1887
Volume 19, Issue 4
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

Magnetostratigraphy from the Kashi foreland basin along the southern margin of the Tian Shan in Western China defines the chronology of both sedimentation and the structural evolution of this collisional mountain belt. Eleven magnetostratigraphic sections representing ∼13 km of basin strata provide a two‐ and three‐dimensional record of continuous deposition since ∼18 Ma. The distinctive Xiyu conglomerate makes up the uppermost strata in eight of 11 magnetostratigraphic sections within the foreland and forms a wedge that thins southward. The basal age of the conglomerate varies from 15.5±0.5 Ma at the northernmost part of the foreland, to 8.6±0.1 Ma in the central (medial) part of the foreland and to 1.9±0.2, ∼1.04 and 0.7±0.1 Ma along the southern deformation front of the foreland basin. These data indicate the Xiyu conglomerate is highly time‐transgressive and has prograded south since just after the initial uplift of the Kashi Basin Thrust (KBT) at 18.9±3.3 Ma. Southward progradation occurred at an average rate of ∼3 mm year−1 between 15.5 and 2 Ma, before accelerating to ∼10 mm year−1. Abrupt changes in sediment‐accumulation rates are observed at 16.3 and 13.5 Ma in the northern part of the foreland and are interpreted to correspond to southward stepping deformation. A subtle decrease in the sedimentation rate above the Keketamu anticline is determined at ∼4.0 Ma and was synchronous with an increase in sedimentation rate further south above the Atushi Anticline. Magnetostratigraphy also dates growth strata at <4.0, 1.4±0.1 and 1.4±0.2 Ma on the southern flanks the Keketamu, Atushi and Kashi anticlines, respectively. Together, sedimentation rate changes and growth strata indicate stepped migration of deformation into the Kashi foreland at least at 16.3, 13.5, 4.0 and 1.4 Ma. Progressive reconstruction of a seismically controlled cross‐section through the foreland produces total shortening of 13–21 km and migration of the deformation front at 2.1–3.4 mm year−1 between 19 and 13.5 Ma, 1.4–1.6 mm year−1 between 13.5 and 4.0 Ma and 10 mm year−1 since 4.0 Ma. Migration of deformation into the foreland generally causes (1) uplift and reworking of basin‐capping conglomerate, (2) a local decrease of accommodation space above any active structure where uplift occurs, and hence a decrease in sedimentation rate and (3) an increase in accumulation on the margins of the structure due to increased subsidence and/or ponding of sediment behind the growing folds. Since 5–6 Ma, increased sediment‐accumulation (∼0.8 mm year−1) and gravel progradation (∼10 mm year−1) rates appear linked to higher deformation rates on the Keketamu, Atushi and Kashi anticlines and increased subsidence due to loading from both the Tian Shan and Pamir ranges, and possibly a change in climate causing accelerated erosion. Whereas the rapid (∼10 mm year−1) progradation of the Xiyu conglomerate after 4.0 Ma may be promoted by global climate change, its overall progradation since 15.5 Ma is due to the progressive encroachment of deformation into the foreland.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2007.00339.x
2007-09-27
2024-04-26
Loading full text...

Full text loading...

References

  1. Abdrakhmatov, K., Weldon, R.J., Thompson, S.C., Burbank, D.W., Rubin, C., Miller, M.M. & Molnar, P. (2001) Onset, style and current rate of shortening in the central Tien Shan, Kyrgyz Republic. Russ. Geol. Geophys., 42, 1585–1609.
    [Google Scholar]
  2. Abdrakhmatov, K.Y., Aldazhanov, S.A., Hager, B.H., Hamburger, M.W., Herring, T.A., Kalabaev, K.B., Makarov, V.I., Molnar, P., Panasyuk, S.B., Prilepin, M.T., Reilinger, R.E., Sadybakasov, I.S., Souter, B.J., Trapesnikov, Y.A, Tsurkov, V.Y. & Zubovich, A.V. (1996) Relatively recent construction of the Tien Shan inferred from GPS measurements of present‐day crustal deformation rates. Nature, 384, 450–453.
    [Google Scholar]
  3. Allen, M.B., Vincent, S. & Wheeler, P.J. (1999) Late Cenozoic tectonics of the Kepingtage thrust zone: interactions of the Tien Shan and Tarim Basin, northwest China. Tectonics, 18, 639–654.
