P. A.Selden (Ed.), Treatise online (Vol. 103, pp. 1–29). University of Kansas, Paleontological Institute.
    [Google Scholar]
  44. Gischler, E. (2006). Sedimentation on Rasdhoo and Ari Atolls, Maldives, Indian Ocean. Facies, 52(3), 341–360. https://doi.org/10.1007/s10347‐005‐0031‐3
    [Google Scholar]
  45. Gischler, E., Storz, D., & Schmitt, D. (2014). Sizes, shapes, and patterns of coral reefs in the Maldives, Indian Ocean: The influence of wind, storms, and precipitation on a major tropical carbonate platform. Carbonates and Evaporites, 29(1), 73–87. https://doi.org/10.1007/s13146‐013‐0176‐z
    [Google Scholar]
  46. Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (Eds.). (2012). The geologic time scale 2012. Elsevier.
    [Google Scholar]
  47. Hamilton, E. L. (1956). Sunken islands of the mid‐Pacific mountains (Vol. 64, pp. 1–92). Geological Society of America.
    [Google Scholar]
  48. Handford, C. R., & Baria, L. R. (2007). Geometry and seismic geomorphology of carbonate shoreface clinoforms, Jurassic Smackover Formation, north Louisiana. Geological Society, London, Special Publications, 277(1), 171–185. https://doi.org/10.1144/GSL.SP.2007.277.01.10
    [Google Scholar]
  49. Haq, B. U. (2014). Cretaceous eustasy revisited. Global and Planetary Change, 113, 44–58. https://doi.org/10.1016/j.gloplacha.2013.12.007
    [Google Scholar]
  50. Harris, P. M., Purkis, S. J., Ellis, J., Swart, P. K., & Reijmer, J. J. (2015). Mapping bathymetry and depositional facies on Great Bahama Bank. Sedimentology, 62(2), 566–589. https://doi.org/10.1111/sed.12159
    [Google Scholar]
  51. Hendry, J., Burgess, P., Hunt, D., Janson, X., & Zampetti, V. (2021). Seismic characterization of carbonate platforms and reservoirs: An introduction and review. Geological Society, London, Special Publications, 509, 1–28. https://doi.org/10.1144/SP509‐2021‐51
    [Google Scholar]
  52. Herrle, J. O., Kößler, P., Friedrich, O., Erlenkeuser, H., & Hemleben, C. (2004). High‐resolution carbon isotope stratigraphy of the Aptian to Lower Albian: A tool for reconstructing paleoceanographic changes and paleobiological evolution. Earth and Planetary Science Letters, 218, 149–161.
    [Google Scholar]
  53. Herrle, J. O., Schröder‐Adams, C. J., Davis, W., Pugh, A. T., Galloway, J. M., & Fath, J. (2015). Mid‐cretaceous high arctic stratigraphy, climate, and oceanic anoxic events. Geology, 43(5), 403–406. https://doi.org/10.1130/G36439.1
    [Google Scholar]
  54. Heubeck, C., Story, C., Peng, P., Sullivan, C., & Duff, S. (2004). An integrated reservoir study of the Liuhua 11‐1 field using a high‐resolution three‐dimensional seismic data set. In G. P.Eberli, J. L.Masaferro, & J. F.Sarg (Eds.). Seismic imaging of carbonate reservoirs and systems (Vol. 81, pp. 149–168). AAPG Memoir.
