1887
Volume 7 Number 1
  • E-ISSN: 1365-2117

Abstract

Abstract

Unconformities, which represent either periods of interruption of sedimentation or, in most cases events characterized by deposition and subsequent erosion, are commonplace geological phenomena in sedimentary basins, and will affect the pore pressure evolution of the basin fill. The effect of unconformities on pore pressure, as well as on sediment compaction and on burial processes is studied using a numerical basin model. For coarse sediments, which are permeable so that their pore pressure always remains nearly hydrostatic, the effects of both pure deposition interruption (hiatus) and deposition‐erosion events are negligible for pore pressure evolution. However, for fine‐grained sediments, unconformities can modify the pore pressure and the stress state to varying degrees. The results show that the rate of removal of overlying sediments, the permeability of sediments and time play important roles in the pore pressure evolution. In the East Slope of the Ordos Basin (China), in which overpressure has not been detected in deep wells, the modelling results suggest that the large‐scale erosion occurring in the Late Cretaceous and in the Tertiary may have removed high overpressure existing in the basin before the erosion.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.1995.tb00094.x
2007-11-06
2024-04-26
Loading full text...

Full text loading...

References

  1. Armagnac, C., Buchi, J., Kendal, C. G. ST. C. & Lerche, I. (1989) Estimating the thickness of sediment removed at an unconformity using vitrinite reflectance data. In: Thermal History of Sedimentary Basins, Methods and Case Histories (Ed. by N. D.Naesar and T. H.McCulloh ), pp. 217–238. Springer Verlag.
    [Google Scholar]
  2. Athy, L. F. (1930) Density, porosity, and compaction of sedimentary rocks. Bull. Am. Ass. petrol. Geol., 14, 1–21.
    [Google Scholar]
  3. Audet, D. M. & McConnell, J. D. C. (1992) Forward modelling of porosity and pore pressure evolution in sedimentary basins. Basin Res., 4, 147–162.
    [Google Scholar]
  4. Bethke, C. M. (1986) Inverse hydrologic analysis of the distribution and origin of Gulf Coast‐type geopressure zones. J. Geophys. Res., 91, 6535–6545.
    [Google Scholar]
  5. Buryakovskiy, L. A., DjevanshirR. D. & Chilingarian, G. V. (1991) Mathematical simulation of sediment compaction, J. Petrol. Sci. Eng.. 5, 151–161.
    [Google Scholar]
  6. Burland, J. B. (1990) On the compressibility and shear strength of natural clays. Géotechnique, 40, 329–378.
    [Google Scholar]
  7. Cao, S., Lerche, I. & Lyon, W. G. (1989) One‐dimensional modelling of episodic fracturing: a sensitivity study. Terra Nova, 1, 177–181.
    [Google Scholar]
  8. Charlez, A. (1991) Rock mechanics, Vol. 1, Theoretical Fundamentals. EditionsTechnip, Paris .
    [Google Scholar]
  9. Dhatt, G. & Touzot, G. (1984) Une présentation de la méthode des éléments finis, Deuxième Edition. Maloine S. A. Editeur, Paris .
    [Google Scholar]
  10. Green, F. (1989) Thermal and tectonic history of the East Midlands, shelf (onshore UK) and surrounding regions assessed by apatite fission track analysis. J. geol. Soc., 146, 755–773.
    [Google Scholar]
  11. Grün, G.‐U., Wallner, H., Zellerfeld, C. & Neugebauer, H. J. (1989) Porous rock deformation and fluid flow — numerical FE‐simulation of the coupled system. Geol. Rdsch., 78, 171–182.
    [Google Scholar]
  12. Guidish, T. M., Lerche, I., Kendall, C. G. ST. C. & O'Brien, J. J. (1985) Relationship between eustatic sea level changes and basement subsidence. Bull. Am. Ass. petrol. Geol., 68, 164–177.
    [Google Scholar]
  13. Hamilton, E. L. (1976) Variations of density and porosity with depth in deep‐sea sediments. J. sedim. Geol., 46, 280–300.
