1887
Volume 35, Issue 2
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

Understanding how sedimentary rocks represent time is one of the significant challenges in sedimentology. Sedimentation rates retrieved from vertical sections are strongly timescale dependent, which means that we cannot use empirical rate data derived from vertical sections in modern environments to interpret the temporal structure of ancient sedimentary deposits. We use the Lower to Middle Campanian Blackhawk Formation deposits in eastern Utah and western Colorado as a natural laboratory to test a source‐to‐sink methodology circumventing this timescale dependence by relating modern progradation rates to the deltaic shoreline progradation of ancient siliciclastic rocks. Our objective is to quantify how much time is needed to account for the observed cumulative deltaic shoreline progradation recorded by the shallow‐marine sandstone bodies of the Blackhawk Formation in terms of progradation rates derived from comparable modern deltaic systems. By making the simplifying assumption that the Blackhawk Formation rocks were deposited along a linear coastline that only grew by aggradation and progradation, it is possible to argue that the stratigraphic completeness of two‐dimensional dip‐oriented stratigraphic cross‐sections through these deposits should be high. Furthermore, we hypothesise that delta progradation estimates capture a significant portion of the biostratigraphically and radiometrically constrained duration of the succession. By comparing the recorded progradation with modern progradation rates, we estimate that we need ca. 20% (median value, with minimum and maximum estimates of 2% and 300%) of the time available from biostratigraphic and radiometric dating to account for the progradation recorded by the sedimentary deposits. This indicates that long‐term progradation rates averaged over the entire duration of the Blackhawk Formation were only a factor of five times slower than the modern progradation rates derived from observations over periods that are five to six orders of magnitude shorter. We conclude that a significant amount of time is represented by prograding deltaic shoreline deposits and that by considering the cumulative shoreline progradation, we could limit the effects of timescale dependence on the rate estimates used in our analysis.

,

Delta progradation rates in the Blackhawk Formation are comparable to rates measured in modern analogues. By measuring the time scale dependence of sedimentation rates, we develop a new source‐to‐sink tool for basin analysis.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12737
2023-03-20
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/bre/35/2/bre12737.html?itemId=/content/journals/10.1111/bre.12737&mimeType=html&fmt=ahah

References

  1. Aadland, T., & Helland‐Hansen, W. (2019). Progradation rates measured at modern river outlets: A first‐order constraint on the pace of deltaic deposition. Journal of Geophysical Research: Earth Surface, 124, 347–364.
    [Google Scholar]
  2. Aadland, T., Sadler, P. M., & Helland‐Hansen, W. (2018). Geometric interpretation of timescale dependent sedimentation rates. Sedimentary Geology, 371, 32–40.
    [Google Scholar]
  3. Allen, P. A. (2017). Sediment routing systems: The fate of sediment from source to sink. Cambridge University Press.
    [Google Scholar]
  4. Balsley, J. K. (1980). Cretaceous wave‐dominated delta systems, Book Cliffs, east‐central Utah. American Association of Petroleum Geologists, Continuing Education Course Field Guide.
    [Google Scholar]
  5. Blum, M., Martin, J., Milliken, K., & Garvin, M. (2013). Paleovalley systems: Insights from quaternary analogs and experiments. Earth‐Science Reviews, 116, 128–169.
    [Google Scholar]
  6. Brewer, C. J., Hampson, G. J., Whittaker, A. C., Roberts, G. G., & Watkins, S. E. (2020). Comparison of methods to estimate sediment flux in ancient sediment routing systems. Earth‐Science Reviews, 207, 103217.
    [Google Scholar]
  7. Castelltort, S., & Simpson, G. (2006). Growing mountain ranges and quenched river networks. Comptes Rendus Geoscience, 338, 1184–1193.
    [Google Scholar]
  8. Cattaneo, A., Correggiari, A., Langone, L., & Trincardi, F. (2003). The late‐Holocene Gargano subaqueous delta, Adriatic shelf: Sediment pathways and supply fluctuations. Marine Geology, 193, 61–91.
    [Google Scholar]
  9. Charvin, K., Hampson, G. J., Gallagher, K. L., & Labourdette, R. (2010). Intra‐parasequence architecture of an interpreted asymmetrical wave‐dominated delta. Sedimentology, 57, 760–785.
    [Google Scholar]
  10. Cobban, W. A., Walaszczyk, I., Obradovich, J. D., & McKinney, K. C. (2006). A USGS zonal table for the upper cretaceous middle Cenomanian—Maastrichtian of the western interior of the united states based on ammonites, inoceramids, and radiometric ages. U.S. Geological Survey Open‐File Report, 2006‐1250.
