1887
Volume 22, Issue 5
  • E-ISSN: 1365-2117

Abstract

ABSTRACT

An integrated provenance analysis of the Upper Cretaceous Magallanes retroarc foreland basin of southern Chile (50°30′–52°S) provides new constraints on source area evolution, regional patterns of sediment dispersal and depositional age. Over 450 new single‐grain detrital‐zircon U‐Pb ages, which are integrated with sandstone petrographic and mudstone geochemical data, provide a comprehensive detrital record of the northern Magallanes foreland basin‐filling succession (>4000‐m‐thick). Prominent peaks in detrital‐zircon age distribution among the Punta Barrosa, Cerro Toro, Tres Pasos and Dorotea Formations indicate that the incorporation and exhumation of Upper Jurassic igneous rocks (. 147–155 Ma) into the Andean fold‐thrust belt was established in the Santonian (. 85 Ma) and was a significant source of detritus to the basin by the Maastrichtian (. 70 Ma). Sandstone compositional trends indicate an increase in volcanic and volcaniclastic grains upward through the basin fill corroborating the interpretation of an unroofing sequence. Detrital‐zircon ages indicate that the Magallanes foredeep received young arc‐derived detritus throughout its . 20 m.y. filling history, constraining the timing of basin‐filling phases previously based only on biostratigraphy. Additionally, spatial patterns of detrital‐zircon ages in the Tres Pasos and Dorotea Formations support interpretations that they are genetically linked depositional systems, thus demonstrating the utility of provenance indicators for evaluating stratigraphic relationships of diachronous lithostratigraphic units. This integrated provenance dataset highlights how the sedimentary fill of the Magallanes basin is unique among other retroarc foreland basins and from the well‐studied Andean foreland basins farther north, which is attributed to nature of the predecessor rift and backarc basin.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2009.00443.x
2010-09-03
2024-04-26
Loading full text...

Full text loading...

References

  1. Alabaster, T. & Storey, B.C. (1990) Modified Gulf of California model for South Georgia, north Scotia Ridge, and implications for the Rocas Verdes back‐arc basin, southern Andes. Geology, 18, 497–500.
    [Google Scholar]
  2. Allen, R.B. (1982) Geología de la Cordillera Sarmiento, Andes Patagónicos, entre los 50°00′ y 52°15′ Lat. S, Magallanes, Chile. Serv. Nac. Geol. Miner. Chile, Bol. (Inst. Estud. Pobl. Desarrollo [Dominican Republic]), 38, 1–46.
    [Google Scholar]
  3. Allen, R.B. (1983) Geologic studies of the Scotia arc region and Agulhas Plateau (Chile, Antarctica, Indian Ocean). PhD Thesis, Columbia University, New York, New York, 239pp.
  4. Amidon, W.H., Burbank, D.W. & Gehrels, G.E. (2005) Construction of detrital mineral populations: insights from mixing of U–Pb zircon ages in Himalayan rivers. Basin Res., 17, 463–485.
    [Google Scholar]
  5. Arbe, H.A. & Hechem, J.J. (1985) Estratigrafía y facies de depósitos marinos profundos del Cretácico Superior, Lago Argentino, Provincia de Santa Cruz. (Stratigraphy and deep marine deposition facies of the Upper Cretaceous, Lago Argentino, Santa Cruz). Act. Congres. Geol. Argent., 9, 7–41.
    [Google Scholar]
  6. Armitage, D.A., Romans, B.W., Covault, J.A. & Graham, S.A. (2009) The influence of mass transport deposit surface topography on the evolution of turbidite architecture: the Sierra Contreras, Tres Pasos Formation (Cretaceous), southern Chile. J. Sediment. Res., 79, 287–301.
    [Google Scholar]
  7. Augustsson, C., Münker, C., Bahlbrug, H. & Fanning, C.M. (2006) Provenance of late Paleozoic metasediments of the SW South American Gondwanan margin: a combined U–Pb and Hf-isotope study of single detrital zircons. J. Geol. Soc., 163, 983–995.
    [Google Scholar]
  8. Barbeau, D.L.Jr., Ducea, M.N., Gehrels, G.E., Kidder, S., Wetmore, P.H. & Saleeby, J.B. (2005) U–Pb detrital‐zircon geochronology of northern Salinian basement and cover rocks. Geol. Soc. Am. Bull., 117, 466–481.