    [Google Scholar]
  4. Allen, M.B., Windley, B.F., Chi, Z., Zhong‐yan, Z. & Guang‐Rei, W. (1991) Basin evolution within and adjacent to the Tien Shan Range, NW China. J. Geol. Soc. London, 148, 369–378.
    [Google Scholar]
  5. Armstrong, F.C. & Oriel, S.S. (1965) Tectonic development of Idaho‐Wyoming thrust belt. AAPG. Bull., 49, 1847–1866.
    [Google Scholar]
  6. Avouac, J.‐P., Tapponnier, P., Bai, M., You, H. & Wang, G. (1993) Active thrusting and folding along the northern Tien Shan and late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. J. Geophys. Res., 98, 6755–6804.
    [Google Scholar]
  7. Bally, A.W., Ming Chou, I., Clayton, R., Heugster, H.P., Kidwell, S., Meckel, L.D., Ryder, R.T., Watts, A.B. & Wilson, A.A. (1986) Notes on sedimentary basins in China, Report of the American Sedimentary Basins Delegate to the People's Republic of China, August 17–September 8, 1985. U.S. Geol. Surv. Open File Rep., 86–327, 108.
    [Google Scholar]
  8. Banks, C.J. & Warburton, J. (1986) “Passive‐roof” duplex geometry in the frontal structures of the Kirthar and Sulaiman mountain belts, Pakistan. J. Struct. Geol., 8, 229–237.
    [Google Scholar]
  9. Beaumont, C. (1981) Foreland basins. Geophys. J. Roy. Astr. Soc., 65, 291–329.
    [Google Scholar]
  10. Blair, T.C. & McPherson, J.G. (1999) Grain‐size and textural classification of coarse sedimentary particles. J. Sediment. Res., 69, 6–19.
    [Google Scholar]
  11. Bridge, J.S. (2003) Rivers and floodplains: forms, processes, and sedimentary record. Oxford, UK, Malden, MA, USA: Blackwell Pub., 494pp.
    [Google Scholar]
  12. Bullen, M.E., Burbank, D.W., Abdrakhmatov, K.Y. & Garver, J. (2001) Late Cenozoic tectonic evolution of the northwestern Tien Shan: constraints from magnetostratigraphy, detrital fission track, and basin analysis. Geol. Soc. Amer. Bull., 113, 1544–1559.
    [Google Scholar]
  13. Bullen, M.E., Burbank, D.W. & Garver, J.I. (2003) Building the northern Tien Shan: integrated thermal, structural, and topographic constraints. J. Geol., 111, 149–165.
    [Google Scholar]
  14. Burbank, D.W. (1992) Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin. Nature, 357, 680–682.
    [Google Scholar]
  15. Burbank, D.W. & Beck, R.A. (1991) Models of aggradation versus progradation in the Himalayan Foreland. Geolog. Rund., 80, 623–638.
    [Google Scholar]
  16. Burbank, D.W., Beck, R.A., Raynolds, R.G.H., Hobbs, R. & Tahirkheli, R.A.K. (1988) Thrusting and gravel progradation in foreland basins: a test of post-thrusting gravel dispersal. Geology, 16, 1143–1146.
    [Google Scholar]
  17. Burbank, D.W., McLean, J.K., Bullen, M., Abdrakhmatov, K.Y. & Miller, M.G. (1999) Partitioning of intermontane basins by thrust‐related folding, Tien Shan, Kyrgyzstan. Basin Res., 11, 75–92.
    [Google Scholar]
  18. Burbank, D.W., Meigs, A. & Brozović, N. (1996) Interactions of growing folds and coeval depositional systems. Basin Res., 8, 199–223.
    [Google Scholar]
  19. Burbank, D.W. & Raynolds, R.G.H. (1988) Stratigraphic keys to the timing of thrusting in terrestrial foreland basins: application to the northwest Himalaya. In: New Perspectives in Basin Analysis (Ed. by K.L.Kleinspehn & C.Paola ), pp. 331–351. Springer‐Verlag, New York.
    [Google Scholar]
  20. Burchfiel, B.C., Brown, E.T., Qidong, D., Xianyue, F., Jun, L., Molnar, P., Jianbang, S., Zhangming, W. & Huichuan, Y. (1999) Crustal shortening on the margins of the Tien Shan, Xinjiang, China. Int. Geol. Rev., 41, 665–700.
