1887
Volume 21, Issue 1
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

A novel inverse modelling method is applied to the problem of constraining the environmental parameters (e.g. relative sea level, sediment supply) that control stratigraphic architecture. This technique links forward modelling of shallow‐marine wave/storm‐dominated stratigraphy to a combination of inverse methods formulated in a Bayesian framework. We present a number of examples in which relative sea‐level and sediment‐supply curves were inferred from synthetic vertical successions of grain size (e.g. wells) and synthetic thickness curves (e.g. seismically derived isopachs) extracted from a forward model simulation. These examples represent different scenarios that are designed to test the impact of data distribution, quantity and quality on the uncertainty of the inferred parameters. The inverse modelling approach successfully reproduces the gross stratigraphic architectures and relative sea level and sediment‐supply histories of the synthetic forward model simulation, within the constraints of the modelled data quality. The relative importance of the forcing parameters can be evaluated by their sensitivity and impact on the inverted data. Of equal importance, the inverse results allow complete characterisation of the uncertainties inherent to the stratigraphic modelling tool and to the data quality, quantity and distribution. The numerical scheme also successfully deals with the problem of non‐uniqueness of the solution of the inverse problem. These preliminary results suggest that the inverse method is a powerful tool in constraining stratigraphic architecture for hydrocarbon reservoir characterisation and modelling, and it may ultimately provide a process‐based geological complement to standard geostatistical tools.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2008.00370.x
2008-08-06
2020-07-05
Loading full text...

Full text loading...

References

  1. Ballester, P.J. & Carter, J.N. (2004) An Algorithm to Identify Clusters of Solutions in Multi‐Modal Optimisation. Lectures Notes in Computer Science, 3059. Springer, Berlin, pp. 42–56.
    [Google Scholar]
  2. Bernardo, J. & Smith, A.F.M. (1994) Bayesian Theory. John Wiley and Sons, Ltd., Chichester.
    [Google Scholar]
  3. Bornholdt, S., Nordlund, U. & Westphal, H. (1999) Inverse stratigraphic modelling using genetic algorithms. In: Numerical Experiments in Stratigraphy: Recent Advances in Stratigraphic and Sedimentologic Computer Simulations (Ed. by J.Harbaugh , W.Watney , E.Rankey , R.Slingerland , R.Goldstein & E.Franseen ), SEPM Spec. Publ. , 62, 85–90.
    [Google Scholar]
  4. Bowman, S.A. & Vail, P.R. (1999) Interpreting the stratigraphy of the Baltimore canyon Section, offshore New Jersey with PHIL, a stratigraphic simulator. In: Numerical Experiments in Stratigraphy: Recent Advances in Stratigraphic and Sedimentologic Computer Simulations (Ed. by J.Harbaugh , W.Watney , E.Rankey , R.Slingerland , R.Goldstein & E.Franseen ), SEPM Spec. Publ. , 62, 117–138.
    [Google Scholar]
  5. Boyd, R., Dalrymple, R. & Zaitlin, B.A. (1992) Classification of clastic coastal depositional environments. Sediment. Geol., 80, 139–150.
    [Google Scholar]
  6. Brooks, S.P., Giudici, P. & Roberts, G.O. (2003) Efficient construction of reversible jump Markov chain Monte Carlo proposal distribution. J. R. Stat. Soc., Ser. B90 J. Stat. Methodol., 65, 3–39.
    [Google Scholar]
  7. Burgess, P.M., Lammers, H., Van Oosterhout, C. & Granjeon, D. (2006) Multivariate sequence stratigraphy: tackling complexity and uncertainty with stratigraphic forward modelling, multiple scenarios, and conditional frequency maps. AAPG Bull., 90 (12), 1883–1901.
    [Google Scholar]
  8. Cant, D.J. (1991) Geometric modelling of facies migration: theoretical development of facies successions and local unconformities. Basin Res., 3, 51–62.
    [Google Scholar]
  9. Charvin, K., Gallagher, K.L., Hampson, G. & Labourdette, R. (2008) A Bayesian approach to inverse modeling of stratigraphy, part I: method. Basin Research, in press, doi:DOI: 10.1111/j.1365-2117.2008.00369.x
  10. Clevis, Q.J.W.A., De Boer, P.L. & Nijman, W. (2004) Differentiating the effect of episodic tectonism and eustatic sea‐level fluctuations in foreland basins filled by alluvial fans and axial deltaic systems: insights from a three-dimensional stratigraphic forward model. Sedimentology, 51 (4), 809–835.