    [Google Scholar]
  9. Barbeau, D.L.Jr., Olivero, E.B., Swanson‐Hysell, N.L., Zahid, K.M., Murray, K.E. & Gehrels, G.E.Detrital‐zircon geochronology of the eastern Magallanes foreland basin: Implications for Eocene kinematics of the northern Scotia Arc and Drake Passage. Earth and Planetary Science Letters, 284, 489–503.
    [Google Scholar]
  10. Bhatia, M.R. (1985) Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control. Sediment. Geol., 45, 97–113.
    [Google Scholar]
  11. Biddle, K.T., Uliana, M.A., Mitchum, R.M.Jr., Fitzgerald, M.G. & Wright, R.C. (1986) The stratigraphic and structural evolution of the central and eastern Magallanes Basin, southern South America. In: Foreland Basins ((Ed. by P.AAllen & P.Homewood ), pp. 41–63. Blackwell, Oxford, International Association of Sedimentologists Special Publications.
    [Google Scholar]
  12. Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbel, I.H., Korsch, R.J., Williams, I.S. & Foudoulis, C. (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace‐element related matrix effect; SHRIMP, ID‐TIMS, ELA‐ICP‐MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol., 205, 115–140.
    [Google Scholar]
  13. Boynton, W. (1984) Geochemistry of the rare earth elements: meteorite studies. In: Rare Earth Elements Geochemistry (Ed. by P.Henderson ), pp. 63–114. Elsevier, Amsterdam.
    [Google Scholar]
  14. Bruce, R.M., Nelson, E.P., Weaver, S.G. & Lux, D.R. (1991) Temporal and spatial variation in the southern Patagonian batholith: constraints on magmatic arc development. In: Andean Magmatism and its Tectonic Setting (Ed. by R.S.Harmon & C.W.Rapela ), Geol. Soc. Am. Spec. Pap., 265, 1–12.
    [Google Scholar]
  15. Bruhn, R.L. & Dalziel, I.W.D. (1977) Destruction of the Early Cretaceous marginal basin in the Andes of Tierra del Fuego. In: Island Arcs, Deep Sea Trenches, and Back‐arc Basins (Ed. by M.Talwani & W.C.PitmanIII ), Am. Geophys. Union, Maurice Ewing Ser., 1, 395–405.
    [Google Scholar]
  16. Bruhn, R.L., Stern, C.R. & De Wit, M.J. (1978) Field and geochemical data bearing on the development of a Mesozoic volcano‐tectonic rift zone and back‐arc basin in southernmost South America. Earth Planet. Sci. Lett., 41, 32–46.
    [Google Scholar]
  17. Busby, C.J. & Ingersoll, R.V. (1995) Tectonics of Sedimentary Basins. Blackwell Science, Cambridge, MA.
    [Google Scholar]
  18. Calderón, M., Fildani, A., Hervé, F., Fanning, C.M., Weislogel, A. & Cordani, U. (2007) Late Jurassic bimodal magmatism in the northern sea‐floor remnant of the Rocas Verdes basin, southern Patagonian Andes. J. Geol. Soc., 164, 1011–1022.
    [Google Scholar]
  19. Cande, S.C. & Leslie, R.N. (1986) Late Cenozoic tectonics of the Southern Chile Trench. J. Geophys. Res., 91, 471–496.
    [Google Scholar]
  20. Cortés, R. (1964) Estratigrafía y un estudio de paleocorrientes del flysch Cretáceo del Depto. De Ultima Esperanza. Tesis de grado, Universidad Técnico de Estado, Santiago, Chile, 117pp.
  21. Coutand, I., Diraison, M., Cobbold, P.R., Gapais, D., Rossello, E.A. & Miller, M. (1999) Structure and kinematics of a foothills transect, Lago Viedma, southern Andes (49°30′S). J. South Am. Earth Sci., 12, 1–15.
    [Google Scholar]
  22. Covault, J.A., Romans, B.W. & Graham, S.A. (2009) Outcrop expression of a continetal‐margin‐scale shelf‐edge delta from the Cretaceous Magallanes Basin, Chile. Journal of Sedimentary Reasearch, 79, 523–539.
    [Google Scholar]
  23. Crane, W.H. (2004) Depositional history of the Upper Cretaceous Cerro Toro Formation, Silla Syncline, Magallanes Basin, Chile. PhD Thesis, Stanford University, Stanford, California, 275pp.
  24. Crane, W.H. & Lowe, D.R. (2008) Architecture and evolution of the Paine channel complex, Cerro Toro Formation (Upper Cretaceous), Silla Syncline, Magallanes Basin, Chile. Sedimentology, 55, 979–1009.
    [Google Scholar]
  25. Cunningham, W.D. (1993) Strike–slip faults in the southernmost Andes and the development of the Patagonian orocline. Tectonics, 12, 169–186.