    [Google Scholar]
  21. Burov, E.B. & Diamont, M. (1992) Flexure of the continental lighosphere with multilayered rheology. Geophys. J. Int., 109, 449–468.
    [Google Scholar]
  22. Carroll, A.R. & Bohacs, K.M. (1999) Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls. Geology, 27, 99–102.
    [Google Scholar]
  23. Carroll, A.R., Chetel, L.M. & Smith, M.E. (2006) Feast to famine: sediment supply control on Laramide basin fill. Geology, 34, 197–200.
    [Google Scholar]
  24. Carroll, A.R., Graham, S.A., Hendrix, M.S., Ying, D. & Zhou, D. (1995) Late Paleozoic tectonic amalgamation of northwestern China; sedimentary record of the northern Tarim, northwestern Turpan, and southern Junggar basins. Geol. Soc. Am. Bull., 107, 571–594.
    [Google Scholar]
  25. Charreau, J., Chen, Y., Gilder, S., Dominguez, S., Avouac, J., Sen, S., Sun, D.J., Li, Y.A. & Wang, M.W. (2005) Magnetostratigraphy and rock magnetism of the Neogene Kuitun He section (northwest China): implications for late Cenozoic uplift of the Tianshan mountains. Earth Planet. Sci. Lett., 230, 177–192.
    [Google Scholar]
  26. Charreau, J., Gilder, S., Chen, Y., Dominguez, S., Avouac, J.‐P., Sen, S., Jolivet, M., Li, Y. & Wang, W. (2006) Magnetostratigraphy of the Yaha section, Tarim Basin (China); 11 Ma acceleration in erosion and uplift of the Tian Shan mountains. Geology (Boulder), 34, 181–184.
    [Google Scholar]
  27. Chen, J., Burbank, D.W., Scharer, K.M., Sobel, E., Yin, J., Rubin, C. & Zhao, R. (2002) Magnetostratigraphy of the Upper Cenozoic strata in the Southwestern Chinese Tian Shan: rates of Pleistocene folding and thrusting. Earth Planet. Sci. Lett., 195, 113–130.
    [Google Scholar]
  28. Chen, J., Heermance, R., Scharer, K.M., Burbank, D.W., Jijun, M. & Wang, C.S. (2007) Quantification of growth and lateral propagation of the Kashi anticline, Southwest Chinese Tian Shan. J. Geophys. Res., 112, doi:DOI: 10.1029/2006JB004345.
    [Google Scholar]
  29. Chen, S.L., Tang, L., Jin, Z., Jia, C. & Pi, X. (2004) Thrust and fold tectonics and the role of evaporites in deformation in the Western Kuqa Foreland of Tarim Basin, Northwest China. Marine and Petrol. Geol., 21, 1027–1042.
    [Google Scholar]
  30. Couzens, B.A. & Wiltschko, D.V. (1996) The control of mechanical stratigraphy on the formation of triangle zones. Bull. Can. Petrol. Geol., 44, 165–179.
    [Google Scholar]
  31. Covey, M. (1984) Lithofacies Analysis and Basin Reconstruction, Plio‐Pleistocene Western Taiwan Foredeep. Petrol. Geol. Taiwan, 20, 53–83.
    [Google Scholar]
  32. DeCelles, P.G. (1994) Late Cretaceous–Paleocene synorogenic sedimentation and history of Sevier thrust belt, northeast Utah and southwest Wyoming. Geol. Soc. Am. Bull., 106, 32–56.
    [Google Scholar]
  33. DeCelles, P.G. & Giles, K.A. (1996) Foreland basins systems. Basin Res., 8, 105–123.
    [Google Scholar]
  34. DeCelles, P.G., Gray, M.B., Ridgway, K.D., Cole, R.B., Pivnik, D.A., Pequera, N. & Srivastava, P. (1991b) Controls on synorogenic alluvial‐fan architecture, Beartooth Conglomerate (Palaeocene), Wyoming and Montana. Sedimentology, 38, 567–590.
