1887
Volume 28 Number 1
  • E-ISSN: 1365-2117

Abstract

Abstract

Sedimentological and geochronological studies along a north–south traverse across the Bangong‐Nujiang suture zone (BNSZ) in Gaize, Tibet provide evidence for a Late Triassic–Jurassic accretionary wedge accreted to the south margin of Qiangtang. This wedge, preserved as the Mugagangri Group (MG), records evidence for the northward subduction of the Bangong‐Nujiang Ocean (BNO) beneath Qiangtang. The MG strata comprise two coarser intervals (lower olistostromes and upper conglomerates) intercalated within sandy turbidites, which are consistent with timing and forearc stratigraphy during subduction initiation predicted by geodynamic modelling. Following the model, the northward subduction of the BNO beneath Qiangtang and subsequent arc‐magmatism are inferred to have begun, respectively, at . 220 Ma and . 210 Ma, with respect to depositional ages constrained by youngest detrital‐zircon ages. The initiation of arc‐magmatism is also supported by provenance transition reflected by sandstone detrital modes and age patterns of detrital zircons. Previously, evidence for an incipient arc was lacking, but the timing of Late Triassic BNO subduction and related arc‐magmatism is coincident with an important Late Triassic magmatic event in central Qiangtang that probably represents the ‘missing’ arc. Other Qiangtang events, such as exhumation of the Qiangtang metamorphic belt as a source area, and development of the Late Triassic Nadigangri deposits and bimodal volcanism, are more easily explained in the tectonic context of early northward subduction of the BNO beneath Qiangtang, beginning at about 220 Ma.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12105
2015-01-02
2019-12-07
Loading full text...

Full text loading...