    [Google Scholar]
  55. Homewood, P., Vahrenkamp, V., Mettraux, M., Mattner, J., Vlaswinkel, B., Droste, H., & Kwarteng, A. (2007). Bar Al Hikman: A modern carbonate and outcrop analogue in Oman for Middle East Cretaceous fields. First Break, 25(11), 55–61. https://doi.org/10.3997/1365‐2397.25.1113.27711
    [Google Scholar]
  56. Hönig, M. R., John, C. M., & Manning, C. (2017). Development of an equatorial carbonate platform across the Triassic‐Jurassic boundary and links to global palaeoenvironmental changes (Musandam Peninsula, UAE/Oman). Gondwana Research, 45, 100–117. https://doi.org/10.1016/j.gr.2016.11.007
    [Google Scholar]
  57. Howarth, V., & Alves, T. M. (2016). Fluid flow through carbonate platforms as evidence for deep‐seated reservoirs in Northwest Australia. Marine Geology, 380, 17–43. https://doi.org/10.1016/j.margeo.2016.06.011
    [Google Scholar]
  58. Huang, X., Betzler, C., Wu, S., Bernhardt, A., Eagles, G., Han, X., & Hovland, M. (2020). First documentation of seismic stratigraphy and depositional signatures of Zhongsha atoll (Macclesfield Bank), South China Sea. Marine and Petroleum Geology, 117, 104349. https://doi.org/10.1016/j.marpetgeo.2020.104349
    [Google Scholar]
  59. Huang, X., & Jokat, W. (2016). Sedimentation and potential venting on the rifted continental margin of Dronning Maud Land. Marine Geophysical Research, 37(4), 313–324. https://doi.org/10.1007/s11001‐016‐9296‐x
    [Google Scholar]
  60. Hustoft, S., Mienert, J., Bünz, S., & Nouzé, H. (2007). High‐resolution 3D‐seismic data indicate focussed fluid migration pathways above polygonal fault systems of the mid‐Norwegian margin. Marine Geology, 245(1–4), 89–106. https://doi.org/10.1016/j.margeo.2007.07.004
    [Google Scholar]
  61. Jamtveit, B., Svensen, H., Podladchikov, Y. Y., & Planke, S. (2004). Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. Physical Geology of High‐Level Magmatic Systems. Geological Society, London, Special Publications, 234, 233–241. https://doi.org/10.1144/GSL.SP.2004.234.01.15
    [Google Scholar]
  62. Jenkyns, H. C. (1995). Carbon‐isotope stratigraphy and paleoceanographic significance of the Lower Cretaceous shallow‐water carbonates of Resolution Guyot, Mid‐Pacific Mountains. In Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 143, pp. 99–104).
  63. Jenkyns, H. C., Paull, C. K., Cummins, D. I., & Fullagar, P. D. (1995). Strontium‐isotope stratigraphy of Lower Cretaceous atoll carbonates in the Mid‐Pacific Mountains. In Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 143, pp. 89–97).
  64. Jenkyns, H. C., & Wilson, P. A. (1999). Stratigraphy, paleoceanography, and evolution of Cretaceous Pacific guyots; Relics from a greenhouse Earth. American Journal of Science, 299(5), 341–392. https://doi.org/10.2475/ajs.299.5.341
    [Google Scholar]
  65. Jorry, S. J., Camoin, G. F., Jouet, G., Roy, P. L., Vella, C., Courgeon, S., Prat, S., Fontanier, C., Paumard, V., Boulle, J., Caline, B., & Borgomano, J. (2016). Modern sediments and Pleistocene reefs from isolated carbonate platforms (Iles Eparses, SW Indian Ocean): A preliminary study. Acta Oecologica, 72, 129–143. https://doi.org/10.1016/j.actao.2015.10.014
    [Google Scholar]
  66. Keizer, P., Koppers, A., Staudigel, H., & Helly, J. (2001). The Seamount Catalog in EarthRef.org. In AGU Fall Meeting Abstracts (Vol. 2001, OS11B‐0358).
  67. Kenter, J. M., & Ivanov, M. (1995). Parameters controlling acoustic properties of carbonate and volcaniclastic sediments at Sites 866 and 869: Northwest Pacific atolls and guyots. In Proceedings of the Ocean Drilling Program. Scientific results (Vol. 143, pp. 287–303).
  68. Kiessling, W., Flügel, E., & Golonka, J. A. N. (2003). Patterns of phanerozoic carbonate platform sedimentation. Lethaia, 36(3), 195–225. https://doi.org/10.1080/00241160310004648
    [Google Scholar]
  69. Larson, R. L. (1991). Latest pulse of earth: Evidence for a mid‐Cretaceous superplume. Geology, 19(6), 547–550.
    [Google Scholar]
  70. Loucks, R. G. (1999). Paleocave carbonate reservoirs: Origins, burial‐depth modifications, spatial complexity, and reservoir implications. AAPG Bulletin, 83(11), 1795–1834.