    [Google Scholar]
  35. DeCelles, P., Gray, M.B., Ridgway, K.D., Cole, R.B., Srivastava, P., Pequera, N. & Pivnik, D.A. (1991a) Kinematic history of a foreland basin uplift from Paleogene synorogenic conglomerate, Beartooth Range, Wyoming and Montana. Geol. Soc. Am. Bull., 103, 1458–1475.
    [Google Scholar]
  36. Dumitru, T.A., Zhou, D., Chang, E.Z., Graham, S.A., Hendrix, M.S., Sobel, E. & Carroll, A.R. (2001) Uplift, exhumation, and deformation in the Chinese Tian Shan. In: Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia: From Continental Assembly to Intra‐continental Deformation (Ed. by M.S.Hendrix & G.A.Davis ), Geol. Soc. Am. Mem., 194, 71–99.
    [Google Scholar]
  37. Enkin, R.J., Yang, Z., Chen, Y. & Courtillot, V. (1992) Paleomagnetic contraints on the geodynamic history of the major blocks of China from the Permian to the present. J. Geohpys. Res., 97, 13953–13989.
    [Google Scholar]
  38. Flemings, P.B. & Jordan, T.E. (1990) Stratigraphic modeling of foreland basins: Interpreting thrust deformation and lithosphere rheology. Geology, 18, 430–434.
    [Google Scholar]
  39. Heermance, R. (2007) The structural and stratigraphic evolution of the Neogene Kashi foreland basin, northwest China, PhD. Thesis, University of California, Santa Barbara, Santa Barbara, 268pp.
  40. Heller, P.L., Angevine, C.L., Winslow, N.S. & Paola, C. (1988) Two‐phase stratigraphic model of foreland‐basin sequences. Geology, 16, 501–504.
    [Google Scholar]
  41. Hendrix, M.S., Dumitru, T.A. & Graham, S.A. (1994) Late Oligocene–early Miocene unroofing in the Chinese Tian Shan: an early effect of the India–Asia collision. Geology, 22, 487–490.
    [Google Scholar]
  42. Hendrix, M.S., Graham, S.A., Carroll, A.R., Sobel, E., McNight, C., Schulein, B. & Wang, Z. (1992) Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: evidence from Mesozoic strata of the North Tarim, South Junggar and Turpan Basins, Northwest China. Geol. Soc. Am. Bull., 104, 53–79.
    [Google Scholar]
  43. Homke, S., Vergés, J., Garcés, M., Emami, H. & Karpuz, R. (2004) Magnetostratigraphy of the Miocene–Pliocene Zagros foreland deposits in the front of the Push‐e Kush Arc (Lurestan Province, Iran). Earth Planet. Sci. Lett., 225, 397–410.
    [Google Scholar]
  44. Horton, B.K., Constenius, K.N. & DeCelles, P.G. (2004) Tectonic control on coarse‐grained foreland‐basin sequences: an example from the Cordilleran foreland basin, Utah. Geology, 32, 637–640.
    [Google Scholar]
  45. Huang, J. & Chen, B.‐W. (1981) Molasses in the Tethys–Himalayan tectonic domain and its relation with the Indian Plate Motion. Sci. Pap. Geol. Int. Exchange, 1, 1–14 (in chinese, English abstract).
    [Google Scholar]
  46. Huang, B., Piper, J.D.A., Peng, S., Liu, T., Li, Z., Wang, Q. & Zhu, R. (2006) Magnetostratigraphic study of the Kuche Depression, Tarim Basin, and Cenozoic uplift of the Tian Shan Range, Western China. Earth Planet. Sci. Lett., 251, 346–364.
    [Google Scholar]
  47. Jia, C., Zhang, S. & Wu, S. (2004) Stratigraphy of the Tarim Basin and Adjacent Areas. Science Press, Beijing (in Chinese with English abstract).
    [Google Scholar]
  48. Johnson, N.M. & Mcgee, V.E. (1983) Magnetic polarity stratigraphy: Stochastic properties of data, sampling problems, and the evaluation of interpretations. J. Geophys. Res., 88, 1213–1221.
    [Google Scholar]
  49. Johnson, N.M., Opdyke, N.D., Johnson, G.D., Lindsay, E.H. & Tahirkheli, R.A.K. (1982) Magnetic polarity stratigraphy and ages of Siwalik group rocks of the Potwar Plateau, Pakistan. Palaeogeogr. Palaeoclimatol. Palaeoecol., 37, 17–42.