    [Google Scholar]
  11. Cross, T. & Lessenger, M. (1999) Construction and application of stratigraphic inverse model. In: Numerical Experiments in Stratigraphy: Recent Advances in Stratigraphic and Sedimentologic Computer Simulations (Ed. by J.Harbaugh , W.Watney , E.Rankey , R.Slingerland , R.Goldstein & E.Franseen ), SEPM Spec. Publ. , 62, 69–83.
    [Google Scholar]
  12. DavisJr., R.A. & Hayes, M.O. (1984) What is a wave‐dominated coast? In: Hydrodynamics and Sedimentation in Wave‐Dominated Coastal Environments (Ed. by B.Greenwood & R.A.DavisJr. ), Mar. Geol. , 60, 313–329.
    [Google Scholar]
  13. Den Bezemer, T., Kooi, H. & Cloetingh, S. (1999) Numerical modeling of fault‐related sedimentation. In: Numerical Experiments in Stratigraphy: Recent Advances in Stratigraphic and Sedimentologic Computer Simulations (Ed. by J.Harbaugh , W.Watney , E.Rankey , R.Slingerland , R.Goldstein & E.Franseen ), SEPM Spec. Publ., 62, 177–196.
    [Google Scholar]
  14. Denison, D.G.T., Holmes, C.C., Mallick, B.K. & Smith, A.F.M. (2002) Bayesian Methods for Nonlinear Classification and Regression. Wiley, Chichester.
    [Google Scholar]
  15. Deutsch, C.V. (2002) Geostatistical Reservoir Modeling (Applied Geostatistics). Oxford University Press, Oxford, 384pp.
    [Google Scholar]
  16. Dominguez, J.M.L., Martin, L. & Bittencourt, A.C.S.P. (1987) Sea‐level history and Quaternary evolution of river mouth‐associated beach‐ridge plains along the east‐southeast Brazilian Coast: a summary. In: Sea‐Level Fluctuation and Coastal Evolution (Ed. by D.Nummedal , O.H.Pilkey , J.D.Howard & W.A.Price ) SEPM Spec. Publ. , 41, 115–127.
    [Google Scholar]
  17. Dott, R.H. & Bourgeois, J. (1982) Hummocky stratification: significance of its variable bedding sequences. Geol. Soc. Am. Bull., 93, 663–680.
    [Google Scholar]
  18. Elliott, T. (1986) Clastic shorelines. In: Sedimentary Environments and Facies (Ed. by H.G.Reading ), pp. 143–177. Blackwell Scientific Publications, Oxford.
    [Google Scholar]
  19. Flemings, P.B. & Grotzinger, J.P. (1996) STRATA: freeware for analyzing classic stratigraphy problems. GSA Today, 6 (12), 1–7.
    [Google Scholar]
  20. Galloway, W.E. (1989) Genetic stratigraphy sequences in basin analysis 1: architecture and genesis of flooding-surface bounded depositional units. AAPG Bull., 73, 125–142.
    [Google Scholar]
  21. Geyer, C.J. & Thompson, E.A. (1995) Annealing Markov chain Monte Carlo with applications to ancestral inference. J. Am. Statist. Assoc., 90, 909–920.
    [Google Scholar]
  22. Gilks, W.R., Richardson, S. & Spiegelhalter, D.J. (1996) Markov Chain Monte Carlo in Practice. Chapman & Hall, London, UK.
    [Google Scholar]
  23. Granjeon, D. & Joseph, P. (1999) Concepts and applications of a 3‐D multiple lithology, diffusive model in stratigraphic modeling. In: Numerical Experiments in Stratigraphy: Recent Advances in Stratigraphic and Sedimentologic Computer Simulations (Ed. by J.Harbaugh , W.Watney , E.Rankey , R.Slingerland , R.Goldstein & E.Franseen ), SEPM Spec. Publ., 62, 197–210.