    [Google Scholar]
  71. Lüdmann, T., Kalvelage, C., Betzler, C., Fürstenau, J., & Hübscher, C. (2013). The Maldives, a giant isolated carbonate platform dominated by bottom currents. Marine and Petroleum Geology, 43, 326–340. https://doi.org/10.1016/j.marpetgeo.2013.01.004
    [Google Scholar]
  72. Ma, B., Qin, Z., Wu, S., Cai, G., Li, X., Wang, B., Xueqin, L., Ain, Y., & Huang, X. (2021). High‐resolution acoustic data revealing periplatform sedimentary characteristics in the Xisha Archipelago, South China Sea. Interpretation, 9(2), T533–T547. https://doi.org/10.1190/INT‐2020‐0093.1
    [Google Scholar]
  73. Maestrelli, D., Iacopini, D., Jihad, A. A., Bond, C. E., & Bonini, M. (2017). Seismic and structural characterization of fluid escape pipes using 3D and partial stack seismic from the Loyal Field (Scotland, UK): A multiphase and repeated intrusive mechanism. Marine and Petroleum Geology, 88, 489–510. https://doi.org/10.1016/j.marpetgeo.2017.08.016
    [Google Scholar]
  74. Magee, C., Maharaj, S. M., Wrona, T., & Jackson, C. A. L. (2015). Controls on the expression of igneous intrusions in seismic reflection data. Geosphere, 11(4), 1024–1041. https://doi.org/10.1130/GES01150.1
    [Google Scholar]
  75. Magee, C., Muirhead, J. D., Karvelas, A., Holford, S. P., Jackson, C. A., Bastow, I. D., Schofield, N., Stevenson, C. T. E., McLean, C., McCarthy, W., & Shtukert, O. (2016). Lateral magma flow in mafic sill complexes. Geosphere, 12(3), 809–841. https://doi.org/10.1130/GES01256.1
    [Google Scholar]
  76. Marine Geoscience Data System. (n.d.) . RNDB10WT 1988 Seismic Reflection Data Processing Steps by the Institute for Geophysics at the University of Texas (UTIG). https://www.marine‐geo.org/tools/search/histFileView.php?data_uid=1493232&format=text
  77. Masaferro, J. L., Bourne, R., & Jauffred, J. C. (2004). Three‐dimensional seismic visualization of carbonate reservoirs and structures. In G. P.Eberli, J. L.Masaferro, & J. F.Sarg (Eds.). Seismic imaging of carbonate reservoirs and systems (Vol. 81, pp. 309–328). AAPG Memoir.
    [Google Scholar]
  78. McArthur, J. M., Howarth, R. J., & Shields, G. A. (2012). Strontium isotope stratigraphy, Chapter 7, 127–144. In F. M.Gradstein, J. G.Ogg, M. D.Schmitz, & G. M.Ogg (Eds.). A geologic time scale (Vol. 1(2), pp. 1144). Elsevier B.V.
    [Google Scholar]
  79. McDonnell, A., Loucks, R. G., & Dooley, T. (2007). Quantifying the origin and geometry of circular sag structures in northern Fort Worth Basin, Texas: Paleocave collapse, pull‐apart fault systems, or hydrothermal alteration?AAPG Bulletin, 91(9), 1295–1318. https://doi.org/10.1306/05170706086
    [Google Scholar]
  80. Micallef, A., Paull, C. K., Saadatkhah, N., & Bialik, O. (2021). The role of fluid seepage in the erosion of Mesozoic carbonate escarpments. Journal of Geophysical Research: Earth Surface, 126(11), e2021JF006387.