    [Google Scholar]
  14. Hermanrud, C. (1993) Basin modelling techniques ‐ an overview. In: Basin Modelling: Advances and Applications (Ed. by A. G.Dork et al.),
  15. NPF Spec. Publ.. 3, 1–34.
    [Google Scholar]
  16. Hubbert, M. K. & Rubey, W. W. (1959) Mechanics of fluid fllled porous solids and its application to overthrust faulting, I, role of fluid pressure in mechanics of overthrust faulting. Bull. geol. Sol. Am., 70, 115–166.
    [Google Scholar]
  17. Jacquin, C. & Poulet, M. (1973) Essai de restitution des conditions hydrodynamiques régnant dans un bassin sédimentaire au cours de son évolution. Rev. Inst. Français Pétrol., 28, 269–297.
    [Google Scholar]
  18. Jaeger, J. C. & Cook, N. G. (1979) Fundamentals of Rock Mechanics. Chapman and Hall, London .
    [Google Scholar]
  19. Karig, D. E. & Hou, G. (1992) High‐stress consolidation experiments and their geologic implications. J. geophys. Res., 97, 289–300.
    [Google Scholar]
  20. Katz, B. J., Pheifer, R. N. & Schunk, D. J. (1988) Interpretation of discontinuous vitrinite reflectance profiles. Bull. Am. Ass. petrol Geol., 72, 926–931.
    [Google Scholar]
  21. Korvin, G. (1984) Shale compaction and statistical physics. Geophys. J. R. astr. Soc., 78, 35–50.
    [Google Scholar]
  22. Lerche, I. (1990) Basin Analysis, Quantative Methods, Vol. 1. Academic Press, San Diego .
    [Google Scholar]
  23. Luo, X. R., Brigaud, F. & Vasseur, G. (1993) Compaction coefficient of argillaceous sediments: its implications, significance and determination. In: Basin Modelling, Advances and Applications (Ed. by A. G.Doré et al.), NPF Spec. Publ.. 3, 321–332.
    [Google Scholar]
  24. Luo, X. R. & Vasseur, G. (1992) Contributions of compaction and aquathermal pressuring to geopressure and the influence of environmental conditions. Bull. Am. Ass. petrol. Geol., 76, 1550–1559.
    [Google Scholar]
  25. Luo, X. R. & Vasseur, G. (1993) Contributions of compaction and aquathermal pressuring to geopressure and the influence of environmental conditions: Reply. Bull. Am. Ass. petrol. Geol., 77, 2011–2014.
    [Google Scholar]
  26. Magara, K. (1978) Compaction and Fluid Migration, Practical Petroleum Geology. Elsevier Scientific Publishing Company, Amsterdam .
    [Google Scholar]
  27. Mayerhoff, A. A., Kamen‐Kaye, M., Chen, C. & Taner, I. (1991) China ‐ Stratigraphy, Paleogeography and Tectonics. Kluwer Academic Publishers, London .
    [Google Scholar]
  28. McAuliffe, C. D. (1979) Oil and gas migration ‐ chemical and physical constraints. Bull. Am. Ass. petrol. Geol., 65, 761–781.
    [Google Scholar]
  29. Meade, K. H. (1964) Removal of water and rearrangement of particles during the compaction of the clayey sediments. U.S. Geol. Surv. Prof. Pap., 450‐B, B1–B23.
    [Google Scholar]
  30. MercerJ. W., PinderG. F. & Donalson, I. G. (1975) A Galerkin‐finite element analysis of the hydrothermal system at Wairakei, New Zealand. J. Geophys. Res., 80, 2608–2621.
    [Google Scholar]
  31. Miller, T. W. & Luk, C. H. (1993) Contributions of compaction and aquathermal pressure to geopressure and the influence of environmental conditions: discussion. Bull. Am. Ass. petrol. Geol., 77, 2006–2010.
    [Google Scholar]
  32. Naeser, N. D., Naesar, C. W. & McCulloh, T. H. (1989) The application of fission‐track analysis as a palaeotemperature indicator for hydrocarbon exploration. In: Thermal History of Sedimentary Basins, Methods and Case Histories (Ed. by N. D.Naeser and T. H.McCulloh ), pp. 157–180. Springer Verlag.
    [Google Scholar]
  33. Neuzil, C. E. & Pollock, D. W. (1983) Erosional unloading and fluid pressures in hydraulically “tight” rocks. J. Geol., 91, 179–193.