    [Google Scholar]
  26. Dalziel, I.W.D. (1981) Back‐arc extension in the southern Andes: a review and critical reappraisal. Royal Society of London Philosophical Transactions, ser. A, 300, 319–335.
    [Google Scholar]
  27. Dalziel, I.W.D. (1986) Collision and cordilleran orogenesis: an Andean perspective. In: Collision Tectonics (Ed. by M.P.Coward & A.C.Ries ), Geol. Soc. Lond. Spec. Publ., 19, 389–404.
    [Google Scholar]
  28. Dalziel, I.W.D. & Cortés, R. (1972) Tectonic style of the southernmost Andes and the Antarctandes. XXIV Int. Geol. Congr. Section, 3, 316–327.
    [Google Scholar]
  29. Dalziel, I.W.D., De Wit, M.J. & Palmer, K.F. (1974) Fossil marginal basin in the southern Andes. Nature, 250, 291–294.
    [Google Scholar]
  30. Day, S.J. & Fletcher, W.L. (1991) Concentration of magnetite and gold at bar and reach scales in a gravel‐bed stream, British Columbia, Canada. J. Sediment. Petrol., 61, 871–882.
    [Google Scholar]
  31. Decelles, P.G. & Giles, K. (1996) Foreland basin systems. Basin Research, 8, 105–123.
    [Google Scholar]
  32. Decelles, P.G. & Horton, B.K. (2003) Early to middle Tertiary foreland basin development and the history of Andean crustal shortening in Bolivia. Geological Society of America Bulletin, 115, 58–77.
    [Google Scholar]
  33. DeCelles, P.G. & Coogan, J.C. (2006) Regional structure and kinematic history of the Sevier fold‐and‐thrust belt, central Utah. Geol. Soc. Am. Bull., 118, 841–864.
    [Google Scholar]
  34. Decelles, P.G., Carrapa, B. & Gehrels, G.E. (2007) Detrital zircon U‐Pb ages provide provenace and chronostratigraphic information from Eocene synorogenic deposist in northwestern Argentina. Geology, 35, 323–326.
    [Google Scholar]
  35. DeGraaff‐Surpless, K., Graham, S.A., Covault, J.A. & Wooden, J.L. (2006) Does the Great Valley Group contain Jurassic strata? Reevaluation of the age and early evolution of a classic forearc basin. Geology, 34, 21–24.
    [Google Scholar]
  36. DeGraaff‐Surpless, K., Graham, S.A., Wooden, J.L. & McWilliams, M.O. (2002) Detrital zircon provenance analysis of the Great Valley Group, California: evolution of an arc–forearc system. Geol. Soc. Am. Bull., 114, 1564–1580.
    [Google Scholar]
  37. Dickinson, W.R. (1974) Plate tectonics and sedimentation. In: Plate Tectonics and Sedimentation (Ed. by W.R.Dickinson ), SEPM Spec. Publ., 22, 1–27.
    [Google Scholar]
  38. Dickinson, W.R. (1976) Plate tectonic evolution of sedimentary basins. In: AAPG Continuing Education Course Notes Series 1, 62pp.
  39. Dickinson, W.R. (1985) Interpreting provenance relations from detrital modes of sandstones. In: Provenance of Arenites (Ed. by G.G.Zuffa , D.Reidel ), pp. 333–361. Dordrecht.
    [Google Scholar]
  40. Dickinson, W.R. & Gehrels, G.E. (2008) U–Pb ages of detrital zircons in relation to paleogeography: triassic paleodrainage networks and sediment dispersal across southwest Laurentia. J. Sediment. Res., 78, 745–764.
    [Google Scholar]
  41. Dickinson, W.R. & Suczek, C.A. (1979) Plate tectonics and sandstone compositions. AAPG Bull., 63, 2164–2182.
    [Google Scholar]
  42. Dodson, M.H., Compston, W., Williams, I.S. & Wilson, J.F. (1988) A search for ancient detrital zircons in Zimbabwean sediments. J. Geol Soc Lond., 145, 977–983.
    [Google Scholar]
  43. Dott, R.H., Winn, R.D.Jr. & Smith, C.H.L. (1982) Relationship of late Mesozoic and Early Cenozoic sedimentation to the tectonic evolution of the southernmost Andes and the Scotia Arc. In: Antarctic Geoscience (Ed. by C.Craddock ), 193–202. University of Wisconsin Press, Madison.