    [Google Scholar]
  81. Micallef, A., Person, M., Berndt, C., Bertoni, C., Cohen, D., Dugan, B., Evans, R., Haroon, A., Hensen, C., Jegen, M., Key, K., Kooi, H., Liebetrau, V., Lofi, J., Mailloux, B. J., Martin‐Nagle, R., Michael, H. A., Müller, T., Schmidt, M., … Thomas, A. T. (2021). Offshore freshened groundwater in continental margins. Reviews of Geophysics, 59(1), e2020RG000706. https://doi.org/10.1029/2020RG000706
    [Google Scholar]
  82. Miller, K. G., Wright, J. D., & Browning, J. V. (2005). Visions of ice sheets in a greenhouse world. Marine Geology, 217(3–4), 215–231. https://doi.org/10.1016/j.margeo.2005.02.007
    [Google Scholar]
  83. Mitchell, N. C., Simmons, H. L., & Lear, C. H. (2015). Modern and ancient hiatuses in the pelagic caps of Pacific guyots and seamounts and internal tides. Geosphere, 11(5), 1590–1606. https://doi.org/10.1130/GES00999.1
    [Google Scholar]
  84. Mitchum, R. M.Jr, Vail, P. R., & Thompson, S.III (1977). Seismic stratigraphy and global changes of sea level; Part 2, The depositional sequence as a basic unit for stratigraphic analysis. In C. E.Payton (Ed.). Seismic stratigraphy; applications to hydrocarbon exploration (Vol. 26, pp. 53–62). AAPG Memoir.
    [Google Scholar]
  85. Moss, J. L., & Cartwright, J. (2010). The spatial and temporal distribution of pipe formation, offshore Namibia. Marine and Petroleum Geology, 27(6), 1216–1234. https://doi.org/10.1016/j.marpetgeo.2009.12.013
    [Google Scholar]
  86. Mylroie, J. E., & Carew, J. L. (1990). The flank margin model for dissolution cave development in carbonate platforms. Earth Surface Processes and Landforms, 15(5), 413–424. https://doi.org/10.1002/esp.3290150505
    [Google Scholar]
  87. Mylroie, J. E., Carew, J. L., & Moore, A. I. (1995). Blue holes: Definition and genesis. Carbonates and Evaporites, 10(2), 225–233. https://doi.org/10.1007/BF03175407
    [Google Scholar]
  88. Narr, W., & Flodin, E. (2012). Fractures in steep‐rimmed carbonate platforms: Comparison of Tengiz reservoir, Kazakhstan, and outcrops in Canning Basin, NW Australia. AAPG Search and Discovery Article, 20161, 1–31.
    [Google Scholar]
  89. Netzeband, G. L., Krabbenhöft, A., Zillmer, M., Petersen, C. J., Papenberg, C., & Bialas, J. (2010). The structures beneath submarine methane seeps: seismic evidence from Opouawe Bank, Hikurangi Margin, New Zealand. Marine Geology, 272(1–4), 59–70. https://doi.org/10.1016/j.margeo.2009.07.005
    [Google Scholar]
  90. Niyazi, Y., Eruteya, O. E., Warne, M., & Ierodiaconou, D. (2021). Discovery of large‐scale buried volcanoes within the Cenozoic succession of the Prawn Platform, offshore Otway Basin, southeastern Australia. Marine and Petroleum Geology, 123, 104747. https://doi.org/10.1016/j.marpetgeo.2020.104747
    [Google Scholar]
  91. Nolting, A., & Fernández‐Ibáñez, F. (2021). Stress states of isolated carbonate platforms: Implications for development and reactivation of natural fractures post burial. Marine and Petroleum Geology, 128, 105039. https://doi.org/10.1016/j.marpetgeo.2021.105039
    [Google Scholar]
  92. Nolting, A., Zahm, C. K., Kerans, C., & Nikolinakou, M. A. (2018). Effect of carbonate platform morphology on syndepositional deformation: Insights from numerical modeling. Journal of Structural Geology, 115, 91–102. https://doi.org/10.1016/j.jsg.2018.07.003
    [Google Scholar]
  93. Núñez‐Useche, F., Barragán, R., Moreno‐Bedmar, J. A., & Canet, C. (2015). Geochemical and paleoenvironmental record of the early to early late Aptian major episodes of accelerated change: Evidence from Sierra del Rosario, Northeast Mexico. Sedimentary Geology, 324, 47–66. https://doi.org/10.1016/j.sedgeo.2015.04.006
    [Google Scholar]
  94. Omosanya, K. O., Eruteya, O. E., Siregar, E. S., Zieba, K. J., Johansen, S. E., Alves, T. M., & Waldmann, N. D. (2018). Three‐dimensional (3‐D) seismic imaging of conduits and radial faults associated with hydrothermal vent complexes (Vøring Basin, Offshore Norway). Marine Geology, 399, 115–134. https://doi.org/10.1016/j.margeo.2018.02.007
    [Google Scholar]
  95. Omosanya, K. O., Johansen, S. E., Eruteya, O. E., & Waldmann, N. (2017). Forced folding and complex overburden deformation associated with magmatic intrusion in the Vøring Basin, offshore Norway. Tectonophysics, 706, 14–34. https://doi.org/10.1016/j.tecto.2017.03.026
    [Google Scholar]
  96. Özer, S., Güngör, T., Sarı, B., Sagular, E. K., Görmüş, M., & Özkar‐Öngen, I. (2017). Cretaceous rudist‐bearing platform carbonates from the Lycian Nappes (SW Turkey): Rudist associations and depositional setting. Cretaceous Research, 79, 122–145. https://doi.org/10.1016/j.cretres.2017.07.016
    [Google Scholar]
  97. Paull, C. K., Fullagar, P. D., Bralower, T. J., & Röhl, U. (1995). Seawater ventilation of mid‐pacific guyots drilled during leg 143. In Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 143, pp. 231–241).
