- Home
- A-Z Publications
- Basin Research
- Previous Issues
- Volume 15, Issue 1, 2003
Basin Research - Volume 15, Issue 1, 2003
Volume 15, Issue 1, 2003
-
-
Subsidence analyses from the Betic Cordillera, southeast Spain
Authors D. Hanne, N. White and L. LonerganABSTRACTFifty‐four Mesozoic–Cenozoic stratigraphic sections from the Betic Cordillera of southeast Spain have been analysed in order to estimate the timing and amount of lithospheric stretching that occurred at the western end of the Tethyan Ocean since the Hercynian Orogeny. The standard backstripping technique has been used in order to calculate the water‐loaded subsidence of basement for each section. Water‐loaded subsidence curves were then inverted in order to determine the variation of lithospheric strain rate as a function of time, which yields estimates of timing, magnitude and intensity of stretching.
Rifting commenced during the Late Permian/Early Triassic times and continued intermittently throughout the Mesozoic in response to the opening of the Tethyan Ocean to the east and the opening of the Atlantic Ocean to the west. Two major events in the Permo‐Triassic/Early Jurassic and the Late Jurassic/Early Cretaceous can be clearly identified. Stretching factors are generally small (1.1–1.25) probably because the Betic Cordillera was located at the westernmost end of the Tethys.
Peak strain rates of ∼10−15 s−1 were obtained for Mesozoic rift events and these values are in broad agreement with those obtained throughout the Tethyan Realm. We have also analysed the Neogene extensional event, which played an important role in forming the existing Mediterranean Sea. A combination of well‐log information and calibrated seismic reflection data was modelled. Peak strain rates in these younger basins are almost one order of magnitude faster than those estimated for the Mesozoic basins. These higher values appear to be typical of back‐arc extensional basins elsewhere. To the west and north of the Betic Cordillera, the Guadalquivir foreland basin developed as extension took place further east. Backstripped sections from this basin clearly record the northward migration of foreland basin subsidence through time.
-
-
-
The long‐term thermal consequences of rifting: implications for basin reactivation
Authors M. Sandiford, S. Frederiksen and J. BraunABSTRACTThe attenuation of the continental crust during rifting and the subsequent filling of the rift‐related accommodation alter the long‐term thermal and mechanical state of the lithosphere. This is primarily because the Moho is shallowed due to density contrasts between the sediment fill and the crust, but also reflects the attenuation of the pre‐existing crustal heat production and its burial beneath the basin, as well the thermal properties of the basin fill. Moho shallowing and attenuation of pre‐existing heat production contribute to long‐term cooling of the Moho and thus lithospheric strengthening, as has been pointed out in many previous studies. In contrast, basin filling normally contributes to significant Moho heating allowing the possibility of long‐term lithospheric weakening, the magnitude of which is dependent on the thermal properties of the basin‐fill and the distribution of heat sources in the crust. This paper focuses on the thermal property structure of the crust and basin‐fill in effecting long‐term changes in lithospheric thermal regime, with particular emphasis on the distribution of heat producing elements in the crust. The parameter space appropriate to typical continental crust is explored using a formalism for the heat production distributions that makes no priori assumptions about the specific form of the distribution. The plausible parameter space allows a wide range in potential long‐term thermal responses. However, with the proviso that the accommodation created by the isostatic response to rifting is essentially filled, the long‐term thermal response to rift basin formation will generally increase average crustal thermal gradients beneath basins but cool the Moho due to its reduction in depth. The increase in the average crustal thermal gradient induces lateral heat flow that necessarily heats the Moho along basin margins, especially in narrow rift basins. Using coupled thermo‐mechanical models with temperature sensitive creep‐parameters, we show that such heating may be sufficient to localise subsequent deformation in the vicinity of major basin bounding structures, potentially explaining the offset observed in some stacked rift basin successions.
-
-
-
The stratigraphic and structural evolution of the Dzereg Basin, western Mongolia: clastic sedimentation, transpressional faulting and basin destruction in an intraplate, intracontinental setting
Authors J. P. Howard, W. D. Cunningham, S. J. Davies, A. H. Dijkstra and G. BadarchABSTRACTThe Dzereg Basin is an actively evolving intracontinental basin in the Altai region of western Mongolia. The basin is sandwiched between two transpressional ranges, which occur at the termination zones of two regional‐scale dextral strike‐slip fault systems. The basin contains distinct Upper Mesozoic and Cenozoic stratigraphic sequences that are separated by an angular unconformity, which represents a regionally correlative peneplanation surface. Mesozoic strata are characterized by northwest and south–southeast‐derived thick clast‐supported conglomerates (Jurassic) overlain by fine‐grained lacustrine and alluvial deposits containing few fluvial channels (Cretaceous). Cenozoic deposits consist of dominantly alluvial fan and fluvial sediments shed from adjacent mountain ranges during the Oligocene–Holocene. The basin is still receiving sediment today, but is actively deforming and closing. Outwardly propagating thrust faults bound the ranges, whereas within the basin, active folding and thrusting occurs within two marginal deforming belts. Consequently, active fan deposition has shifted towards the basin centre with time, and previously deposited sediment has been uplifted, eroded and redeposited, leading to complex facies architecture. The geometry of folds and faults within the basin and the distribution of Mesozoic sediments suggest that the basin formed as a series of extensional half‐grabens in the Jurassic–Cretaceous which have been transpressionally reactivated by normal fault inversion in the Tertiary. Other clastic basins in the region may therefore also be inherited Mesozoic depocentres. The Dzereg Basin is a world class laboratory for studying competing processes of uplift, deformation, erosion, sedimentation and depocentre migration in an actively forming intracontinental transpressional basin.