    [Google Scholar]
  44. Ducea, M.N. & Barton, M.D. (2007) Igniting flare‐up events in Cordilleran arcs. Geology, 35, 1047–1050.
    [Google Scholar]
  45. Faúndez, V., Hervé, F. & Lacassie, J.P. (2002) Provenance and depositional setting of pre‐Late Jurassic turbidite complexes in Patagonia, Chile. N Z J. Geol. Geophys., 45, 411–425.
    [Google Scholar]
  46. Fedo, C.M., Sircombe, K.N. & Rainbird, R.H. (2003) Detrital zircon analysis of the sedimentary record. In: Zircon (Ed. by J.M.Hanchar & P.W.O.Hoskin ), Rev. Mineral. Geochem., 53, 277–303.
    [Google Scholar]
  47. Féraud, G., Alric, V., Fornari, M., Bertrand, H. & Haller, M. (1999) 40Ar/39Ar dating of the Jurassic volcanic province of Patagonia: migrating magmatism related to Gondwana break-up and subduction. Earth Planet. Sci. Lett., 172, 83–96.
    [Google Scholar]
  48. Fildani, A., Cope, T.D., Graham, S.A. & Wooden, J.L. (2003) Initiation of the Magallanes foreland basin: timing of the southernmost Patagonian Andes orogeny revised by detrital zircon provenance analysis. Geology, 31, 1081–1084.
    [Google Scholar]
  49. Fildani, A. & Hessler, A.M. (2005) Stratigraphic record across a retroarc basin inversion: Rocas Verdes–Magallanes Basin, Patagonian Andes. Geol. Soc. Am. Bull., 117, 1596–1614.
    [Google Scholar]
  50. Fildani, A., Romans, B.W., Fosdick, J.F., Crane, W.H. & Hubbard, S.M. (2008) Orogenesis of the Patagonian Andes as reflected by basin evolution in southernmost South America. In: Circum‐Pacific Tectonics, Geologic Evolution, and Ore Deposits (Ed. by J.E.Spencer & S.R.Titley ), Arizona Geol. Soc. Dig., 22, 259–268.
    [Google Scholar]
  51. Fildani, A., Hubbard, S.M. & Romans, B.W. (2009) Stratigraphic evolution of deep‐water architecture: Examples of controls and depositional styles from the Magallanes Basin, southern Chile. SEPM Field Trip Guidebook, 10, 73 pp.
  52. Fleet, A.J. (1984) Aqueous and sedimentary geochemistry of the rare earth elements. In: Rare Earth Element Geochemistry (Ed. by P.Henderson ), pp. 343–373. Elsevier, Amsterdam.
    [Google Scholar]
  53. Folk, R.L. (1980) Petrology of Sedimentary Rocks. Hemphill Publishing, Austin, TX.
    [Google Scholar]
  54. Forsythe, R., Dalziel, I.W., Mpodozis, C., Hall, B. & Barrientos, S. (1981) Geologic studies in the outer Chilean fjords. R.V. Hero cruise 79‐5. Antarctic J. U S, 15, 109–111.
    [Google Scholar]
  55. Frihy, O.E., Lofty, M.F. & Komar, P.D. (1995) Spatial variations in heavy minerals and patterns of sediment sorting along the Nile Delta, Egypt. Sediment. Geol., 97, 33–41.
    [Google Scholar]
  56. Gehrels, G.E. (2000) Introduction to detrital zircon studies of Paleozoic and Triassic strata in western Nevada and northern California. In: Paleozoic and Triassic Paleogeography and Tectonics of Western Nevada and Northern California (Ed. by M.J.Soreghan & G.E.Gehrels ), Geol.Soc. Am. Spec. Pap., 347, 1–17.
    [Google Scholar]
  57. Gehrels, G.E. & Dickinson, W.R. (1995) Detrital zircon provenance of Cambrian to Triassic miogeoclinal and eugeoclinal strata in Nevada. Am. J. Sci., 295, 18–48.
    [Google Scholar]
  58. Ghiglione, M.C. & Ramos, V.A. (2005) Progression of deformation and sedimentation in the southernmost Andes. Tectonophysics, 405, 25–46.
    [Google Scholar]
  59. Gorring, M.L., Kay, S.M., Zeitler, P.K., Ramos, V.A., Rubiolo, D., Fernandez, M.I. & Panza, J.L. (1977) Neogene Patagonian plateau lavas: continental magmas associated with ridge collision at the Chile Triple Junction. Tectonics, 16, 1–17.
    [Google Scholar]
  60. Graham, S.A., Hendrix, M.S., Wang, L.B. & Carroll, A.R. (1976) Collisional successor basins of western China; impact of tectonic inheritance on sand composition. Geol. Soc. Am. Bull., 105, 323–344.
