1887
Volume 24, Issue 5
  • E-ISSN: 1365-2117

Abstract

Abstract

Numerical models were used to investigate the effects of differential compaction on strain development and early fracturing in an early cemented high‐relief Triassic carbonate platform prograding onto basinal sediments, whose thickness increases basinward. Results show that basinal sediment compaction induces stretching of internal platform and slope strata in prograding platforms. When sediments are early cemented, such extensional strain is accommodated by the generation of syndepositional fractures. The amount of stretching is predicted to increase from the oldest to the youngest layers, due to the thickening of the compactable basinal sequences towards the external parts of the platform. Stretching is also controlled by the characteristics of the basin: the thicker and the more compactable the basinal sediments, the larger will be the stretching. Numerical modelling has been applied to the Ladinian–Early Carnian carbonate platform of the Esino Limestone (Central Southern Alps of Italy). This case study is favourable for numerical modelling, as it is well exposed and both its internal geometry (inner platform, reef and prograding clinostratified slope deposits) and the relationship with the adjacent basin can be fully reconstructed, as the Alpine tectonic overprint is weak in the study area. Evidence for early fracturing (fractures filled by fibrous cements coeval with the platform development) is described and the location, orientation and width of the fractures measured. The fractures are mainly steeply dipping and oriented perpendicularly to the direction of progradation of the platform, mimicking local platform‐margin trends. The integration of numerical models with field data gives the opportunity to quantify the extension triggered by differential compaction and predict the possible distribution of early fractures in carbonate platforms of known geometry and thickness, whereas the interpretation of early fractures as the effects of differential compaction can be supported or rejected by the comparison with the results of numerical modelling.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2117.2012.00542.x
2012-02-09
2024-04-29
Loading full text...

Full text loading...

References

  1. Anderson, N.L. & Franseen, E.K. (1991) Differential compaction of winnipegosis reefs: a seismic perspective. Geophysics, 56, 142–147.
    [Google Scholar]
  2. Assereto, R. & Casati, P. (1965) Revisione della stratigrafia permotriassica della Val Camonica meridionale (Lombardia). Riv. Ital. Paleontol. Stratigr., 71, 999–1097.
    [Google Scholar]
  3. Assereto, R. & Folk, R.L. (1980) Diagenetic fabric of aragonite, calcite and dolomite in an anxcient peritidal‐spelean environment: triassic Calcare Rosso, Lombardia, Italy. J. Sed. Petrol., 50, 371–394.
    [Google Scholar]
  4. Assereto, R. & Kendall, C.G.S.T.C. (1977) Nature, origin and classification of peritidal tepee structures and relative breccias. Sedimentology, 24, 153–210.
    [Google Scholar]
  5. Assereto, R., Jadoul, F. & Omenetto, P. (1977) Stratigrafia e metallogenesi del settore occidentale del distretto a Pb, Zn, fluorite e barite di Gorno (Alpi Bergamasche). Riv. Ital. Paleontol. Stratigr., 83, 395–532.
    [Google Scholar]
  6. Athy, L.F. (1930) Density, porosity and compaction of sedimentary rocks. AAPG Bull., 14, 1–24.
    [Google Scholar]
  7. Berra, F. (2007) Sedimentation in shallow to deep water carbonate environments across a sequence boundary: effects of a fall in sea level on the evolution of a carbonate system (Ladinian–Carnian, eastern Lombardy, Italy). Sedimentology, 54, 721–735.
    [Google Scholar]
  8. Berra, F. & Carminati, E. (2010) Subsidence history from backstripping analysis of the Permo‐Mesozoic succession of the Central Southern Alps (Northern Italy). Basin Res., 22, 952–975.
    [Google Scholar]
  9. Berra, F., Rettori, R. & Bassi, D. (2005) Recovery of carbonate platform production in the Lombardy Basin during the Anisian: paleoecological significance and constrain on paleogeographic evolution. Facies, 50, 615–627.