  98. Paumard, V., Zuckmeyer, E., Boichard, R., Jorry, S. J., Bourget, J., Borgomano, J., Maurin, T., & Ferry, J. N. (2017). Evolution of late oligocene‐early miocene attached and isolated carbonate platforms in a volcanic ridge context (Maldives type), Yadana field, offshore Myanmar. Marine and Petroleum Geology, 81, 361–387. https://doi.org/10.1016/j.marpetgeo.2016.12.012
    [Google Scholar]
  99. Planke, S., Rasmussen, T., Rey, S. S., & Myklebust, R. (2005). Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. Geological Society, London, Petroleum Geology Conference Series, 6, 833–844. https://doi.org/10.1144/0060833
    [Google Scholar]
  100. Pohl, A., Donnadieu, Y., Godderis, Y., Lanteaume, C., Hairabian, A., Frau, C., Michel, J., Laugie, M., Reijmer, J. J. G., Scotese, C. R., & Borgomano, J. (2020). Carbonate platform production during the Cretaceous. GSA Bulletin, 132(11–12), 2606–2610. https://doi.org/10.1130/B35680.1
    [Google Scholar]
  101. Pomar, L., Brandano, M., & Westphal, H. (2004). Environmental factors influencing skeletal grain sediment associations: A critical review of Miocene examples from the western Mediterranean. Sedimentology, 51(3), 627–651. https://doi.org/10.1111/j.1365‐3091.2004.00640.x
    [Google Scholar]
  102. Prat, S., Jorry, S. J., Jouet, G., Camoin, G., Vella, C., Le Roy, P., Caline, B., Boichard, R., & Pastol, Y. (2016). Geomorphology and sedimentology of a modern isolated carbonate platform: The Glorieuses archipelago, SW Indian Ocean. Marine Geology, 380, 272–283. https://doi.org/10.1016/j.margeo.2016.04.009
    [Google Scholar]
  103. Principaud, M., Mulder, T., Gillet, H., & Borgomano, J. (2015). Large‐scale carbonate submarine mass‐wasting along the northwestern slope of the Great Bahama Bank (Bahamas): Morphology, architecture, and mechanisms. Sedimentary Geology, 317, 27–42. https://doi.org/10.1016/j.sedgeo.2014.10.008
    [Google Scholar]
  104. Pringle, M. S., & Duncan, R. A. (1995). Radiometric ages of basaltic lavas recovered at Sites 865, 866, and 869: Northwest Pacific atolls and guyots. In Proceedings of the Ocean Drilling Program. Scientific results (Vol. 142, pp. 277–283).
  105. Purkis, S., Casini, G., Hunt, D., & Colpaert, A. (2015). Morphometric patterns in Modern carbonate platforms can be applied to the ancient rock record: Similarities between Modern Alacranes Reef and Upper Palaeozoic platforms of the Barents Sea. Sedimentary Geology, 321, 49–69. https://doi.org/10.1016/j.sedgeo.2015.03.001
    [Google Scholar]
  106. Rankey, E. C. (2016). On facies belts and facies mosaics: Holocene isolated platforms, South China Sea. Sedimentology, 63(7), 2190–2216. https://doi.org/10.1111/sed.12302
    [Google Scholar]
  107. Robinson, S. A. (2011). Shallow‐water carbonate record of the Paleocene‐Eocene Thermal Maximum from a Pacific Ocean guyot. Geology, 39(1), 51–54. https://doi.org/10.1130/G31422.1
    [Google Scholar]
  108. Röhl, U., & Strasser, A. (1995). Diagenetic alterations and geochemical trends in Early Cretaceous shallow‐water limestones of Allison and Resolution Guyots (Sites 865 to 868). In Proceedings of the Ocean Drilling Program. Scientific results (Vol. 143, 197–229).