    [Google Scholar]
  24. Green, P.J. (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82 (4), 711–732.
    [Google Scholar]
  25. Griffiths, C.M., Dyt, C., Paraschivoiu, E. & Liu, K. (2001) Sedsim in hydrocarbon exploration. In: Geologic Modeling and Simulation (Ed. by D.Merriam & J.C.Davis ), pp. 71–97. Kluwer Academic, New York.
    [Google Scholar]
  26. Guillen, J. & Hoekstra, P. (1996) The “equilibrium” distribution of grain size fractions and its implications for cross‐shore sediment transport: a conceptual model. Mar. Geol., 135, 15–33.
    [Google Scholar]
  27. Hampson, G.J. & Howell, J.A. (2005) Sedimentologic and geomorphic characterization of ancient wave‐dominated shorelines: examples from the Late Cretaceous Blackhawk Formation, Book Cliffs, Utah. In: Deltas Old and New (Ed. by J.P.Bhattacharya & L.Giosan ), SEPM Spec. Publ., 83, 133–154.
    [Google Scholar]
  28. Hampson, G.J. & Storms, J.E.A. (2003) Geometric and sequence stratigraphic variability in wave‐dominated, shoreface‐shelf parasequences. Sedimentology, 50, 667–701.
    [Google Scholar]
  29. Hampson, G.J. (2000) Discontinuity surfaces, clinoforms, and facies architecture in wave dominated, shoreface‐shelf parasequence. J. Sediment. Res., 70 (2), 325–340.
    [Google Scholar]
  30. Hastings, W.K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109.
    [Google Scholar]
  31. Heward, P. (1981) A review of wave‐dominated clastic shoreline deposits. Earth Sci. Rev., 17, 223–276.
    [Google Scholar]
  32. Houston, W.S., Hunton, J.E. & Kamola, D.L. (2000) Modelling of Cretaceous foreland‐basin parasequences, Utah, with implications for timing Servier thrusting. Geology, 28, 267–270.
    [Google Scholar]
  33. Lessenger, M. & Cross, T.A. (1996) Is stratigraphic inversion possible?Energy Explor. Exploit., 14 (6), 627–637.
    [Google Scholar]
  34. Malinverno, A. (2002) Parsimonious Bayesian Markov chain Monte Carlo inversion in a non linear geophysical problem, Geophys. J. Int., 151, 675–688.
    [Google Scholar]
  35. Marinari, E. & Parisi, G. (1992) Simulated tempering: a new Monte Carlo scheme. Europhys. Lett., 19, 451–458.
    [Google Scholar]
  36. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. & Teller, E. (1953) Equations of state calculations by fast computing machines. J. Chem. Phys., 21, 1087–91.
    [Google Scholar]
  37. Miall, A.D. (1986) Eustatic sea level changes interpreted from seismic stratigraphy: a critique of the methodology with particular reference to the North Sea Jurassic Record. AAPG Bull., 70, 131–137.
    [Google Scholar]
  38. Moretti, I. & Turcotte, D.L. (1985) A model for erosion, sedimentation and flexure with applications to New Caledonia. J. Geodyn., 3, 155–168.
    [Google Scholar]
  39. Mosegaard, K. & Sambridge, M. (2002) Monte Carlo analysis of inverse problems. Inverse Probl., 18, R29–R54.
    [Google Scholar]
  40. Mosegaard, K. & Tarantola, A. (1995) Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res., 100 (B7), 12431–12447.
    [Google Scholar]
  41. Muto, T., Steel, R.J. & Swenson J, B. (2007) Autostratigraphy: a framework norm for genetic stratigraphy. J. Sediment. Res., 77, 2–12.
    [Google Scholar]
  42. Niedoroda, A. & Kravitz, J.H. (1996) STRATAFORM: a program to study the creation and interpretation of sedimentary strata on continental margin. Oceanorgraphy, 9 (3), 146–152.
    [Google Scholar]
  43. Niedoroda, A.M., Reed, C.W., Swift, D.J.P., Arata, H. & Hoyanagi, K. (1995) Modeling shore‐normal large‐scale coastal evolution. Mar. Geol., 126, 181–199.
    [Google Scholar]
  44. Paola, C. (2000) Quantitative models of sedimentary basin filling. Sedimentology, 47 (Suppl. 1), 121–178.
    [Google Scholar]
  45. Posamentier, H.W., Allen, G.P., James, D.P. & Tesson, M. (1992) Forced regressions in a sequence stratigraphic framework: concepts, examples, and exploration significance. Am. Assoc. Petrol. Geol. Bull., 76, 1687–1709.