    [Google Scholar]
  10. Berra, F., Jadoul, F., Binda, M. & Lanfranchi, A. (2011) Large‐scale progradation, demise and rebirth of a high relief, flat‐topped carbonate factory (Late Anisian‐Early Carnian, Lombardy Southern Alps, Italy). Sed. Geol., 239, 48–63.
    [Google Scholar]
  11. Bertotti, G., Picotti, V., Bernoulli, D. & Castellarin, A. (1993) From rifting to drifting: tectonic evolution of the South Alpine upper crust from Triassic to Early Cretaceous. Sed. Geol., 86, 53–76.
    [Google Scholar]
  12. Carminati, E. & Santantonio, M. (2005) Control of differential compaction on the geometry of sediments onlapping paleoescarpments: insights from field geology (Central Apennines, Italy) and numerical modelling. Geology, 33, 353–356.
    [Google Scholar]
  13. Carminati, E., Siletto, G.B. & Battaglia, D. (1997) Thrust kinematics and internal deformation in basement involved foreland fold and thrust belts: the Eastern Orobic Alps case (Central Southern Alps, Northern Italy). Tectonics, 16, 259–271.
    [Google Scholar]
  14. Carminati, E., Scrocca, D. & Doglioni, C. (2010) Compaction‐induced stress variations with depth in an active anticline: Northern Apennines, Italy. J. Geophys. Res., 115, doi:10.1029/2009JB006395.
    [Google Scholar]
  15. Carta Geologica D'Italia 1:50.000, foglio 56 “Sondrio”
    Carta Geologica D'Italia 1:50.000, foglio 56 “Sondrio” , http://www.apat.gov.it/MEDIA/carg/56_SONDRIO/Foglio.html(in press). Last accessed 30 January 2012.
  16. Casati, P. & Gnaccolini, M. (1967) Geologia delle Alpi Orobie occidentali. Riv. Ital. Paleontol. Stratigr., 73, 25–162.
    [Google Scholar]
  17. Castellarin, A., Lucchini, F., Rossi, P.L., Selli, L. & Simboli, G. (1988) The Middle Triassic magmatic‐tectonic arc development in the Southern Alps. Tectonophysics, 146, 79–89.
    [Google Scholar]
  18. Doglioni, C. (1984) Tettonica triassica transpressiva nelle Dolomiti. Giorn. Geol., 46, 47–60.
    [Google Scholar]
  19. Doglioni, C. & Goldhammer, R.K. (1988) Compaction‐induced subsidence in a margin of a carbonate platform. Basin Res., 1/4, 237–246.
    [Google Scholar]
  20. Dugan, B. & Flemings, P.B. (2000) Overpressure and fluid flow in the New Jersey continental slope: implications for slope failure and cold seeps. Science, 288, 289–291.
    [Google Scholar]
  21. Frisia‐Bruni, S., Jadoul, F. & Weissert, H. (1989) Evinosponges in the Triassic Esino Limestone (Southern Alps): documentation of early lithification and late diagenetic overprint. Sedimentology, 36, 685–699.
    [Google Scholar]
  22. Frost, E.L. (2007) Facies heterogeneity, platform architecture and fracture patterns of the Devonian reef complexes. PhD Thesis, The University of Texas, Austin.
  23. Frost, E.L. & Kerans, C. (2009) Platform‐margin trajectory as a control on syndepositional fracture Patterns, Canning Basin, Western Australia. J. Sed. Res., 79, 44–55.
    [Google Scholar]
  24. Frost, E.L. & Kerans, C. (2010) Controls on syndepositional fracture patterns, Devonian reef complexes, Canning Basin, Western Australia. J. Struct. Geol., 32, 1231–1249.
    [Google Scholar]
  25. Gaetani, M., Gnaccolini, M., Jadoul, F. & Garzanti, E. (1998) Multiorder sequence stratigraphy in the Triassic system of the Western Southern Alps. In: Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (Ed. by P.C.de Graciansky , J.Hardenbol , T.Jacquin & P.R.Vail ), SEPM Spec. Publ., 60, 701–717.