References

  1. Brun, J. & Faccenna, C. (2008) Exhumation of high‐pressure rocks driven by slab rollback. Earth Planet. Sci. Lett., 272, 1–7.
    [Google Scholar]
  2. Cawood, P.A., Hawkesworth, C.J. & Dhuime, B. (2012) Detrital zircon record and tectonic setting. Geology, 40, 875–878.
    [Google Scholar]
  3. Chen, Y.L., Zhang, K.Z., Gou, Y.D. & Wen, J.H. (2006) 1: 250,000 Geological Map of Wuma Region With Report. Geological Survey of Sichuan Province, Chengdu.
    [Google Scholar]
  4. Cloos, M. & Shreve, R.L. (1988) Subduction‐channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 1. Background and Description. Pure Appl. Geophys., 128, 455–500.
    [Google Scholar]
  5. Dickinson, W.R. (1985) Interpreting provenance relations from detrital modes of sandstones. Proven. Arenites, 148, 333–361.
    [Google Scholar]
  6. Ding, L., Yang, D., Cai, F.L., Pullen, A., Kapp, P., Gehrels, G.E., Zhang, L.Y., Zhang, Q.H., Lai, Q.Z., Yue, Y.H. & Others, (2013) Provenance analysis of the Mesozoic Hoh‐Xil‐Songpan‐Ganzi Turbidites in Northern Tibet: implications for the tectonic evolution of the Eastern Paleo‐Tethys Ocean. Tectonics, 32, 34–48.
    [Google Scholar]
  7. Draut, A.E. & Clift, P.D. (2012) Basins in ARC‐continent collisions. Tecton. Sediment. Basins: Recent Advan.347–368.
    [Google Scholar]
  8. von Eynatten, H. & Dunkl, I. (2012) Assessing the sediment factory: the role of single grain analysis. Earth Sci. Rev., 115, 97–120.
    [Google Scholar]
  9. Fu, X., Wang, J., Tan, F., Chen, M. & Chen, W. (2010) The late triassic rift‐related volcanic rocks from Eastern Qiangtang, Northern Tibet (China): age and tectonic implications. Gondwana Res., 17, 135–144.
    [Google Scholar]
  10. Gehrels, G., Kapp, P., DeCelles, P., Pullen, A., Blakey, R., Weislogel, A., Ding, L., Guynn, J., Martin, A. & McQuarrie, N. & Others (2011) Detrital zircon geochronology of pre‐tertiary strata in the Tibetan‐Himalayan Orogen. Tectonics, 30, TC5016.
    [Google Scholar]
  11. Girardeau, J., Marcoux, J., All, E., Gre, C.J., Bassoullet, J.P., Youking, T., Xuchang, X., Yougong, Z. & Xibin, W. (1984) Tectonic environment and geodynamic significance of the neo‐cimmerian Donqiao Ophiolite, Bangong‐Nujiang Suture Zone. Tibet. Nature, 307, 27–31.
    [Google Scholar]
  12. Gurnis, M., Hall, C. & Lavier, L. (2004) Evolving force balance during incipient subduction. Geochem. Geophys. Geosyst., 5, 7001.
    [Google Scholar]
  13. Guynn, J.H., Kapp, P., Pullen, A., Heizler, M., Gehrels, G. & Ding, L. (2006) Tibetan basement rocks near Amdo reveal “Missing” Mesozoic Tectonism Along the Bangong Suture, Central Tibet. Geology, 34, 505–508.
    [Google Scholar]
  14. Haq, B.U., Hardenbol, J. & Vail, P.R. (1987) Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167.
    [Google Scholar]
  15. Hou, K., Li, Y. & Tian, Y.Y. (2009) In situ U‐Pb zircon dating using laser ablation‐multi Ion counting‐ICP‐MS. Mineral Deposits, 28, 481–492.
    [Google Scholar]
  16. Hu, P.Y., Li, C., Yang, H.T., Zhang, H.B. & Yu, H. (2010) Characteristic, Zircon dating and tectonic significance of Late Triassic Granite in the Guoganjianianshan Area, Central Qiangtang, Qinghai‐tibet Plateau. China. Geol. Bull. China, 29, 1825–1832.
    [Google Scholar]
  17. Jolivet, L., Daniel, J.M., Truffert, C. & Goff, E.B. (1994) Exhumation of deep crustal metamorphic rocks and crustal extension in Arc and Back‐Arc regions. Lithos, 33, 3–30.
    [Google Scholar]
  18. Kapp, P., Murphy, M.A., Yin, A., Harrison, T.M., Ding, L. & Guo, J. (2003a) Mesozoic and Cenozoic Tectonic evolution of the Shiquanhe area of Western Tibet. Tectonics, 22, 1029.
    [Google Scholar]
  19. Kapp, P., Yin, A., Manning, C.E., Harrison, T.M., Taylor, M.H. & Ding, L. (2003b) Tectonic evolution of the early Mesozoic Blueschist‐Bearing Qiangtang Metamorphic Belt, Central Tibet. Tectonics, 22, 1043.
    [Google Scholar]
  20. Kapp, P., Yin, A., Harrison, T.M. & Ding, L. (2005) Cretaceous‐tertiary shortening, basin development, and volcanism in Central Tibet. Geol. Soc. Am. Bull., 117, 865–878.
    [Google Scholar]
  21. Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K. & Wang, D. (2010) Continental and oceanic crust recycling‐induced melt‐peridotite interactions in the Trans‐North China Orogen: U‐Pb Dating, Hf isotopes and trace elements in Zircons from Mantle Xenoliths. J. Petrol., 51, 537–571.
    [Google Scholar]
  22. Ludwig, K.R. (2003) User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 70.
    [Google Scholar]
  23. Malusà, M.G., Villa, I.M., Vezzoli, G. & Garzanti, E. (2011a) Detrital geochronology of unroofing magmatic complexes and the slow erosion of oligocene volcanoes in the Alps. Earth Planet. Sci. Lett., 301, 324–336.
    [Google Scholar]
  24. Malusà, M.G., Faccenna, C., Garzanti, E. & Polino, R. (2011b) Divergence in subduction zones and exhumation of high pressure rocks (Eocene Western Alps). Earth Planet. Sci. Lett., 310, 21–32.
    [Google Scholar]
