1887
Volume 20, Issue 3
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

This study gives the first description of 33 mid‐Oligocene and 646 late Miocene pockmarks mapped in the Danish part of the central North Sea. The pockmarks are all highly elongated, with average long‐ and short axes of 2.5 km and 700 m, and average internal depth of 30 m. The Miocene pockmarks strike 140–160° while the Oligocene pockmarks strike 100–105°; paralleling the strike of the major Miocene and Oligocene clinoforms on which they occur. In cross‐sections, the pockmarks appear as U‐, V‐ and W‐shaped or tabular depressions. Based on their geometry and degree of symmetry, three distinct pockmark groups have been distinguished: (A) 58% of the pockmarks are symmetrical, ellipsoidal depressions; (B) 40% are asymmetrical, lunate depressions; and (C) 2% comprise asymmetrical ring‐shaped depressions. Group A pockmarks are interpreted as representative for the first stage in the pockmark development, only influenced by fluid expulsion and subsequent erosion by bottom currents. Group B pockmarks are influenced by bottom current erosion, current and gas winnowing and possibly authigenic carbonate precipitation. Group C pockmarks represent a further development from Group B pockmarks with further winnowing, carbonate precipitation and removal of seafloor sediment to form the ring‐shape. Current erosion has exerted the major influence on the final geometry of 83% of the pockmarks. The pockmarks occur above gas‐mature Jurassic source rocks, modelled to be in the generative window during the late Miocene, and thermogenic gas is suggested as the main fluid involved in the pockmark formation. The timing of gas expulsion from the Jurassic source rocks in combination with loading imposed to the basin by the progradational Miocene clinoforms are interpreted as the main factors controlling the timing and location of the pockmarks. The pockmarks thus tell a story of thermogenic gas venting to the surface and paleo‐current scour of the seabed in the eastern part of the central North Sea during the mid Oligocene and late Miocene.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2008.00362.x
2008-06-10
2024-04-26
Loading full text...

Full text loading...

References

  1. Berndt, C. (2005) Focused fluid flow in passive continental margins. Philos. Trans. R. Soc. A, 363, 2855–2871.
    [Google Scholar]
  2. Bünz, S., Mienert, J. & Berndt, C. (2003) Geological controls on the Storegga gas‐hydrate system of the mid‐Norwegian continental margin. Earth Planet. Sci. Lett., 209, 291–307.
    [Google Scholar]
  3. Bøe, R., Rise, L. & Ottesen, D. (1998) Elongate depressions on the southern slope of the Norwegian Trench (Skagerrak): morphology and evolution. Mar. Geol., 146, 191–203.
    [Google Scholar]
  4. Cartwright, J. (1989) The kinematics of inversion in the Danish Central Graben. In: Inversion Tectonics (Ed. by M.A.Cooper & G.D.Williams ), Geol. Soc. Spec. Publ . 44, 153–175.
    [Google Scholar]
  5. Cartwright, J. (1995) Seismic‐stratigraphical analysis of large‐scale ridge‐trough sedimentary structures in the Late Miocene to Early Pliocene of the central North Sea. Special Publications int. Ass. Sediment, 22, 285–303.
    [Google Scholar]
  6. Cartwright, J.A. (1994) Episodic basin‐wide hydrofracturing of overpressured Early Cenozoic mudrock sequences in the North Sea Basin. Mar. Petrol. Geol., 11 (5), 587–607.
    [Google Scholar]
  7. Çifçi, G., Dondurur, D. & Ergün, M. (2003) Deep and shallow structures of large pockmarks in the Turkish shelf, Eastern Black Sea. Geo-Mar. Lett., 23, 311–322.
    [Google Scholar]
  8. Clausen, O.R., Gregersen, U., Michelsen, O. & Sørensen, J.S. (1999) Factors controlling the Cenozoic sequence development in the eastern parts of the North Sea. J. Geol. Soc., Lond., 156, 809–816.
    [Google Scholar]
  9. Clausen, O.R. & Korstgård, J.A. (1993) Small‐scale faulting as an indicator of deformation mechanism in the Tertiary sediments of the northern Danish Central Trough. J. Struc. Geol., 15, 1343–1357.
    [Google Scholar]
  10. Cole, D., Stewart, S.A. & Cartwright, J.A. (2000) Giant irregular pockmark craters in the Paleogene of the Outer Moray Firth Basin, UK North Sea. Mar. Petrol. Geol., 17, 563–577.