    [Google Scholar]
  11. Davidson, S. K., & North, C. P. (2009). Geomorphological regional curves for prediction of drainage area and screening modern analogues for rivers in the rock record. Journal of Sedimentary Research, 79, 773–792.
    [Google Scholar]
  12. DeCelles, P. G., & Coogan, J. C. (2006). Regional structure and kinematic history of the Sevier fold‐and‐thrust belt, Central Utah. Geological Society of America Bulletin, 118, 841–864.
    [Google Scholar]
  13. Dickinson, W. R., & Gehrels, G. E. (2010). Insights into North American paleogeography and paleotectonics from U‐Pb ages of detrital zircons in Mesozoic strata of the Colorado plateau, USA. Geologische Rundschau, 99, 1247–1265.
    [Google Scholar]
  14. Edwards, C. M., Howell, J. A., & Flint, S. S. (2005). Depositional and stratigraphic architecture of the Santonian Emery Sandstone of the Mancos Shale: Implications for Late Cretaceous evolution of the Western Interior foreland basin of central Utah, USA. Journal of Sedimentary Research, 75, 280–299.
    [Google Scholar]
  15. Gill, J. R., & Hail, W. J., Jr. (1975). Stratigraphic sections across Upper Cretaceous Mancos Shale‐Mesaverde Group boundary, eastern Utah and western Colorado. U.S. Geological Survey, Oil and Gas Investigations Chart OC‐68.
    [Google Scholar]
  16. Hajek, E. A., & Straub, K. M. (2017). Autogenic sedimentation in clastic stratigraphy. Annual Review of Earth and Planetary Sciences, 45, 681–709.
    [Google Scholar]
  17. Hampson, G. J. (2010). Sediment dispersal and quantitative stratigraphic architecture across an ancient shelf. Sedimentology, 57, 96–141.
    [Google Scholar]
  18. Hampson, G. J., Duller, R. A., Petter, A. L., Robinson, R. A., & Allen, P. A. (2014). Mass‐balance constraints on stratigraphic interpretation of linked alluvial–coastal–shelfal deposits from source to sink: Example from cretaceous western interior basin, Utah and Colorado, USA. Journal of Sedimentary Research, 84, 935–960.
    [Google Scholar]
  19. Hampson, G. J., Gani, M. R., Sahoo, H., Rittersbacher, A., Irfan, N., Ranson, A., Jewell, T. O., Gani, N. D. S., Howell, J. A., Buckley, S. J., & Bracken, B. (2012). Controls on large‐scale patterns of fluvial sandbody distribution in alluvial‐to‐coastal plain strata: Upper Cretaceous Blackhawk Formation, Wasatch plateau, Central Utah, USA. Sedimentology, 59, 2226–2258.
    [Google Scholar]
  20. Hampson, G. J., Gani, M. R., Sharman, K. E., Irfan, N., & Bracken, B. (2011). Along‐strike and down‐dip variations in shallow‐marine sequence stratigraphic architecture: Upper Cretaceous Star Point Sandstone, Wasatch plateau, Central Utah, USA. Journal of Sedimentary Research, 81, 159–184.
    [Google Scholar]
  21. Hampson, G. J., & Storms, J. E. A. (2003). Geomorphological and sequence stratigraphic variability in wave‐dominated, shoreface‐shelf parasequences. Sedimentology, 50, 667–701.
    [Google Scholar]
  22. Helland‐Hansen, W., & Hampson, G. J. (2009). Trajectory analysis: Concepts and applications. Basin Research, 21, 454–483.
    [Google Scholar]
  23. Helland‐Hansen, W., Sømme, T. O., Martinsen, O. J., Lunt, I., & Thurmond, J. (2016). Deciphering Earth's natural hourglasses: Perspectives on source‐to‐sink analysis. Journal of Sedimentary Research, 86, 1008–1033.
    [Google Scholar]
  24. Hovius, N. (1996). Regular spacing of drainage outlets from linear mountain belts. Basin Research, 8, 29–44.
    [Google Scholar]
  25. Kamola, D. L., & Van Wagoner, J. C. (1995). Stratigraphy and facies architecture of parasequences with examples from the Spring Canyon Member, Blackhawk Formation, Utah. In J. C.Van Wagoner & G. T.Bertram (Eds.), Sequence stratigraphy of foreland basin deposits: Outcrop and subsurface examples from the Cretaceous of North America (Vol. 64, pp. 27–54). American Association of Petroleum Geologists, Memoir.
    [Google Scholar]
  26. Kauffman, E. G., & Caldwell, W. G. E. (1993). The Western Interior Basin in space and time. In W. G. E.Caldwell & E. G.Kauffman (Eds.), Evolution of the Western Interior Basin (Vol. 39, pp. 1–30). Geological Association of Canada, Special Paper.