  109. Rusciadelli, G., & Shiner, P. (2018). Isolated carbonate platforms of the Mediterranean and their seismic expression—Searching for a paradigm. The Leading Edge, 37(7), 492–501. https://doi.org/10.1190/tle37070492.1
    [Google Scholar]
  110. Sager, W. W., Winterer, E. L., Firth, J. V., Arnaud, H., Baker, P. A., Baudin, F., Bralower, T. J., Castillo, P., Cooper, P., Flood, P. G., Golovchenko, X., Iryu, Y., Ivanov, M., Jenkyns, H. C., Kenter, J. A. M., Murdmaa, I., Mutterlose, J., Nogi, Y., Paull, C. K., … van Waasbergen, R. (1993a) Site 866. In Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 143, pp. 181–271).
  111. Sager, W. W., Winterer, E. L., Firth, J. V., Arnaud, H., Baker, P. A., Baudin, F., Bralower, T. J., Castillo, P., Cooper, P., Flood, P. G., Golovchenko, X., Iryu, Y., Ivanov, M., Jenkyns, H. C., Kenter, J. A. M., Murdmaa, I., Mutterlose, J., Nogi, Y., Paull, C. K., … van Waasbergen, R. (1993b) Site 867/868. In the Proceedings of the Ocean Drilling Program, Initial Reports (Vol. 143, pp. 273–296).
  112. Sahagian, D., Pinous, O., Olferiev, A., & Zakharov, V. (1996). Eustatic curve for the Middle Jurassic—Cretaceous based on Russian Platform and Siberian stratigraphy: Zonal resolution. AAPG Bulletin, 80(9), 1433–1458.
    [Google Scholar]
  113. Saller, A. H., & Vijaya, S. (2002). Depositional and diagenetic history of the Kerendan carbonate platform, Oligocene, central Kalimantan, Indonesia. Journal of Petroleum Geology, 25(2), 123–149. https://doi.org/10.1111/j.1747‐5457.2002.tb00001.x
    [Google Scholar]
  114. Schlager, W. (2005). Carbonate sedimentology and sequence stratigraphy (No. 8) (pp. 200). SEPM Society for Sedimentary Geology.
  115. Schlanger, S. O., & Premoli Silva, I. (1986). Oligocene sea‐level falls recorded in mid‐Pacific atoll and archipelagic apron settings. Geology, 14(5), 392–395.
    [Google Scholar]
  116. Scott, G. A. J., & Rotondo, G. M. (1983). A model to explain the differences between Pacific plate island‐atoll types. Coral Reefs, 1(3), 139–150. https://doi.org/10.1007/BF00571191
    [Google Scholar]
  117. Sena, C. M., & John, C. M. (2013). Impact of dynamic sedimentation on facies heterogeneities in Lower Cretaceous peritidal deposits of central east Oman. Sedimentology, 60(5), 1156–1183. https://doi.org/10.1111/sed.12026
    [Google Scholar]
  118. Shahzad, K., Betzler, C., & Qayyum, F. (2019). Controls on the Paleogene carbonate platform growth under greenhouse climate conditions (Offshore Indus Basin). Marine and Petroleum Geology, 101, 519–539. https://doi.org/10.1016/j.marpetgeo.2018.12.025
    [Google Scholar]
  119. Skelton, P. W. (2003). Changing climate and biota: The marine record. In P. W.Skelton (Ed.) The Cretaceous world (pp. 163–184). The Open University & Cambridge University Press.
    [Google Scholar]
  120. Smart, P. L., Dawans, J. M., & Whitaker, F. (1988). Carbonate dissolution in a modern mixing zone. Nature, 335(6193), 811–813.