    [Google Scholar]
  11. Damtoft, K., Andersen, C. & Thomsen, E. (1986) Prospectivity and hydrocarbon plays of the Danish Central Trough. In: Petroleum Geology of North West Europe (Ed. by J.Brooks & K.W.Glennie ), pp. 403–418. Graham & Trotman, London.
    [Google Scholar]
  12. Dugan, B. & Flemings, P.B. (2000) Overpressure and fluid flow in the New Jersey Continental slope: implications for slope failure and cold seeps. Science, 289, 288–291.
    [Google Scholar]
  13. Fader, G.B.J. (1991) Gas‐related sedimentary features from the eastern Canadian continental shelf. Continent. Shelf Res., 11 (8–10), 1123–1153.
    [Google Scholar]
  14. Galloway, W.E (2001) Seismic expressions of deep‐shelf depositional and erosional morphologies, Miocene Utsira formation, North Sea Basin. Mar. Geophys. Res., 22, 309–321.
    [Google Scholar]
  15. Gay, A., Lopez, M., Cochonat, P., Séranne, M., Levaché, D. & Sermondadaz, G. (2006) Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked Oligocene‐Miocene turbiditic paleochannels in the Lower Congo Basin. Mar. Geol., 226, 25–40.
    [Google Scholar]
  16. Gemmer, L., Huuse, M., Clausen, O.R. & Nielsen, S.B. (2002) Mid‐Palaeocene paleogeography of the eastern North Sea Basin: integrating geological evidence and 3D geodynamic modelling. Basin Res., 14, 329–346.
    [Google Scholar]
  17. Hamberg, L., Dam, G., Wilhelmson, C. & Ottesen, T.G. (2005) Palaeocene deep‐marine sandstone plays in the Siri Canyon, offshore Denmark‐southern Norway. In: Petroleum Geology: North‐West Europe and Global Perspectives–Proceedings of the 6th Petroleum Geology Conference (Ed. by A.G.Doré & B.A.Vining ), pp. 1185–1198. Petroleum Geology Conferences Ltd, Geological Society, London.
    [Google Scholar]
  18. Hansen, J.P.V., Clausen, O.R. & Huuse, M. (2004) 3D seismic analysis reveals the origin of ambiguous erosional features at a major sequence boundary in the eastern North Sea: near top Oligocene. In: 3D Seismic Technology – Application to the Exploration of Sedimentary Basins (Ed. by R.J.Davies , J.A.Cartwright , S.A.Stewart , M.Lappin & J.R.Underhill ), Geological Society. London, Memoir 29, 83–89.
    [Google Scholar]
  19. Haq, B.U., Hardenbol, J. & Vail, P.R. (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea‐level change. In: Sea‐Level Changes – An Integrated Approach (Ed. by C.K.Wilgus , H.Posamentier , C.A.Ross & C.G.St.C.Kendall ), Special Publication of the Society of Economic Palaeontologists and Mineralogists 42, 71–108.
    [Google Scholar]
  20. Heggland, R. (1998) Gas seepage as an indicator of deeper prospective reservoirs. A study based on exploration 3D seismic data. Mar. Petrol. Geol., 15, 1–9.
    [Google Scholar]
  21. Hovland, M. (1981) Characteristics of pockmarks in the Norwegian Trench. Mar. Geol., 39, 103–117.
    [Google Scholar]
  22. Hovland, M. (1982) Pockmarks and the recent geology of the central section of the Norwegian Trench. Mar. Geol., 47, 283–301.
    [Google Scholar]
  23. Hovland, M. (1983) Elongated depressions associated with pockmarks in the western slope of the Norwegian Trench. Mar. Geol., 51, 35–46.
    [Google Scholar]
  24. Hovland, M. (1985) Characteristics of two natural gas seepages in the North Sea. Mar. Petrol. Geol., 2, 319–326.
    [Google Scholar]
  25. Hovland, M., Gardner, J.V. & Judd, A.G. (2002) The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids, 2, 127–136.
    [Google Scholar]
  26. Hovland, M. & Judd, A.G. (1988) Seabed Pockmarks and Seepages Impact on Geology, Biology and the Marine environment. Graham & Trotman, London, 293pp.