  25. Metcalfe, I. (2013) Gondwana dispersion and Asian Accretion: tectonic and palaeogeographic evolution of Eastern Tethys. J. Asian Earth Sci., 66, 1–33.
    [Google Scholar]
  26. Nasdala, L., Hofmeister, W., Norberg, N., Martinson, J.M., Corfu, F., D O Rr, W., Kamo, S.L., Kennedy, A.K., Kronz, A. & Reiners, P.W. & Others (2008) Zircon M257‐A homogeneous natural reference material for the ion microprobe U‐Pb analysis of zircon. Geostand. Geoanal. Res., 32, 247–265.
    [Google Scholar]
  27. Ogg, J.G. (2012) Chapter 25, Triassic. In: The Geologic Time Scale 2012 (Ed. by F.M.Gradstein , J.G.Ogg , M.D.Schmitz & G.M.Ogg ), 2, pp. 681–730. Elsevier, Oxford.
    [Google Scholar]
  28. Pan, G., Wang, L., Li, R., Yuan, S., Ji, W., Yin, F., Zhang, W. & Wang, B. (2012) Tectonic evolution of the Qinghai‐Tibet plateau. J. Asian Earth Sci., 53, 3–14.
    [Google Scholar]
  29. Peng, T., Zhao, G., Fan, W., Peng, B. & Mao, Y. (2015) Late Triassic Granitic Magmatism in the Eastern Qiangtang, Eastern Tibetan Plateau: geochronology, petrogenesis and implications for the tectonic evolution of the paleo‐tethys. Gondwana Res., 27, 1494–1508.
    [Google Scholar]
  30. Pullen, A., Kapp, P., Gehrels, G.E., Vervoort, J.D. & Ding, L. (2008) Triassic Continental Subduction in Central Tibet and Mediterranean‐style closure of the Paleo‐Tethys Ocean. Geology, 36, 351–354.
    [Google Scholar]
  31. Rains, J.L., Marsaglia, K.M. & Dunne, G.C. (2012) Stratigraphic record of subduction initiation in the Permian Metasedimentary Succession of the El Paso Mountains, California. Lithosphere, 4, 533–552.
    [Google Scholar]
  32. Richards, M., Bowman, M. & Reading, H. (1998) Submarine‐Fan systems I: characterization and stratigraphic prediction. Mar. Pet. Geol., 15, 689–717.
    [Google Scholar]
  33. Shi, R. (2007) SHRIMP dating of the Bangong Lake SSZ‐type Ophiolite: constraints on the closure time of Ocean in the Bangong Lake‐Nujiang River, Northwestern Tibet. Chin. Sci. Bull., 52, 936–941.
    [Google Scholar]
  34. Singleton, J.S. & Cloos, M. (2013) Kinematic analysis of Mélange Fabrics in the Franciscan Complex Near San Simeon, California: evidence for Sinistral Slip on the Nacimiento Fault Zone?Lithosphere, 5, 179–188.
    [Google Scholar]
  35. Tang, X. & Zhang, K. (2014) Lawsonite‐and Glaucophane‐bearing Blueschists From NW Qiangtang, Northern Tibet, China: mineralogy, geochemistry, geochronology, and tectonic implications. Int. Geol. Rev., 56, 150–166.
    [Google Scholar]
  36. Teyssier, C. (2011) Exhumation of Deep Orogenic Crust. Lithosphere, 3, 439–443.
    [Google Scholar]
  37. Yin, A. & Harrison, T.M. (2000) Geologic evolution of the Himalayan‐Tibetan Orogen. Annu. Rev. Earth Planet. Sci., 28, 211–280.
    [Google Scholar]
  38. Zeng, Q.G., Mai, G.Z. & Chen, G.R. (2006) 1: 250,000 geological map of Gaize region with report. Bureau of Geology and Mineral Resources of Xizang Autonomous Region, Lhasa.
  39. Zhang, K., Xia, B., Wang, G., Li, Y. & Ye, H. (2004) Early cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of Central Tibet, Western China. Geol. Soc. Am. Bull., 116, 1202–1222.
    [Google Scholar]
  40. Zhang, K., Zhang, Y., Li, B. & Zhong, L. (2007) Nd Isotopes of siliciclastic rocks From Tibet, Western China: constraints on provenance and pre‐Cenozoic tectonic evolution. Earth Planet. Sci. Lett., 256, 604–616.
    [Google Scholar]
  41. Zhang, K.J., Zhang, Y.X., Tang, X.C. & Xia, B. (2012) Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo‐Asian Collision. Earth‐Sci. Rev., 114, 236–249.
    [Google Scholar]
  42. Zhang, H., Yang, T., Hou, Z., Song, Y., Ding, Y. & Cheng, X. (2013) Petrogenesis and tectonics of late permian felsic volcanic rocks, Eastern Qiangtang Block, North‐Central Tibet: Sr and Nd Isotopic evidence. Int. Geol. Rev., 55, 1017–1028.
    [Google Scholar]
  43. Zhang, X., Shi, R., Huang, Q., Liu, D., Gong, X., Chen, S., Wu, K., Yi, G., Sun, Y. & Ding, L. (2014a) Early Jurassic high‐pressure metamorphism of the Amdo Terrane, Tibet: constraints from Zircon U–Pb geochronology of Mafic granulites. Gondwana Res., 26, 975–985.
    [Google Scholar]
  44. Zhang, X., Dong, Y., Li, C., Deng, M., Zhang, L. & Xu, W. (2014b) Tectonic setting and petrogenesis mechanism of Late Triassic Magmatism in Central Qiangtang, Tibetan Plateau: take the Xiangtaohu Pluton in the Hongjishan region as an example. Acta Petrologica Sinica, 30, 547–564.
    [Google Scholar]
  45. Zhu, D., Zhao, Z., Niu, Y., Dilek, Y. & Mo, X. (2011) Lhasa Terrane in Southern Tibet came from Australia. Geology, 39, 727–730.
    [Google Scholar]
  46. Zhu, D., Zhao, Z., Niu, Y., Dilek, Y., Hou, Z. & Mo, X. (2013) The origin and pre‐Cenozoic evolution of the Tibetan Plateau. Gondwana Res., 23, 1429–1454.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12105
Loading
/content/journals/10.1111/bre.12105
Loading

Data & Media loading...

Supplements

Point‐counting data of detrital modes of the Mugagangri Group sandstones.

WORD

U–Pb isotope data of the zircons from the Mugagangri Group sandstones.

WORD
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error