    [Google Scholar]
  34. Palciauskas, V. V. & Domenico, A. (1980). Microfracture development in compacting sediments: relation to hydrocarbon‐maturation kinetics, Bull. Am. Ass. petrol. Geol.. 64, 1927–1937.
    [Google Scholar]
  35. Pollastro, R. M. & BarkerC. E. (1986) Application of clay mineral, vitrinite reflectance, and fluid inclusion studies to the thermal and burial history of the Pinedale anticline, Green River Basin, Wyoming. In: Role of Organic Matter in Sediment Diagenesis (Ed. by D. L.Gautier ), Spec. Publ. Soc. econ. Paleont. Miner. 38, 73–83.
  36. Rieke, IIIH. H. & Chilingarian, G. V. (1974) Compaction of Argillaceous Sediments, Developments in Sedimentology 16. Elsevier Scientific Publishing Company, Amsterdam .
    [Google Scholar]
  37. Schneider, F. (1993) Modèle de compaction élasto‐plastique en simulation de bassins. Rev. Inst. Français Pétrol., 48, 3–14.
    [Google Scholar]
  38. Schneider, F., Burrus, J. & Wolf, S. (1993) Modelling overpressures by effective‐stress/porosity relationships in low‐permeability rocks: empirical artifice or physical reality? In: Basin Modelling: Advances and Applications (Ed. by A. G.Doré et al.), NPF Spec. Publ. 3, 333–341.
  39. Shi, Y. L. & Wang, C. Y. (1986) Pore pressure generation in sedimentary basins: overloading versus aquathermal. J. geophys. Res., 91, 2153–2162.
    [Google Scholar]
  40. Skempton, A. W. (1970) The consolidation of clays by gravitation compaction. Q Tl. geol. Soc. Lond., 125, 373–411.
    [Google Scholar]
  41. SmithJ. E. (1971) The dynamics of shale compaction and evolution of pore‐fluid pressures. Math. Geol., 3, 239–263.
    [Google Scholar]
  42. Terzaghi, K. (1925) Principles in soil mechanics, III. Determination of the permeability of clay. Engineering News Record, 95, 832–836.
    [Google Scholar]
  43. Tissot, B. & Pelet, R. (1971) Nouvelles donnés sur les mécanismes de genèse et de migration du pétrole: simulation mathématique et application à la prospection. Proc. 8th World Petroleum Congress, 2, 35–46.
    [Google Scholar]
  44. Ungerer, P., Bessis, F., Chenet, Y., Duranu, B., Nogaret, E., Chiarelli, A., Oudin, J. L. & Perrin, J. K. (1984) Geological and geochemical models in oil exploration: principles and practical examples, In: Petroleum Geochemistry and Basin Evaluation (Ed. by G.Demaison ), Mem. Am. Ass. petrol. Geol. 35, 53–57.
  45. Ungerer, P., Burrus, J., Doligez, B., Chènet, Y. & Bessis, F. (1990) Basin evaluation by integrated two‐dimensional modeling of heat transfer, fluid flow, hydrocarbon generation, and migration. Bull. Am. Ass. petrol. Geol., 74, 309–335.
    [Google Scholar]
  46. Ungerer, P., Espitalie, J., MarquisF. & Durand, B. (1986) Use of kinetic models of organic matter evolution for the reconstruction of paleotemperature. Application to the Gironville well (France). In: Thermal Modelling in Sedimentary Basins (Ed. by J.Burrus ), pp. 531–546. Editions Technip, Paris .
    [Google Scholar]
  47. Van Hinte, J. E. (1978) Geohistory analysis ‐ application of micropaleontology in exploration geology. Bull. Am. Ass. petrol. Geol., 62, 201–222.
    [Google Scholar]
  48. Wang, S. W., Zhang, W. X., Zhang, H. F. & Tan, S. D. (1983) Chinese Peetroleum Geology. Petroleum Industry Press, Beijing .
    [Google Scholar]
  49. Wangen, M. (1991) Modelling heat and fluid flow in sedimentary basins by the finite element method. Int. J. Num. Analys. Methods Geomechn., 15, 705–733.
    [Google Scholar]
  50. Wangen, M., Antonsen, B., Fossum, B. & Alm, L. K. (1990) A model for compaction of sedimentary basins. Appl. Math. Modelling, 14, 506–517.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.1995.tb00094.x
Loading
  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error