    [Google Scholar]
  27. Hovland, M., Svensen, H., Forsberg, C.F., Johansen, H., Fichler, C., Fosså, J.H., Jonsson, R. & Rueslåtten, H. (2005) Complex pockmarks with carbonate‐ridges off mid‐Norway: products of sediment degassing. Mar. Geol., 218, 191–206.
    [Google Scholar]
  28. Huuse, M. (2002) Late Cenozoic paleogeography of the eastern North Sea Basin: climatic vs tectonic forcing of basin margin uplift and deltaic progradation. Bull. Geol. Soc. Denmark, 49, 145–170.
    [Google Scholar]
  29. Huuse, M. & Clausen, O.R. (2001) Morphology and origin of major Cenozoic sequence boundaries in the eastern North Sea Basin: top Eocene, near-top Oligocene and the mid-Miocene unconformity. Basin Res., 13, 17–41.
    [Google Scholar]
  30. Huuse, M., Lykke‐Andersen, H. & Michelsen, O. (2001) Cenozoic evolution of the eastern Danish North Sea. Mar. Geol., 177, 243–269.
    [Google Scholar]
  31. Hübscher, C. & Borowski, C. (2006) Seismic evidence for fluid escape from Mesozoic cuesta type topography in the Skagerrak. Mar. Petrol. Geol., 23, 17–28.
    [Google Scholar]
  32. Josenhans, H.W., King, L.H. & Fader, G.B.J. (1978) A side‐scan sonar mosaic of pockmarks on the Scotian Shelf. Can. J. Earth Sci., 15, 831–840.
    [Google Scholar]
  33. Judd, A. & Hovland, M. (2007) Seabed Fluid Flow – The Impact on Geology, Biology and the Marine Environment. Cambridge University Press, New York, 475pp.
    [Google Scholar]
  34. Kelley, J.T., Dickson, S.M., Belknap, D.F., Barnhardt, W.A. & Henderson, M. (1994) Giant sea‐bed pockmarks: evidence for gas escape from Belfast Bay, Maine. Geology, 22, 59–62.
    [Google Scholar]
  35. King, C. (1983) Cainozoic micropalaeontological biostratigraphy of the North Sea: Reports of the Institute of Geological Sciences UK, 82, 40pp.
  36. King, C. (1989) Cenozoic of the North Sea. In: Stratigraphical Atlas of Fossil Foraminifera 2/e (Ed. by D.G.Jenkins & J.W.Murray ) Ellis Horwood Limited, Chichester, pp. 418–489.
    [Google Scholar]
  37. King, L.H. & MacLean, B. (1970) Pockmarks on the Scotian Shelf. Geol. Soc. Am. Bull., 81, 3141–3148.
    [Google Scholar]
  38. Konradi, P.B., Laursen, G.V. & Bidstrup, T. (1995) Seismic stratigraphy and foraminiferal biofacies in a profile into the Central Trough, North Sea. Report No. 8, EFP‐92 project: Basin development of the Tertiary of the Central Trough with emphasis on possible hydrocarbon reservoirs. Department of Earth Sciences, Aarhus University and Geological Survey of Denmark.
  39. Korstgård, J.A, Lerche, I., Mogensen, T.E. & Thomsen, R.O. (1993) Salt and fault interactions in the northeastern Danish Central Graben: observations and interferences. Bull. Geol. Soc. Denmark, 40 (part 3–4), 197–255.
    [Google Scholar]
  40. Kristofferson, F.N. & Bang, I. (1982) Cenozoic excl. Danian limestone. In: Geology of the Danish Central Graben (Ed. by O.Michelsen ), Geological Survey of Denmark, Series B, 8, Chapter 3.7, pp. 62–71.
    [Google Scholar]
  41. Kubala, M., Bastow, M., Thompson, S., Scotchman, I. & Oygard, K. (2003) Geothermal regime, Petroleum generation and Migration. In: The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (Ed. by D.Evans , C.Graham , A.Armour & P.Bathurst ), pp. 289–315. The Geological Society of London, London.
    [Google Scholar]
  42. Kvenvolden, K.A. & Claypool, G.E. (1988) Gas Hydrates in Oceanic Sediment. U.S. Geological Survey, Open‐File Report 88–216, 50pp.
  43. Laursen, G.V., Konradi, P.B. & Bidstrup, T. (1997) Foraminiferal and seismic interpretations of the paleoenvironment of a profile in the North Sea. Bull. Soc. Géol. France, 168, 187–196.