    [Google Scholar]
  121. Strasser, A., Arnaud, H., Baudin, F., & Röhl, U. (1995). Small‐scale shallow‐water Carbonate Sequences of Resolution Guyot (Sites 866, 867, and 868). In Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 143, pp. 119–131).
  122. Sun, Q., Cartwright, J., Wu, S., & Chen, D. (2013). 3D seismic interpretation of dissolution pipes in the South China Sea: Genesis by subsurface, fluid induced collapse. Marine Geology, 337, 171–181. https://doi.org/10.1016/j.margeo.2013.03.002
    [Google Scholar]
  123. Timofeev, P. P., Renngarten, N. V., & Eremeev, V. V. (1981). Lithologic‐genetic characteristics of sediments in a section at Site 463. Initial Reports of the Deep‐Sea Drilling Project, 62, 607–615.
    [Google Scholar]
  124. Utami, D. A., Reuning, L., & Cahyarini, S. Y. (2018). Satellite‐and field‐based facies mapping of isolated carbonate platforms from the Kepulauan Seribu Complex, Indonesia. The Depositional Record, 4(2), 255–273. https://doi.org/10.1002/dep2.47
    [Google Scholar]
  125. Van Tuyl, J., Alves, T. M., & Cherns, L. (2018). Geometric and depositional responses of carbonate build‐ups to Miocene sea level and regional tectonics offshore northwest Australia. Marine and Petroleum Geology, 94, 144–165. https://doi.org/10.1016/j.marpetgeo.2018.02.034
    [Google Scholar]
  126. Wall, M., Cartwright, J., Davies, R., & McGrandle, A. (2010). 3D seismic imaging of a Tertiary Dyke Swarm in the Southern North Sea, UK. Basin Research, 22(2), 181–194. https://doi.org/10.1111/j.1365‐2117.2009.00416.x
    [Google Scholar]
  127. Wang, J., Wu, S., Kong, X., Ma, B., Li, W., Wang, D., Gao, J., & Chen, W. (2018). Subsurface fluid flow at an active cold seep area in the Qiongdongnan Basin, northern South China Sea. Journal of Asian Earth Sciences, 168, 17–26. https://doi.org/10.1016/j.jseaes.2018.06.001
    [Google Scholar]
  128. Westphal, H., Riegl, B., & Eberli, G. P. (Eds.) (2010). Carbonate depositional systems: Assessing dimensions and controlling parameters: The Bahamas. Springer Science & Business Media.
    [Google Scholar]
  129. Whitaker, F. F., & Smart, P. L. (1997a). Geochemistry of meteoric waters and porosity generation in carbonate islands of the Bahamas. In Geofluids II, Second International Conference on Fluid Evolution, Migration and Interaction in Sedimentary Basins and Orogenic Belts (pp. 415–418).
  130. Whitaker, F. F., & Smart, P. L. (1997b). Climatic control of hydraulic conductivity of Bahamian limestones. Groundwater, 35(5), 859–868. https://doi.org/10.1111/j.1745‐6584.1997.tb00154.x
    [Google Scholar]
  131. Wilson, P. A., Jenkyns, H. C., Elderfield, H., & Larson, R. L. (1998). The paradox of drowned carbonate platforms and the origin of Cretaceous Pacific guyots. Nature, 392(6679), 889–894.
    [Google Scholar]
  132. Winterer, E. L. (1998). Cretaceous karst guyots: New evidence for inheritance of atoll morphology from subaerial erosional terrain. Geology, 26(1), 59–62.
    [Google Scholar]
  133. Winterer, E. L., & Sager, W. W. (1995). Synthesis of drilling results from the mid‐pacific mountains: Regional context and implications. In Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 143, pp. 497–535).
  134. Winterer, E. L., Van Waasbergen, R., Mammerickx, J., & Stuart, S. (1995). Karst morphology and diagenesis of the top of Albian limestone platforms, Mid‐Pacific Mountains: Northwest Pacific atolls and guyots. In Proceedings of the Ocean Drilling Program. Scientific results (Vol. 143, pp. 433–470).