    [Google Scholar]
  27. Krystinik, L. F., & DeJarnett, B. B. (1995). Lateral variability of sequence stratigraphic framework in the Campanian and lower Maastrichtian of the Western Interior Seaway. In J. C.Van Wagoner & G. T.Bertram (Eds.), Sequence stratigraphy of foreland basin deposits: Outcrop and subsurface examples from the Cretaceous of North America (Vol. 64, pp. 11–26). American Association of Petroleum Geologists, Memoir.
    [Google Scholar]
  28. Lawton, T. F. (1986). Fluvial systems of the Upper Cretaceous Mesaverde Group and Paleocene North Horn Formation, central Utah: A record of transition from thin‐skinned to thick‐skinned deformation in the foreland region. In J. A.Peterson (Ed.), Paleotectonics and sedimentation in the Rocky Mountain region, United States (Vol. 41, pp. 423–442). American Association of Petroleum Geologists, Memoir.
    [Google Scholar]
  29. Lawton, T. F., & Bradford, B. A. (2011). Correlation and provenance of Upper Cretaceous (Campanian) fluvial strata, Utah, USA, from zircon U‐Pb geochronology and petrography. Journal of Sedimentary Research, 81, 495–512.
    [Google Scholar]
  30. Li, Z., & Aschoff, J. (2022). Constraining the effects of dynamic topography on the development of Late Cretaceous Cordilleran foreland basin, western United States. Geological Society of America Bulletin, 134, 446–462.
    [Google Scholar]
  31. Liu, S., Nummedal, D., & Gurnis, M. (2014). Dynamic versus flexural controls of Late Cretaceous Western Interior Basin, USA. Earth and Planetary Science Letters, 389, 221–229.
    [Google Scholar]
  32. Mahon, R. C., Shaw, J. B., Barnhart, K. R., Hobley, D. E. J., & McElroy, B. (2015). Quantifying the stratigraphic completeness of delta shoreline trajectories. Journal of Geophysical Research, 120, 799–817.
    [Google Scholar]
  33. Miall, A. D. (1994). Reconstructing fluvial macroform architecture from two‐dimensional outcrops; examples from the Castlegate Sandstone, Book Cliffs, Utah. Journal of Sedimentary Research, 64, 146–158.
    [Google Scholar]
  34. Miall, A. D. (2015). Updating uniformitarianism: Stratigraphy as just a set of frozen accidents. In D. G.Smith, R. J.Bailey, P. M.Burgess, & A. J.Fraser (Eds.), Strata and time: Probing the gaps in our understanding (Vol. 404, pp. 11–36). Geological Society of London, Special Publications.
    [Google Scholar]
  35. Miller, I. M., Johnson, K. R., Kline, D. E., Nichols, D., & Barclay, R. (2013). A late Campanian flora from the Kaiparowits. In A. L.Titus & M. A.Loewen (Eds.), At the top of the grand staircase: The Late Cretaceous of Southern Utah (pp. 107–131). Indiana University Press.
    [Google Scholar]
  36. Milliman, J. D., & Farnsworth, K. L. (2013). River discharge to the coastal ocean: A global synthesis. Cambridge University Press.
    [Google Scholar]
  37. Mulder, T., Syvitski, J. P., Migeon, S., Faugeres, J. C., & Savoye, B. (2003). Marine hyperpycnal flows: Initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 20, 861–882.
    [Google Scholar]
  38. Nyberg, B., Helland‐Hansen, W., Gawthorpe, R. L., Sandbakken, P., Eide, C. H., Sømme, T., Hadler‐Jacobsen, F., & Leiknes, S. (2018). Revisiting morphological relationships of modern source‐to‐sink segments as a first‐order approach to scale ancient sedimentary systems. Sedimentary Geology, 373, 111–133.
    [Google Scholar]
  39. Nyberg, B., Helland‐Hansen, W., Tillmanns, F., Gawthorpe, R., & Sandbakken, P. (2021). Assessing first‐order BQART estimates for ancient source‐to‐sink mass budget calculations. Basin Research, 33, 2435–2452.
    [Google Scholar]
  40. Parker, L. R. (1976). The paleoecology of the fluvial coal‐forming swamps and associated floodplain environments in the Blackhawk formation (Upper Cretaceous) of Central Utah. Brigham Young University Geological Studies, 22, 99–116.
    [Google Scholar]
  41. Patruno, S., Hampson, G. J., & Jackson, C. A.‐L. (2015). Quantitative characterisation of deltaic and subaqueous clinoforms. Earth‐Science Reviews, 142, 79–119.
    [Google Scholar]
  42. Patruno, S., & Helland‐Hansen, W. (2018). Clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges, and continental margins. Earth‐Science Reviews, 185, 202–233.