-
-
-
Low‐amplitude, synsedimentary folding of a deltaic complex: Roda Sandstone (lower Eocene), South‐Pyrenean Foreland Basin
Authors M. López‐Blanco, M. Marzo and J.A. MuñozABSTRACTThe South‐Pyrenean Foreland Basin is a sedimentary trough developed during Palaeogene times in response Pyrenean orogenesis. The structural development of the chain progressively involved the foreland basin deposits resulting in synsedimentary thrusting and growth of folds through the basin. The lower Eocene Roda Sandstone was deposited in a shallow‐marine environment whose topography (bathymetry) was modified by a series of growing gentle folds. This synsedimentary folding is evidenced in the field (i) thickening of sedimentary units above synclinal structures and thinning over anticlines; (ii) carbonate platform deposits growing on top of anticlines; (iii) the areal distribution of benthic foraminifera in transgressive facies assemblages determined by an irregular, fold‐influenced palaeobathymetry; (iv) variation of sandstone palaeocurrents related to the presence of a sedimentary trough formed by the synsedimentary growth of a syncline. In addition, synsedimentary folding has been evidenced from seismic data. In the Roda Sandstone example, the growth of gentle folds occurred in an area with high sedimentation rates (∼0.21 ± 0.06 mm y−1). Due to the high sedimentation rates, exceeding the folds uplift rate (∼0.10 ± 0.01 mm y−1), there are no noticeable unconformities in the growth strata at outcrop scale. However, the effects on the sedimentation are very significant, because the sediments were deposited close to sea level, and thus were very sensitive to fauna and facies distribution.
-
-
-
A flexural model for the Paradox Basin: implications for the tectonics of the Ancestral Rocky Mountains
More LessABSTRACTThe Paradox Basin is a large (190 km × 265 km) asymmetric basin that developed along the southwestern flank of the basement‐involved Uncompahgre uplift in Utah and Colorado, USA during the Pennsylvanian–Permian Ancestral Rocky Mountain (ARM) orogenic event. Previously interpreted as a pull‐apart basin, the Paradox Basin more closely resembles intraforeland flexural basins such as those that developed between the basement‐cored uplifts of the Late Cretaceous–Eocene Laramide orogeny in the western interior USA. The shape, subsidence history, facies architecture, and structural relationships of the Uncompahgre–Paradox system are exemplary of typical ‘immobile’ foreland basin systems.
Along the southwest‐vergent Uncompahgre thrust, ∼5 km of coarse‐grained syntectonic Desmoinesian–Wolfcampian (mid‐Pennsylvanian to early Permian; ∼310–260 Ma) sediments were shed from the Uncompahgre uplift by alluvial fans and reworked by aeolian‐modified fluvial megafan deposystems in the proximal Paradox Basin. The coeval rise of an uplift‐parallel barrier ∼200 km southwest of the Uncompahgre front restricted reflux from the open ocean south and west of the basin, and promoted deposition of thick evaporite‐shale and biohermal carbonate facies in the medial and distal submarine parts of the basin, respectively. Nearshore carbonate shoal and terrestrial siliciclastic deposystems overtopped the basin during the late stages of subsidence during the Missourian through Wolfcampian (∼300–260 Ma) as sediment flux outpaced the rate of generation of accommodation space. Reconstruction of an end‐Permian two‐dimensional basin profile from seismic, borehole, and outcrop data depicts the relationship of these deposystems to the differential accommodation space generated by Pennsylvanian–Permian subsidence, highlighting the similarities between the Paradox basin‐fill and that of other ancient and modern foreland basins. Flexural modeling of the restored basin profile indicates that the Paradox Basin can be described by flexural loading of a fully broken continental crust by a model Uncompahgre uplift and accompanying synorogenic sediments. Other thrust‐bounded basins of the ARM have similar basin profiles and facies architectures to those of the Paradox Basin, suggesting that many ARM basins may share a flexural geodynamic mechanism. Therefore, plate tectonic models that attempt to explain the development of ARM uplifts need to incorporate a mechanism for the widespread generation of flexural basins.