    [Google Scholar]
  26. Goldhammer, R.K. (1997) Compaction and decompaction algorithms for sedimentary carbonates. J. Sed. Res., 67, 26–35.
    [Google Scholar]
  27. Goldhammer, R.H. & Lawrence, A.H. (1985) Compactional features in Cambro‐Ordovician carbonates of Central Appalachians and their significance. AAPG Bull., 69, 257–258.
    [Google Scholar]
  28. Grammer, G.M., Ginsburg, R.N. & Harris, P.M. (1993) Timing of deposition, diagenesis, and failure of steep carbonate slopes in response to a high‐amplitude/high‐frequency fluctuation in sea level, tongue of the Ocean, Bahamas. In: Carbonate Sequence Stratigraphy – Recent Developments and Applications (Ed. by R.Loucks & J.F.Sarg ), AAPG Mem., 57, 107–131.
    [Google Scholar]
  29. Grammer, G.M., Crescini, C.M., Mcneill, D.F. & Taylor, L.H. (1999) Quantifying rates of syndepositional marine cementation in deeper platform environments – new insight into a fundamental process. J. Sed. Res., 69, 202–207.
  30. Guidry, S.A., Grasmueck, M., Carpenter, D.G., Gombos, A.M., JrBachtel, S.L. & Viggiano, D.A. (2007) Karst and early‐fracture networks in carbonates, Turks and Caicos Islands, British West Indies. J. Sed. Res., 77, 508–524.
    [Google Scholar]
  31. Harris, M.T. (1994) The foreslope and toe‐of‐slope facies of the middle Triassic Latemar buildup (Dolomites, Northern Italy). J. Sed. Res., 64, 132–145.
    [Google Scholar]
  32. Hölzel, M., Faber, R. & Wagreich, M. (2008) DeCompactionTool: software for subsidence analysis including statistical error quantification. Comput. Geosci., 34, 1454–1460.
    [Google Scholar]
  33. Hunt, D., Allsop, T. & Swarbrick, R.E. (1996) Compaction as a primary control on the architecture and development of depositional sequences: conceptual framework, applications and implications., In: High Resolution Sequence Stratigraphy: Innovations and Applications (Ed. by J.Howell & J.F.Aitken ), Geol. Soc. Lond., 104, 321–345.
    [Google Scholar]
  34. Hurley, N.F. (1986) Geology of the Oscar Range Devonian Reef Complex, Canning Basin, Western Australia. PhD Thesis, University of Michigan, Ann Arbor.
    [Google Scholar]
  35. Jadoul, F. & Frisia, S. (1988) Le evinosponge: ipotesi genetiche di cementi calcitici di cavità nella piattaforma ladinica delle Prealpi Lombarde (Alpi Meridionali). Riv. Ital. Paleontol. Stratigr., 94, 81–104.
    [Google Scholar]
  36. Jadoul, F. & Rossi, P.M. (1982) Evoluzione paleogeografico‐strutturale e vulcanismo triassico nella Lombardia centro‐occidentale. In: Guida Alla Geologia Del Sudalpino Centro‐Occidentale (Ed. by A.Castellarin & G.B.Vai ), Guide Geologiche Regionali S.G.I., 143–155, Roma.
    [Google Scholar]
  37. Jadoul, F., Gervasutti, M. & Fantini Sestini, N. (1992) The middle Triassic of the Brembana valley: preliminary study of the Esino Platform evolution (Bergamasc Alps). Riv. Ital. Paleontol. Stratigr., 98, 299–324.
    [Google Scholar]
  38. Jadoul, F., Nicora, A., Ortenzi, A. & Pohar, C. (2002) Ladinian stratigraphy and paleogeography of the Southern Val Canale (Pontebbano‐Tarvisiano, Julian Alps, Italy). Soc. Geol. Ital. Mem., 57, 29–43.