    [Google Scholar]
  61. Graham, S.A., Ingersoll, R.V. & Dickinson, W.R. (1976) Common provenance for lithic grains in Carboniferous sandstones from Ouachita Mountains and Black Warrior basin. J. Sediment. Petrol., 46, 620–632.
    [Google Scholar]
  62. Gromet, L.P., Dymek, R.F., Haskin, L.A. & Korotev, R.L. (1984) “The North American Shale Composite”: its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta, 48, 2469–2482.
    [Google Scholar]
  63. Gust, D.A., Biddle, K.T., Phelps, D.W. & Uliana, M.A. (1985) Associated Middle to Late Jurassic volcanism and extension in southern South America. Tectonophysics, 116, 223–253.
    [Google Scholar]
  64. Hervé, F. (1988) Late Triassic rocks in the subduction complex of Aysén, southern Chile. Journal of African Earth Sciences, Special Abstracts Issue Gondwana 10: Event Stratigraphy of Gondwana, 224.
  65. Hervé, F., Fanning, C.M. & Pankhurst, R.J. (2003) Detrital zircon age patterns and provenance of the metamorphic complexes of southern Chile. J. South Am. Earth Sci., 16, 107–123.
    [Google Scholar]
  66. Hervé, F., Godoy, E., Mpodozis, C. & Fanning, M. (2004) Monitoring magmatism of the Patagonian Batholith through the U–Pb SHRIMP dating of detrital zircons in sedimentary units of the Magallanes Basin. Proceedings, International Symposium on the Geology and Geophysics of the Southernmost Andes, the Scotia Andes, and the Antarctic Peninsula, Buenos Aries, Bulletino Geofisica, pp. 113–117.
  67. Hérvé, F., Pankhurst, R.J., Fanning, C.M., Calderón, M. & Yaxley, G.M. (2007) The South Patagonian batholith: 150 my of granite magmatism on a plate margin. Lithos, doi: DOI: 10.1016/j.lithos.2007.01.007
  68. Horton, B.K. & DeCelles, P.G. (1997) The modern foreland basin system adjacent to the Central Andes. Geology, 25, 895–898.
    [Google Scholar]
  69. Horton, B.K., Hampton, B.A., Lareau, B.N. & Baldellon, E. (2002) Tertiary provenance history of the northern and central Altiplano (Central Andes, Bolivia): a detrital record of plateau-margin tectonics. J. Sediment. Res., 72, 7111–726, doi: DOI: 10.1306/020702720711.
    [Google Scholar]
  70. Hubbard, S.M., Romans, B.W. & Graham, S.A. (2008) Deep‐water foreland basin deposits of the Cerro Toro Formation, Magallanes basin, Chile: architectural elements of a sinuous basin axial channel belt. Sedimentology, 55, 1333–1359. doi: DOI: 10.1111/j/1365-3091.2007.00948.
    [Google Scholar]
  71. Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D. & Sares, S.W. (1984) The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. J. Sediment. Petrol., 49, 103–116.
    [Google Scholar]
  72. Ingersoll, R.V., Graham, S.A. & Dickinson, W.R. (1995) Remnant ocean basins. In: Tectonics of Sedimentary Basins (Ed. by C.J.Busby & R.V.Ingersoll ), pp. 363–391. Blackwell Science, Oxford.
    [Google Scholar]
  73. Jones, H.A. & Davies, P.J. (1979) Preliminary studies of offshore placer deposits, Eastern Australia. Mar. Geol., 30, 243–268.
    [Google Scholar]
  74. Jordan, T.E. (1995) Retroarc foreland and related basins. In: Tectonics of Sedimentary Basins (Ed. by C.J.Busby & R.V.Ingersoll ), pp. 331–362. Blackwell Science, Oxford.
    [Google Scholar]
  75. Jordan, T.E. & Allmendinger, R.W. (1986) The Sierras Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland deformation. Am. J. Sci., 286, 737–764.
    [Google Scholar]
  76. Jordan, T.E., Flemings, P.B. & Beer, J.A. (1988) Dating of thrust‐fault activity by use of foreland basin strata. In: New Perspectives in Basin Analysis (Ed. by K.Kleinspehn & C.Paola ), pp. 307–330. Springer‐Verlag, New York.
    [Google Scholar]
  77. Katz, H.R. (1963) Revision of Cretaceous stratigraphy in Patagonian Cordillera of Ultima Esperanza, Magallanes Province, Chile. AAPG Bull., 47, 506–524.