    [Google Scholar]
  50. Jones, C.H. (2002) User‐driven integrated software lives: “PaleoMag” paleomagnetics analysis on the Macintosh. Comput. Geosci., 28, 1145–1151.
    [Google Scholar]
  51. Jones, M.A., Heller, P.L., Roca, E., Garcés, M. & Cabrera, L. (2004) Time lag of syntectonic sedimenation across an alluvial basin: theory and example from the Ebro Basin, Spain. Basin Res., 16, 467–488.
    [Google Scholar]
  52. Jones, P.B. (1996) Triangle zone geometry, terminology and kinematics. Bull. Can. Petrol. Geol., 44, 139–152.
    [Google Scholar]
  53. Jordan, T.E. (1981) Thrust loads and foreland basin evolution, Cretaceous, western United States. Am. Assoc. Petrol. Geol. Bull., 65, 2506–2520.
    [Google Scholar]
  54. Jordan, T.E., Flemings, P.B. & Beers, J.A. (1988) Dating thrust‐fault activity by use of foreland‐basin strata. In: New Perspectives in Basin Analysis (Ed. by K.L.Kleinspehn & C.Paola ), pp. 307–330. Springer‐Verlag, New York.
    [Google Scholar]
  55. Kempf, O., Matter, A., Burbank, D. & Mange, M. (1999) Depositional and structural evolution of a foreland basin margin in a magnetostratigraphic framework: the eastern Swiss Molasse basin. Int. J. Earth Sci., 88, 253–275.
    [Google Scholar]
  56. Kirschvink, J.L. (1980) The least‐squares line and plane and the analysis of paleomagnetic data. Geophys. J. R. Astr. Soc., 62, 699–718.
    [Google Scholar]
  57. Liu, T.S., Ding, M.G. & Derbyshire, E. (1996) Gravel deposits on the margins of the Qinghai–Xizang plateau, and their environmental significance. Palaeogeogr. Palaeoclimatol. Palaeoecol., 120, 159–170.
    [Google Scholar]
  58. Lourens, L.J., Hilgen, F.J., Laskar, J., Shackelton, N.J. & Wilson, D. (2005) The Neogene period. In: Geological Time Scale (Ed. by F.M.Gradstein , J.G.Ogg & A.Smith ), pp. 409–440. Cambridge University Press, Cambridge.
    [Google Scholar]
  59. López‐Blanco, M. (2002) Sedimentary response to thrusting and fold growing on the SE margin of the Ebro basin (Paleogene, NE Spain). Sediment. Geol., 146, 133–154.
    [Google Scholar]
  60. Magee, J.W., Bowler, J.M., Miller, G.H. & Williams, D.L.G. (1995) Stratigraphy, sedimentology, chronology and palaeohydrology of Quaternary lacustrine deposits at Madigan Gulf, Lake Eyre, South Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol., 113, 3–42, doi:DOI: 10.1016/0031-0182(1095)00060-Y.
    [Google Scholar]
  61. McElhinny, M.W. (1964) Statistical significance of the fold test in paleomagnetism. Geophys. J. Roy. Astr. Soc., 8, 328–340.
    [Google Scholar]
  62. McFadden, P.L. & Jones, D.L. (1981) The fold test in paleomagnetism. Geophys. J. Roy. Astr. Soc., 67, 53–58.
    [Google Scholar]
  63. McFadden, P.L. & Mcelhinny, M.W. (1990) Classification of the reversal test in paleomagnetism. Geophys. J. Int., 103, 725–729.
    [Google Scholar]
  64. Mccarthy, P.J., Martini, I.P. & Leckie, D.A. (1997) Anatomy and evolution of a Lower Cretaceous alluvial plain: sedimentology and palaeosols in the upper Blairmore Group, south-western Alberta, Canada. Sedimentology, 44, 197–220.
    [Google Scholar]
  65. Miall, A.D. (1985) Architectural‐element analysis: a new method of facies analysis applied to fluvial deposits. Earth Sci. Rev., 22, 261–308.