    [Google Scholar]
  39. Kosa, E., Hunt, D.W., Fitchen, W.M., Bockel‐Rebelle, M. & Roberts, G. (2003) The heterogeneity of paleocavern systems developed along syndepositional fault zones; the upper Permian Capitan Platform, Guadalupe mountains, U.S.A. In: Permo‐Carboniferous Carbonate Platforms and Reefs (Ed. by W.M.Ahr , P.M.Harris , W.A.Morgan & I.D.Somerville ), SEPM Spec. Publ., 78, 291–322.
    [Google Scholar]
  40. Maurer, F. (2000) Growth mode of middle Triassic carbonate platforms in the Western Dolomites (Southern Alps, Italy). Sed. Geol., 134, 275–286.
    [Google Scholar]
  41. Mutti, M. (1994) Association of tepees and paleokarsts in the Ladinian Calcare Rosso (Southern Alps, Italy). Sedimentology, 41, 621–641.
    [Google Scholar]
  42. Playford, P.E. (1984) Platform‐margin and marginal‐slope relationships in Devonian reef complexes of the Canning Basin. In: The Canning Basin W.A. (Ed. by P.G.Purcell ), Proceedings of the Geological Society of Australia/Petroleum Exploration Society of Australia Canning Basin Symposium, Perth WA, June 27 29, pp. 189–214.
    [Google Scholar]
  43. Resor, P.G. & Flodin, E.A. (2010) Forward modeling synsedimentary deformation associated with a prograding steep‐sloped carbonate margin. J. Struct. Geol., 32, 1187–1200.
    [Google Scholar]
  44. Rusciadelli, G. & Di Simone, S. (2007) Differential compaction as control on depositional architectures across the Maiella carbonate platform margin (central Appenines, Italy). Sed. Geol., 196, 133–155.
    [Google Scholar]
  45. Rusciadelli, G., Sciarra, N. & Mangifesta, M. (2003) 2D modelling of large‐scale platform margin collapses along an ancient carbonate platform edge (Maiella Mt., Central Apennines, Italy): geological model and conceptual framework. Palaeogeogr. Palaeoclimatol. Palaeoecol., 200(14), 245–262.
    [Google Scholar]
  46. Schmoker, J.W. & Halley, R.B. (1982) Carbonate porosity versus depth: a predictable relation for south Florida. AAPG Bull., 66, 2561–2570.
    [Google Scholar]
  47. Sclater, J.G. & Christie, P.A.F. (1980) Continental stretching: an explanation of the post‐mid‐Cretaceous subsidence of the Central North Sea basin. J. Geophys. Res., 85, 3711–3739.
    [Google Scholar]
  48. Skuce, A.G. (1994) A structural model of a graben boundary fault system, Sirte Basin, Libya. Can. J. Explor. Geophys., 30, 73–83.
    [Google Scholar]
  49. Turcotte, D.L. & Schubert, G. (2002) Geodynamics, 2nd edn. Cambridge University Press, Cambridge.
    [Google Scholar]
  50. Van Der Kooij, B., Immenhauser, A., Steuber, T., Bahamonde, J.R. & Merino Tome, O. (2010) Controlling factors of volumetrically important marine carbonate cementation in deep slope settings. Sedimentology, 57, 1491–1525.
    [Google Scholar]
  51. Weber, L.J., Francis, B.P., Harris, P.M. & Clark, M. (2003) Stratigraphy, facies, and reservoir distribution, Tengiz Field, Kazakhstan. AAPG Mem., 83, 351–394.
    [Google Scholar]
  52. Whitaker, F.F. & Smart, P.L. (1997) Groundwater circulation in a karstified bank marginal fracture system, South Andros Island, Bahamas. J. Hydrol., 197, 293–315.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2117.2012.00542.x
Loading
/content/journals/10.1111/j.1365-2117.2012.00542.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error