    [Google Scholar]
  78. Katz, H.R. (1964) Some new concepts on geosynclinal development and mountain building at the southern end of South America. XXII Int. Geol. Congr. Proc., New Dehli, India, 4, 242–245.
    [Google Scholar]
  79. Katz, H.R. & Watters, W.A. (1966) Geological investigation of the Yahgan Formation (upper Mesozoic) and associated igneous rocks of the Navarino island, southern Chile. N Z J. Geol. Geophys., 9, 323–359.
    [Google Scholar]
  80. Kley, J., Monaldi, C.R. & Salfity, J.A. (1999) Along‐strike segmentation of the Andean foreland: causes and consequences. Tectonophysics, 301, 75–94.
    [Google Scholar]
  81. Kraemer, P.E. (2003) Orogenic shortening and the origin of the Patagonian orocline (56°S). J. South Am. Earth Sci., 15, 731–748.
    [Google Scholar]
  82. Kranck, E.H. (1932) Geological investigation in the Cordillera of Tierra del Fuego. Helsinki, Acta Geograf., 4, 231pp.
    [Google Scholar]
  83. Lease, R.O., Burbank, D.W., Gehrels, G.E., Wang, Z. & Yuan, D. (2007) Signatures of mountain building: Detrital zircon U/Pb ages from northeastern Tibet. Geology, 35, 239–242.
    [Google Scholar]
  84. Link, P.K., Fanning, C.M. & Beranek, L.P. (2005) Reliability and longitudinal change of detrital‐zircon age spectra in the Snake River system, Idaho and Wyoming: an example of reproducing the bumpy barcode. Sediment. Geol., 182, 101–142.
    [Google Scholar]
  85. Ludwig, K.R. (2000) SQUID 1.00, A User's Manual; Berkeley Geochronology Center Special Publication, no. 2, 2455 Ridge Road, Berkeley, CA 94709, USA.
  86. Ludwig, K.R. (2003) Isoplot/Ex version 3.0. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, no. 1a, Berkeley, California.
  87. Macellari, C.E. (1988) Late Cretaceous Kossmaticeratidae (Ammonoidea) from the Magallanes Basin, Chile. J. Paleontol., 62, 889–905.
    [Google Scholar]
  88. Macellari, C.E., Barrio, C.A. & Manassero, M.J. (1989) Upper Cretaceous to Paleocene depositional sequences and sandstone petrography of south‐western Patagonia (Argentina and Chile). J. South Am. Earth Sci., 2, 223–239.
    [Google Scholar]
  89. Mason, B. & Moore, C.D. (1982) Principles of Geochemistry. J. Wiley and Sons, New York.
    [Google Scholar]
  90. McLennan, S.M. (1989) Rare earth elements in sedimentary rocks: influences of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21, 169–200.
    [Google Scholar]
  91. McLennan, S.M., Hemming, S., McDaniel, D.K. & Hanson, G.N. (1993) Geochemical approaches to sedimentation, provenance, and tectonics. In: Processes Controlling the Composition of Clastic Sediments (Ed. by M.J.Johnson & A.Basu Geol. Soc. Am. Spec. Pap., 284, 21–40.
    [Google Scholar]
  92. Millar, I.L., Pankhurst, R.J. & Fanning, C.M. (2002) Basement chronology of the Antarctic Peninsula: recurrent magmatism and anatexis in the Paleozoic Gondwana Margin. J. Geol. Soc., 159, 145–157.
    [Google Scholar]
  93. Morton, A.C. & Hallsworth, C.R. (1994) Identifying provenance‐specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol., 90, 241–256.
    [Google Scholar]
  94. Natland, M.L., Gonzalez, P.E., Canon, A. & Ernst, M. (1974) A system of stages for correlation of Magallanes Basin sediments. AAPG Mem., 139, 126pp.
    [Google Scholar]
  95. Nelson, E.P., Dalziel, I.W.D. & Milnes, A.G. (1980) Structural geology of the Cordillera Darwin–Collision style orogenesis in the southernmost Andes. Eclog. Geol. Helvet., 73, 727–751.
    [Google Scholar]
  96. Pankhurst, R.J., Rapela, C.W., Loske, W.P., Marquez, M. & Fanning, C.M. (2003) Chronological study of the pre‐Permian basement rocks of southern Patagonia. J. South Am. Earth Sci., 16, 27–44.
    [Google Scholar]
  97. Pankhurst, R.J., Riley, T.R., Fanning, C.M. & Kelley, S.P. (2000) Episodic silicic volcanism in Patagonia and Antarctic Peninsula: chronology of magmatism associated with the break-up of Gondwana. J. Petrol., 41, 605–625.