    [Google Scholar]
  66. Miall, A.D. (1996) The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology. Springer, New York, 582pp.
    [Google Scholar]
  67. Molnar, P. (2001) Climate change, flooding in arid environments, and erosion rates. Geology, 29, 1071–1074.
    [Google Scholar]
  68. Molnar, P. (2004) Late Cenozoic increase in accumulation rates of terrestrial sediment: how might climate change have affected erosion rates? Annu. Rev. Earth Planet. Sci., 32, 67–89.
    [Google Scholar]
  69. Molnar, P., Brown, E.T., Burchfiel, B.C., Deng, Q., Feng, X., Li, J., Raisbeck, G.M., Shi, J., Wu, Z., Yiou, F. & You, H. (1994) Quaternary climate change and the formation of river terraces across growing anticlines on the north flank of the Tien Shan, China. J. Geol., 102, 583–602.
    [Google Scholar]
  70. Molnar, P. & Tapponnier, P. (1975) Cenozoic Tectonics of Asia: effects of a continental collision. Science, 189, 419–426.
    [Google Scholar]
  71. Métivier, F., Guademer, Y., Tapponier, P. & Klein, M. (1999) Mass accumulation rates in Asia during the Cenozoic. Geophys. J. Int., 137, 280–318.
    [Google Scholar]
  72. Ojha, T., Butler, R.F., Quade, J., Decelles, P.G., Richards, D. & Upreti, B.N. (2000) Magnetic Polarity Stratigraphy of the Neogene Siwalik Group at Khutia Khola, Far Western Nepal. Geol. Soc. Am. Bull., 112, 424–424.
    [Google Scholar]
  73. Ortí, F., Rosell, L. & Anadón, P. (2003) Deep to shallow lacustrine evaporites in the Libros gypsum (Southern Teruel Basin, Miocene, Ne Spain): an occurrence of Pelletal Gypsum Rhythmites. Sedimentology, 50, 361–386, doi:DOI: 310.1046/j.1365-3091.2003.00558.x.
    [Google Scholar]
  74. Paola, C. (1988) Subsidence and gravel transport in alluvial basins. In: New Perspectives in Basin Analysis (Ed. by K.Kleinspehn & C.Paola ), pp. 231–244. Springer‐Verlag, New York.
    [Google Scholar]
  75. Paola, C., Heller, P.L. & Angevine, C.L. (1992) Large‐scale dynamics of grain‐size variation in alluvial basins, 1: theory. Basin Res., 4, 73–90.
    [Google Scholar]
  76. Quidelleur, X. & Courtillot, V. (1996) On low‐degree spherical harmonic models of paleosecular variation. Phys. Earth Planet. Interiors, 95, 55–77.
    [Google Scholar]
  77. Reigber, C., Michel, G.W., Galas, R., Angermann, D., Klotz, J., Chen, J.Y., Papschev, A., Arslanov, R., Tzurkov, V.E. & Ishanov, M. (2001) New space geodetic constraints on the distribution of deformation in Central Asia. Earth Planet. Sci. Lett., 191, 157–165.
    [Google Scholar]
  78. Scharer, K., Burbank, D.W., Chen, J. & Weldon, R. (2006) Kinematic models of fluvial terraces over active detachment fold: constraints on the growth mechanism of the Kashi-Atushi fold system, Chinese Tian Shan. Geol. Soc. Amer. Bull., 118, 1006–1021.
    [Google Scholar]
  79. Scharer, K.M., Burbank, D.W., Chen, J., Weldon, R.J., Rubin, C., Zhao, R. & Shen, J. (2004) Detachment folding in the Southwestern Tian Shan ‐ Tarim foreland, China; shortening estimates and rates. J. Struct. Geol., 26, 2119–2137.
    [Google Scholar]
  80. Schlunegger, F., Matter, A., Burbank, D.W. & Klaper, E.M. (1997) Magnetostratigraphic constraints on relationships between evolution of the Central Swiss Molasse Basin and Alpine Orogenic Events. Geol. Soc. Am. Bull., 109, 225–241.
    [Google Scholar]
  81. Sklar, L., Dietrich, W.E., Foufuoula‐Georgiou, E., Lashemes, B. & Bellugi, D. (2006) Do gravel bed river size distributions record channel network structure?Water Resourc. Res., 42, W06D18, doi:DOI: 10.1029/2006WR005035.
    [Google Scholar]
  82. Sobel, E., Chen, J. & Heermance, R.V. (2006) Late Oligocene–Early Miocene initiation of shortening in the Southwestern Chinese Tian Shan: implications for Neogene shortening rate variations. Earth Planet. Sci. Lett., 247, 70–81.