    [Google Scholar]
  44. Loncke, L. & Mascle, J.Fanil Scientific Parties (2004) Mud volcanoes, gas chimneys, pockmarks and mounds in the Nile deep‐sea fan (eastern Mediterranean): geophysical evidences. Mar. Petrol. Geol., 21, 669–689.
    [Google Scholar]
  45. Michelsen, O., Thomsen, E., Danielsen, M., Heilmann‐Clausen, C., Jordt, H. & Laursen, G. (1998) Cenozoic sequence stratigraphy in the eastern North Sea. In: Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (Ed. by P.C.De Graciansky , T.Jacqiun & P.R.Vail ), SEPM Spec. Publ . 60 (pp. 91–118.
    [Google Scholar]
  46. Miller, K.G., Fairbanks, R.G. & Mountain, G.S. (1987) Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography, 2, 1–19.
    [Google Scholar]
  47. Miller, K.G., Mountain, G.S., Browning, J.V., Kominz, M., Sugarman, P.J., Christie‐Blick, N., Katz, M.E. & Wright, J.D. (1998) Cenozoic global sea level, sequences, and the New Jersey Transect: results from coastal plain and continental slope drilling. Rev. Geophys., 36, 569–601.
    [Google Scholar]
  48. Mitchum, R.M., Vail, P.R. & Sangree, J.B. (1977) Seismic stratigraphy and global changes of sea level, Part 6: stratigraphic interpretation of seismic reflection pattern in depositional sequences. In: Seismic stratigraphy–applications to hydrocarbon exploration. AAPG, Memoir 26 (pp. 117–133.
  49. Moss, B., Barson, D., Rakhit, K., Dennis, H. & Swarbrick, R. (2003) Formation pore pressures and formation waters. In: The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (Ed. by D.Evans , C.Graham , A.Armour & P.Bathurst ), pp. 317–329. The Geological Society of London, London.
    [Google Scholar]
  50. Nielsen, L.H. & Japsen, P. (1991) Deep wells in Denmark 1935–1990 – Lithostratigraphic subdivision. Geological Survey of Denmark, Series A, 31, 179pp.
  51. Nielsen, O.B., Sørensen, S., Thiede, J. & Skarbø, O. (1986) Cenozoic differential subsidence of North Sea. AAPG Bull., 70, 276–298.
    [Google Scholar]
  52. Nielsen, S.B., Stephenson, R. & Thomsen, E. (2007) Dynamics of mid‐Palaeocene North Atlantic rifting linked with European intra‐plate deformations. Nature, 450, 1071–1074.
    [Google Scholar]
  53. Nielsen, S.B., Thomsen, E., Hansen, D.L. & Clausen, O.R. (2005) Plate‐wide stress relaxation explains European Paleocene basin inversions. Nature, 435, 195–198.
    [Google Scholar]
  54. Ohm, S.E., Karlsen, D.A., Roberts, A., Johannessen, E. & Høiland, O. (2006) The Palaeocene sandy Siri Fairway: an efficient ‘pipeline’ draining the prolific Central Graben? J. Petrol. Geol., 29, 53–82.
    [Google Scholar]
  55. Osborne, M.J. & Swarbrick, R.E. (1997) Mechanism for generating overpressure in sedimentary basins; a re‐evaluation. AAPG Bull., 81, 1023–1041.
    [Google Scholar]
  56. Paull, C.K., Hecker, B., Commeau, R., Freeman‐Lynde, R.P., Neumann, C., Corso, W.P., Golubic, S., Hook, J.E., Sikes, E. & Curray, J. (1984) Biological communities at the Florida Escarpment resemble hydrothermal vent taxa. Science, 226, 965–967.
    [Google Scholar]
  57. Paull, C.K., Ussler, W.III., Borowski, W.S. & Speiss, F.N. (1995) Methane‐rich plumes on the Carolina continental rise: associations with gas hydrates. Geology, 23 (issue 1), 9–92.
    [Google Scholar]
  58. Paull, C., Ussler, W.III., Maher, N., Greene, H.G., Rehder, G., Lorenson, T. & Lee, H. (2002) Pockmarks of Big Sur, California. Mar. Geol., 181, 323–335.
    [Google Scholar]
  59. Prior, D.B., Doyle, E.H. & Kaluza, M.J. (1989) Evidence for sediment eruption on deep sea floor, Gulf of Mexico. Science, New Series, 243 (4890), 517–519.