-
-
-
Evolution of the Longmen Shan Foreland Basin (Western Sichuan, China) during the Late Triassic Indosinian Orogeny
Authors L. Yong, P. A. Allen, A. L. Densmore and X. QiangABSTRACTThe Longmen Shan Foreland Basin developed as a flexural foredeep during the Late Triassic Indosinian orogeny, spanning the time period c. 227–206 Ma. The basin fill can be divided into three tectonostratigraphic units overlying a basal megasequence boundary, and is superimposed on the Palaeozoic–Middle Triassic (Anisian) carbonate‐dominated margin of the South China Block. The remains of the load system responsible for flexure of the South China foreland can be seen in the Songpan‐Ganzi Fold Belt and Longmen Shan Thrust Belt. Early in its history the Longmen Shan Foreland Basin extended well beyond its present northwestern boundary along the trace of the Pengguan Fault, to at least the palinspastically restored position of the Beichuan Fault.
The basal boundary of the foreland basin megasequence is a good candidate for a flexural forebulge unconformity, passing from conformity close to the present trace of the Beichuan Fault to a karstified surface towards the southeast. The overlying tectonostratigraphic unit shows establishment and drowning of a distal margin carbonate ramp and sponge build‐up, deepening into offshore marine muds, followed by progradation of marginal marine siliciclastics, collectively reminiscent of the Alpine underfilled trinity of Sinclair (1997). Tectonostratigraphic unit 2 is marked by the severing of the basin's oceanic connection, a major lake flooding and the gradual establishment of major deltaic‐paralic systems that prograded from the eroding Longmen Shan orogen. The third tectonostratigraphic unit is typified by coarse, proximal conglomerates, commonly truncating underlying rocks, which fine upwards into lacustrine shales.
The foreland basin stratigraphy has been further investigated using a simple analytical model based on the deflection by supracrustal loads of a continuous elastic plate overlying a fluid substratum. Load configurations have been partly informed by field geology and constrained by maximum elevations and topographic profiles of present‐day mountain belts. The closest match between model predictions and stratigraphic observations is for a relatively rigid plate with flexural rigidity on the order of 5 × 1023 to 5 × 1024 N m (equivalent elastic thickness of c. 43–54 km). The orogenic load system initially (c. 227–220 Ma) advanced rapidly (>15 mm yr−1) towards the South China Block in the Carnian, associated with the rapid closure of the Songpan‐Ganzi ocean, before slowing to < 5 mm yr−1 during the sedimentation of the upper two tectonostratigraphic units (c. 220–206 Ma).
-
-
-
Thermal history of the Cretaceous Sindong Group, Gyeongsang Basin, Korea based on fission track analysis
Authors Hyoun Soo Lim, Yong Il Lee and Kyung Duck MinABSTRACT Apatite and zircon fission track (FT) analyses were carried out to reconstruct the thermal history of the Lower Cretaceous Sindong Group, which is the lowermost stratal unit of the Gyeongsang Basin, Korea. Zircon FT central ages show a wide range from 83 ± 5 to 157 ± 18 Ma, and single‐grain age spectra have multiple age populations, whereas all apatites have very consistent FT ages of c. 60 Ma, suggesting a totally reset cooling age. Co‐existence of both older and younger ages compared with the depositional age and relatively short mean track length indicate that the Sindong zircons were partially annealed. The Sindong Group was heated into the zircon partial annealing zone (ZPAZ) around 80 Ma, and cooled below the apatite closure temperature at c. 60 Ma. Based on the zircon FT results combined with vitrinite reflectance data, the maximum palaeotemperature to which the Sindong Group had been subjected can be inferred to be about 260 °C. Zircon FT data from a granite body that is in contact with the Sindong Group and sandstones close to the granite body indicate that thermal influence caused by Upper Cretaceous intrusive rocks was limited in close vicinity of the intrusion and that the major heat source of the Sindong Group was burial. The thickness of uplifted and eroded section is estimated to be about 7 km.
-
Volumes & issues
-
Volume 36 (2024)
-
Volume 35 (2023)
-
Volume 34 (2022)
-
Volume 33 (2021)
-
Volume 32 (2020)
-
Volume 31 (2019)
-
Volume 30 (2018)
-
Volume 29 (2017)
-
Volume 28 (2016)
-
Volume 27 (2015)
-
Volume 26 (2014)
-
Volume 25 (2013)
-
Volume 24 (2012)
-
Volume 23 (2011)
-
Volume 22 (2010)
-
Volume 21 (2009)
-
Volume 20 (2008)
-
Volume 19 (2007)
-
Volume 18 (2006)
-
Volume 17 (2005)
-
Volume 16 (2004)
-
Volume 15 (2003)
-
Volume 14 (2002)
-
Volume 13 (2001)
-
Volume 12 (2000)
-
Volume 11 (1999)
-
Volume 10 (1998)
-
Volume 9 (1997)
-
Volume 8 (1996)
-
Volume 7 (1994)
-
Volume 6 (1994)
-
Volume 5 (1993)
-
Volume 4 (1992)
-
Volume 3 (1991)
-
Volume 2 (1989)
-
Volume 1 (1988)