    [Google Scholar]
  83. Sobel, E.R. & Dumitru, T. (1997) Thrusting and exhumation around the margins of the western Tarim basin during the India–Asia collision. J. Geophys. Res., 102, 5043–5064.
    [Google Scholar]
  84. Sobel, E.R. & Strecker, M.R. (2003) Uplift, exhumation and precipitation: tectonic and climatic control of Late Cenozoic landscape evolution in the northern Sierras Pampeanas, Argentina. Basin Res, 15, 431–451.
    [Google Scholar]
  85. Sun, J. & Liu, T. (2006) The age of the Taklimakan Desert. Science, 312, 1621.
    [Google Scholar]
  86. Sun, J., Zhu, R.X. & Bowler, J. (2004) Timing of the Tianshan Mountains uplift constratined by magnetostratigraphic analysis of molasse deposits. Earth Planet. Sci. Lett., 219, 239–253.
    [Google Scholar]
  87. Suppe, J. (1983) Geometry and kinematics of fault bend folding. Amer. J. Sci., 283, 648–721.
    [Google Scholar]
  88. Thompson, S.C., Weldon, R.J., Rubin, C.M., Abdrakhmatov, K., Molnar, P. & Berger, G.W. (2002) Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia. J. Geophys. Res., 107, ETG7.1–ETG7.32.
    [Google Scholar]
  89. Uba, C.E., Heubeck, C. & Hulka, C. (2006) Evolution of the late Cenozoic Chaco foreland basin, Southern Bolivia. Basin Res., 18, 145–170.
    [Google Scholar]
  90. Vandervoort, D.S. (1997) Stratigraphic response to saline lake‐level fluctuations and the origin of cyclic nonmarine evaporite deposits: the Pleistocene Blanca Lila Formation, northwest Argentina. Geol. Soc. Am. Bull., 109, 210–224.
    [Google Scholar]
  91. Wang, Q., Zhang, P.‐Z., Freymueller, J.T., Bilham, R., Larson, K.M., Lai, X.a., You, X., Niu, Z., Jianchun, W., Li, Y., Liu, J. & Yang, Z. (2001) Present‐day crustal deformation in China constrained by global positioning system measurements. Science, 294, 574–577.
    [Google Scholar]
  92. Ward, P.D., Garrison, G., Botha, J., Buick, R., Erwin, D.H., Kirschvink, J.L., De Kock, M.O. & Smith, R. (2005) Abrupt and gradual extinction among land Vertebrates in the Karoo Basin, South Africa. Science, 307, 709–714.
    [Google Scholar]
  93. Windley, B.F., Allen, M.B., Zhang, C., Zhao, Z.‐Y. & Wang, G.‐R. (1990) Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan Range, central Asia. Geology, 18, 128–131.
    [Google Scholar]
  94. Yin, A., Nie, S., Craig, P., Harrison, T.M., Ryerson, F.J., Qian, X. & Yang, G. (1998) Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics, 17, 1–17.
    [Google Scholar]
  95. Yin, A., Rumelhart, P.E., Butler, R., Cowgill, E., Harrison, T.M., Foster, D.A., Ingersoll, R.V., Zhang, Q., Zhou, X.Q., Wang, X.F., Hanson, A. & Raza, A. (2002) Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geol. Soc. Am. Bull., 114, 1257–1295.
    [Google Scholar]
  96. Zhang, P., Molnar, P. & Downs, W.R. (2001) Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature, 410, 891–897.
    [Google Scholar]
  97. Zheng, H., Powell, C.M., An, Z., Zhou, J. & Dong, G. (2000) Pliocene uplift of the northern Tibetan Plateau. Geology, 28, 715–718.
    [Google Scholar]
  98. Zhou, Z.Y. & Chen, P.J. (1990) Biostratigraphy and Geological Evolution in the Tarim Basin. Geological Press, Beijing.
    [Google Scholar]
  99. Colombo, F. (1994) Normal and reverse unroofing sequences in syntectonic conglomerates as evidence of progressive basinward deformation. Geology, 22, 235–238.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2007.00339.x
Loading
/content/journals/10.1111/j.1365-2117.2007.00339.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error