    [Google Scholar]
  43. Pattison, S. A. J. (2019). High resolution linkage of channel‐coastal plain and shallow marine facies belts, desert member to Lower Castlegate Sandstone stratigraphic interval, Book Cliffs, Utah‐Colorado, USA. Geological Society of America Bulletin, 131, 1643–1672.
    [Google Scholar]
  44. Pattison, S. A. J. (2020). Sediment‐supply‐dominated stratal architectures in a regressively stacked succession of shoreline sand bodies, Campanian Desert member to Lower Castlegate Sandstone interval, Book Cliffs, Utah–Colorado, USA. Sedimentology, 67, 390–430.
    [Google Scholar]
  45. Pettit, B. S., Blum, M., Pecha, M., McLean, N., Bartschi, N. C., & Saylor, J. E. (2019). Detrital‐zircon U‐Pb paleodrainage reconstruction and geochronology of the Campanian Blackhawk–Castlegate succession, Wasatch plateau and Book Cliffs, Utah, USA. Journal of Sedimentary Research, 89, 273–292.
    [Google Scholar]
  46. Reineck, H.‐E. (1960). Uber zeitlucken in rezenten flachsee‐sedimenten. Geologische Rundschau, 49, 149–161.
    [Google Scholar]
  47. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. P. (2016). Environmental signal propagation in sedimentary systems across timescales. Earth‐Science Reviews, 153, 7–29.
    [Google Scholar]
  48. Sadler, P. M. (1981). Sediment accumulation rates and the completeness of stratigraphic sections. The Journal of Geology, 89, 569–584.
    [Google Scholar]
  49. Sadler, P. M., & Jerolmack, D. J. (2015). Scaling laws for aggradation, denudation, and progradation rates: The case for timescale invariance at sediment sources and sinks. In D. G.Smith, R. J.Bailey, P. M.Burgess, & A. J.Fraser (Eds.), Strata and time: Probing the gaps in our understanding (Vol. 404, pp. 69–88). Geological Society of London, Special Publications.
    [Google Scholar]
  50. Schindel, D. E. (1980). Microstratigraphic sampling and the limits of paleontologic resolution. Paleobiology, 6, 408–426.
    [Google Scholar]
  51. Straub, K. M., Duller, R. A., Foreman, B. Z., & Hajek, E. A. (2020). Buffered, incomplete, and shredded: The challenges of reading an imperfect stratigraphic record. Journal of Geophysical Research: Earth Surface, 125, e2019JF005079.
    [Google Scholar]
  52. Syvitski, J. P., Peckham, S. D., Hilberman, R., & Mulder, T. (2003). Predicting the terrestrial flux of sediment to the global ocean: A planetary perspective. Sedimentary Geology, 162, 5–24.
    [Google Scholar]
  53. Syvitski, J. P. M., & Milliman, J. D. (2007). Geology, geography and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. The Journal of Geology, 115, 1–19.
    [Google Scholar]
  54. Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J., & Green, P. (2005). Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308, 376–380.
    [Google Scholar]
  55. Turowski, J. M., Rickenmann, D., & Dadson, S. J. (2010). The partitioning of the total sediment load of a river into suspended load and bedload: A review of empirical data. Sedimentology, 57, 1126–1146.
    [Google Scholar]
  56. Van Wagoner, J. C. (1995). Sequence stratigraphy and marine to non‐marine facies architecture of foreland basin strata, Book Cliffs, Utah, USA. In J. C.Van Wagoner & G. T.Bertram (Eds.), Sequence stratigraphy of foreland basin deposits: Outcrop and subsurface examples from the Cretaceous of North America (Vol. 64, pp. 137–223). American Association of Petroleum Geologists, Memoir.
    [Google Scholar]
  57. Wang, Y., Straub, K. M., & Hajek, E. A. (2011). Scale‐dependent compensational stacking: An estimate of autogenic time scales in channelized sedimentary deposits. Geology, 39, 811–814.
    [Google Scholar]
  58. Yang, Z. S., & Liu, J. P. (2007). A unique Yellow River‐derived distal subaqueous delta in the Yellow Sea. Marine Geology, 240, 169–176.
    [Google Scholar]
  59. Young, R. G. (1955). Sedimentary facies and intertonguing in the Upper Cretaceous of the Book Cliffs, Utah‐Colorado. Geological Society of America Bulletin, 66, 177–202.
    [Google Scholar]
  60. Zhang, J., Covault, J., Pyrcz, M., Sharman, G., Carvajal, C., & Milliken, K. (2018). Quantifying sediment supply to continental margins: Application to the Paleogene Wilcox group, Gulf of Mexico. American Association of Petroleum Geologists Bulletin, 102, 1685–1702.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12737
Loading
/content/journals/10.1111/bre.12737
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error