    [Google Scholar]
  98. Rabinowitz, P.D. & La Brecque, J. (1979) The Mesozoic South Atlantic Ocean and evolution of its continental margin. J. Geophys. Res., 84, 5973–6002.
    [Google Scholar]
  99. Ramos, V.A. (1988) The tectonics of the Central Andes: 30°–35°S latitude. In: Processes in Continental Lithospheric Deformation (Ed. by S.P.Clark , B.C.Burchfiel & J.Suppe ), Geol. Soc. Am. Spec. Pap., 218, 31–54.
    [Google Scholar]
  100. Ramos, V.A. (1996) Evolución Tectónica de la Plataforma Continental. In: Geología y Recursos Naturales de la Plataforma Continental Argentina (Ed. by V.A.Ramos & M.A.Turic ), pp. 385–404. Ciudad Autónoma, de Buenos Aires.
    [Google Scholar]
  101. Reiners, P.W., Ehlers, T.A., Mitchell, S.G. & Montgomery, D.R. (2003) Coupled spatial variations in precipitation and long‐term erosion rates across the Washington Cascades. Nature, 426, 645–647.
    [Google Scholar]
  102. Romans, B.W., Hubbard, S.M. & Graham, S.A. (2009) Stratigraphic evolution of an outcropping continental slope system, Tres Pasos Formation at Cerro Divisadero, Chile. Sedimentology, 56, 737–764.
    [Google Scholar]
  103. Schwab, F.L. (1986) Sedimentary ‘signatures’ of foreland basin assemblages: real or counterfeit? In: Foreland Basins (Ed. by P.A.Allen & P.Homewood ), Spec. Pub. Int. Ass. Sediment., 8, 395–410.
    [Google Scholar]
  104. Scott, K.M. (1966) Sedimentology and dispersal pattern of a Cretaceous flysch sequence, Patagonian Andes, southern Chile. AAPG Bull., 50, 72–107.
    [Google Scholar]
  105. Sears, J.W. & Price, R.A. (2003) Tightening the Siberian connection to western Laurentia. Geol. Soc. Am. Bull., 115, 943–953.
    [Google Scholar]
  106. Shultz, M.R. (2004) Stratigraphic architecture of two deep‐water depositional systems: The Tres Pasos Formation, Chilean Patagonia, and the Stevens Sandstone, Elk Hills, California. PhD Thesis, Stanford University, Stanford, CA, 266pp.
  107. Shultz, M.R. & Hubbard, S.M. (2005) Sedimentology, stratigraphic architecture, and ichnology of gravity‐flow deposits partially ponded in a growth‐fault‐controlled slope minibasin, Tres Pasos Formation (Cretaceous), southern Chile. Journal of Sedimentary Research, 75, 440–453.
    [Google Scholar]
  108. Shultz, M.R., Fildani, A., Cope, T.A. & Graham, S.A. (2005) Deposition and stratigraphic architecture of an outcropping ancient slope system: Tres Pasos Formation, Magallanes Basin, southern Chile. In: Submarine Slope Systems: Processes and Products (Ed. by D.M.Hodgson & S.S.Flint ), Geol. Soc. Lond. Spec. Publ., 244, 27–50.
    [Google Scholar]
  109. Smale, D. (1990) Distribution and provenance of heavy minerals in the South Island: a review. N Z J. Geol. Geophys., 33, 557–571.
    [Google Scholar]
  110. Smith, C.H.L. (1977) Sedimentology of the Late Cretaceous (Santonian–Maastrichtian) Tres Pasos Formation, Ultima Esperanza District, southern Chile. Master's Thesis, University of Wisconsin, Madison, WI, 129pp.
  111. Smith, M. & Gehrels, G.E. (1994) Detrital zircon geochronology and the provenance of the Harmony and Valmy Formations, Roberts Mountains allochthon, Nevada. Geol. Soc. Am. Bull., 106, 968–979.
    [Google Scholar]
  112. Spiegel, C., Siebel, W., Kuhelmann, J. & Frisch, W. (2004) Toward a comprehensive provenance analysis: a multi‐method approach and its implications for the evolution of the Central Alps. In: Detrital Thermochronology – Provenance Analysis, Exhumation, and Landscape Evolution of Mountain Belts (Ed. by M.Bernet & C.Spiegel ), Geol. Soc. Am. Spec. Publ., 378, 37–50.
    [Google Scholar]
  113. Stern, C.R. (1980) Geochemistry of Chilean ophiolites: evidence of the compositional evolution of the mantle source of back-arc basin basalts. J. Geophys. Res., 85, 955–966.