    [Google Scholar]
  46. Rivanaes, J.C. (1992) Application of a dual lithology, depth‐dependent diffusion equation in stratigraphic simulation. Basin Res., 4, 133–146. Blackwell Sciences Ltd.
    [Google Scholar]
  47. Saltelli, A., Chan, K. & Scott, M. (2000) Sensitivity Analysis. John Wiley and Sons Limited, Chichester, 475pp.
    [Google Scholar]
  48. Steckler, M.S., Reynolds, D.J., Coakley, B.J., Swift, B.A. & Jarrad, R.D. (1993) Modeling passive margin sequence stratigraphy. In: Sequence Stratigraphy and Facies Associations (Ed. by H.W.Posamentier , C.P.Summerhayes , B.U.Haq & G.P.Allen ), Int. Assoc. Sedimentol. Spec. Publ. , 18, 19–41.
    [Google Scholar]
  49. Storms, J.E.A. (2003) Simulating event‐based shallow marine deposition over geological timescales. Mar. Geol., 199, 83–100.
    [Google Scholar]
  50. Storms, J.E.A. & Swift, D.J.P. (2003) Shallow marine sequences as the building blocks of stratigraphy: insights from numerical modelling. Basin Res., 15, 287–303.
    [Google Scholar]
  51. Storms, J.E.A., Weltje, G.J., Van Dijke, J.J., Geel, C.R. & Kroonenberg, S.B. (2002) Process‐response modeling of wave‐dominated coastal systems: simulating evolution and stratigraphy on geological time scales. J. Sediment. Res., 72 (2), 226–239.
    [Google Scholar]
  52. Tarantola, A. (2005) Inverse Problem Theory and Methods for Models Parameter Estimation. SIAM, Philadelphia, 342pp.
    [Google Scholar]
  53. Tetzlaff, D.M. & Harbaugh, J.W. (1989) Simulating Clastic Sedimentation. Van Nostrand Reinhold, New York.
    [Google Scholar]
  54. Vail, P.R., Audmard, F., Bowman, S.A., Eisner, P.N. & Perez‐Cruz, G. (1991) The stratigraphic signature of tectonics, eustarys and sedimentology. In: Cycles and Events in Stratigraphy (Ed. by G.Einsele , W.Rickeng & A.Sielacher ). Springer‐Verlag, Berlin, Heidelberg.
  55. Vail, P.R., Mitchum, R.M.Jr. & Thompson, S.III (1977) Seismic stratigraphy and global changes of sea level, part 4: global cycles of relative changes of sea level. In: Seismic Stratigraphy‐Applications to Hydrocarbon Exploration (Ed. by C.E.Payton ), AAPG Mem., 26, 83–97.
    [Google Scholar]
  56. Van Wagoner, J.C., Mitchum, R.M., Campion, K.M. & Rahmanian, V.D. (1990) Siliciclastic Sequence Stratigraphy in Well Logs, Cores, and Outcrops: Concepts for High‐Resolution Correlation of Time and Facies. AAPG Methods in Exploration, 7, 55pp.
  57. Walker, R.G. & Plint, A.G. (1992) Wave and storm‐dominated shallow marine systems. In: Facies Models; Response to Sea‐Level Change (Ed. by R.G.Walker & N.P.James ), pp. 219–238. Geological Association of Canada, St. John's, Newfoundland.
    [Google Scholar]
  58. Wendebourg, J. (2002) Uncertainty of petroleum generation using methods of experimental design and response surface modelling: application to the Gippsland Basin, Australia. In: Multidimensional Basin Modeling (Ed. by R.Marzi & S.Duppenbecker ), AAPG Datapages Discov. Ser. , 7, 1–13.
    [Google Scholar]
  59. Wijns, C., Poulet, T., Boschetti, F., Dyt, C. & Griffiths, C.M. (2004) Interactive inverse methodology applied to stratigraphic forward modelling. In: Geological Prior Information Informing Science and Engineering (Ed. by A.Curtis & R.Wood ), Geol. Soc. Lond. Spec. Publ., 239, 147–156.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2008.00370.x
Loading
/content/journals/10.1111/j.1365-2117.2008.00370.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error