  135. Wu, S., Chen, W., Huang, X., Liu, G., Li, X., & Betzler, C. (2020). Facies model on the modern isolated carbonate platform in the Xisha Archipelago, South China Sea. Marine Geology, 425, 106203. https://doi.org/10.1016/j.margeo.2020.106203
    [Google Scholar]
  136. Wunsch, M., Betzler, C., Eberli, G. P., Lindhorst, S., Lüdmann, T., & Reijmer, J. J. (2018). Sedimentary dynamics and high‐frequency sequence stratigraphy of the southwestern slope of Great Bahama Bank. Sedimentary Geology, 363, 96–117. https://doi.org/10.1016/j.sedgeo.2017.10.013
    [Google Scholar]
  137. Yang, P., Sun, S. Z., Liu, Y., Li, H., Dan, G., & Jia, H. (2012). Origin and architecture of fractured‐cavernous carbonate reservoirs and their influences on seismic amplitudes. The Leading Edge, 31(2), 140–150. https://doi.org/10.1190/1.3686911
    [Google Scholar]
  138. Yang, W., Gong, X., & Li, W. (2018). Geological origins of seismic bright spot reflections in the Ordovician strata in the Halahatang area of the Tarim Basin, western China. Canadian Journal of Earth Sciences, 55(12), 1297–1311. https://doi.org/10.1139/cjes‐2018‐0055
    [Google Scholar]
  139. Yose, L. A., Ruf, A. S., Strohmenger, C. J., Schuelke, J. S., Gombos, A., Al‐Hosani, I., Al‐Maskary, S., Bloch, G., Al‐Mehairi, Y., & Johnson, I. G. (2006). Three‐dimensional characterization of a heterogeneous carbonate reservoir, Lower Cretaceous, Abu Dhabi (United Arab Emirates). In P. M.Harris & L. J.Weber (Eds.). Giant hydrocarbon reservoirs of the world: From rocks to reservoir characterization and modelling (Vol. 88, pp. 173–212). American Association of Petroleum Geologists Memoir.
    [Google Scholar]
  140. Yu, J., Li, Z., & Yang, L. (2016). Fault system impact on paleokarst distribution in the Ordovician Yingshan Formation in the central Tarim basin, northwest China. Marine and Petroleum Geology, 71, 105–118. https://doi.org/10.1016/j.marpetgeo.2015.12.016
    [Google Scholar]
  141. Zampetti, V., Schlager, W., van Konijnenburg, J. H., & Everts, A. J. (2004). Architecture and growth history of a Miocene carbonate platform from 3D seismic reflection data; Luconia province, offshore Sarawak. Malaysia. Marine and Petroleum Geology, 21(5), 517–534. https://doi.org/10.1016/j.marpetgeo.2004.01.006
    [Google Scholar]
  142. Zeng, C., Li, Z., Wang, Y., & Li, H. (2020). Early paleozoic tropical paleokarst geomorphology predating terrestrial plant growth in the tahe oilfield. Northwest China. Marine and Petroleum Geology, 122, 104653. https://doi.org/10.1016/j.marpetgeo.2020.104653
    [Google Scholar]
  143. Zhang, M., Lin, C., Sun, Y., Liu, J., Li, H., Wang, Q., & Wang, Y. (2020). Sequence framework, depositional evolution and controlling processes, the Early Carboniferous carbonate system, Chu‐Sarysu Basin, southern Kazakhstan. Marine and Petroleum Geology, 111, 544–556. https://doi.org/10.1016/j.marpetgeo.2019.08.046
    [Google Scholar]
  144. Zhao, W., Shen, A., Qiao, Z., Zheng, J., & Wang, X. (2014). Carbonate karst reservoirs of the Tarim Basin, northwest China: Types, features, origins, and implications for hydrocarbon exploration. Interpretation, 2(3), SF65–SF90. https://doi.org/10.1190/INT‐2013‐0177.1
    [Google Scholar]
  145. Zhu, H., Zhu, X., & Chen, H. (2017). Seismic characterization of hypogenic karst systems associated with deep hydrothermal fluids in the middle‐lower ordovician Yingshan Formation of the Shunnan Area, Tarim Basin, NW China. Geofluids, 2017, 1–13. https://doi.org/10.1155/2017/8094125
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12670
Loading
/content/journals/10.1111/bre.12670
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error