    [Google Scholar]
  114. Stern, C.R. & Stroup, J.B. (1982) The petrochemistry of the Patagonian Batholith, Ultima Esperanza, Chile. In: Antarctic Geoscience (Ed. by C.Craddock ), pp. 135–142. University of Wisconsin Press, Madison, Wisconsin.
    [Google Scholar]
  115. Stern, C.R., Musaka, S.B. & Fuenzalida, R. (1992) Age and petrogenesis of the Sarmiento ophiolite complex of southern Chile. Journal of South American Earth Science, 6, 97–104.
    [Google Scholar]
  116. Stewart, J.H., Gehrels, G.E., Barth, A.P., Link, P.K., Christie‐Blick, N. & Wrucke, C.T. (2001) Detrital zircon provenance of Mesoproterozoic to Cambrian arenites in the western United States and northwestern Mexico. Geol. Soc. Am. Bull., 113, 1343–1356.
    [Google Scholar]
  117. Suárez, M. (1979) A late Mesozoic island arc in the southern Andes, Chile. Geol. Mag., 116, 181–190.
    [Google Scholar]
  118. Suárez, M. & Pettigrew, T.H. (1976) An upper Mesozoic island‐arc‐back‐arc system in the southern Andes and South Georgia. Geol. Mag., 113, 305–328.
    [Google Scholar]
  119. Surpless, K.D., Graham, S.A., Covault, J.A. & Wooden, J.L. (2006) Does the Great Valley Group contain Jurassic strata? Reevaluation of the age and early evolution of a classic forearc basin. Geology, 34, 21–24.
    [Google Scholar]
  120. Thomson, M.R.A. & Pankhurst, R.J. (1983) Age of post‐Gondwanian calc‐alkaline volcanism in the Antarctic Peninsula region. In: Antarctic Earth Science (Ed. by R.L.Oliver , P.R.James & J.B.Jago ), pp. 328–333. Australian Academy of Science, Canberra.
    [Google Scholar]
  121. Thomson, S.N., Hervé, F. & Stockhert, B. (2001) The Mesozoic–Cenozoic denudation history of the Patagonian Andes (southern Chile) and its correlation to different subduction processes. Tectonics, 20, 693–711.
    [Google Scholar]
  122. Valenzuela, A.A.S. (2006) Proveniencia sedimentaia de Estratos de Cabo Nariz y Formacion Cerro Toro, Cretacico Tardio‐Paleoceno, Magallanes, Chile. PhD Thesis, Universidad de Chile, Santiago, Chile, 153pp.
  123. Vermeesch, P. (2004) How many grains are needed for a provenance study?Earth Planet. Sci. Lett., 224, 441–451.
    [Google Scholar]
  124. Wedepohl, K.H. & Muramatsu, Y. (1979) The chemical composition of kimberlites compared with the average composition of three basaltic magma types. In: Proceedings of the International Kimberlite Conference (Ed. by F.R.Boyd & H.O.A.Meyer ), pp. 300–312. American Geophysical Union, Washington.
    [Google Scholar]
  125. Weislogel, A.L., Graham, S.A., Chang, E.Z., Wooden, J.L., Gehrels, G.E. & Yang, H. (2006) Detrital zircon provenance of the Late Triassic Songpan–Ganzi complex: sedimentary record of collision of the North and South China blocks. Geology, 34, 97–100.
    [Google Scholar]
  126. Wilson, T.J. (1991) Transition from back‐arc to foreland basin development in southernmost Andes: stratigraphic record from the Ultima Esperanza District, Chile. Geol. Soc. Am. Bull., 103, 98–111.
    [Google Scholar]
  127. Winn, R.D.Jr. & Dott, R.H.Jr. (1979) Deep‐water fan‐channel conglomerates of late Cretaceous age, southern Chile. Sedimentology, 26, 203–228.
    [Google Scholar]
  128. Winslow, M.A. (1982) The structural evolution of Magallanes Basin and neotectonics in the southernmost Andes. In: Antartic Geoscience (Ed. By C.Craddock ), pp. 143–154. University of Wisconsin Press, Madison.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2009.00443.x
Loading
/content/journals/10.1111/j.1365-2117.2009.00443.x
Loading

Data & Media loading...

Supplements

Mineral Separation Procedure. U‐Pb ages and associated errors for sample CC. Detrital‐zircon histograms and probability plots for eight sandstone samples.Please note: Wiley‐Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

Supporting info item

Supporting info item

Supporting info item

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error