    [Google Scholar]
  60. Rasmussen, E.S. (2005) The geology of the upper Middle‐Upper Miocene gram formation in the Danish area. Paleontos, 7, 5–18.
    [Google Scholar]
  61. Rasmussen, E.S., Vejbæk, O.V., Bidstrup, T., Piasecki, S. & Dybkjær, K. (2005) Late Cenozoic depositional history of the Danish North Sea Basin: implications for the petroleum systems in the Kraka, Halfdan, Siri and Nini fields. In: Petroleum Geology: North‐West Europe and Global Perspectives – Proceedings of the 6th Petroleum Geology Conference (Ed. by A.G.Doré & B.A.Vining ), pp. 1347–1358. Petroleum Geology Conferences Ltd. Geological Society, London.
    [Google Scholar]
  62. Rise, L., Sættem, J., Fanavoll, S., Thorsnes, T., Ottesen, D. & Bøe, R. (1999) Sea‐bed pockmarks related to fluid migration from Mesozoic bedrock strata in the Skagerrak offshore Norway. Mar. Petrol. Geol., 16, 619–631.
    [Google Scholar]
  63. Roberts, H.H., Hardage, B.A., Shedd, W.W. & Hunt, J.Jr. (2006) Seafloor reflectivity – An important seismic property for interpreting fluid/gas expulsion geology and the presence of gas hydrate. Leading Edge, 25 (Issue 5), 620–628.
    [Google Scholar]
  64. Schiøler, P., Andsbjerg, J., Clausen, O.R., Dam, G., Dybkjær, K., Hamberg, L., Heilmann‐Clausen, C., Johannessen, E.P., Kristensen, L.E., Prince, I. & Rasmussen, J.A. (2007) Lithostratigraphy of the Palaeogene – Lower Neogene succession of the Danish North Sea. Geol. Sur. Denmark Greenland Bull., 12, 1–77.
    [Google Scholar]
  65. Schroot, B.M., Klaver, G.T. & Schüttenhelm, R.T.E. (2005) Surface and subsurface expressions of gas seepage to the seabed–examples from the Southern North Sea. Mar. Petrol. Geol., 22, 499–515.
    [Google Scholar]
  66. Sørensen, J.C., Gregersen, U., Breiner, M. & Michelsen, O. (1997) High‐frequency sequence stratigraphy of Upper Cenozoic deposits in the central and southeastern North Sea areas. Mar. Petrol. Geol., 14, 99–123.
    [Google Scholar]
  67. Sørensen, J.C & Michelsen, O. (1995) Upper Cenozoic sequences in the southeastern North Sea Basin. Bull. Geol. Soc. Denmark, 42, 74–95.
    [Google Scholar]
  68. Stewart, S.A. (1999) Seismic Interpretation of circular geological structures. Petrol. Geosci., 5, 273–285.
    [Google Scholar]
  69. Stuevold, L.M. & Eldholm, O. (1996) Cenozoic uplift of Fennoscandia inferred from a study of the mid‐Norwegian margin. Global Planet. Change, 12, 359–386.
    [Google Scholar]
  70. Sumida, P.Y.G., Yoshinaga, M.Y., Madureira, L.A.S. & Hovland, M. (2004) Seabed pockmarks associated with deepwater corals off SE Brazilian continental slope, Santos Basin. Mar. Geol., 207, 159–167.
    [Google Scholar]
  71. Surlyk, F., Dons, T., Clausen, C.K. & Higham, J. (2003) Upper Cretaceous. In: The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (Ed. by D.Evans , C.Graham , A.Armour & P.Bathurst ), pp. 213–233. The Geological Society of London, London.
    [Google Scholar]
  72. Ussler, W.III., Paull, C.K., Boucher, J., Friederich, G.E. & Thomas, D.J. (2003) Submarine pockmarks: a case study from Belfast Bay, Maine. Mar. Geol., 202, 175–192.
    [Google Scholar]
  73. Vejbæk, O.V. & Andersen, C. (2002) Post mid‐Cretaceous inversion tectonics in the Danish Central Graben–regionally synchronous tectonic events?Bull. Geol. Soc. Denmark, 49, 139–144.
    [Google Scholar]
  74. Ziegler, P.A. (1990) Geological Atlas of Western and Central Europe. Shell Internationale Petroleum Maatschappij BV, The Hague, 239pp.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2008.00362.x
Loading
/content/journals/10.1111/j.1365-2117.2008.00362.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error