1887
Volume 29, Issue 3
  • E-ISSN: 1365-2117
PDF

Abstract

Abstract

The Qiongdongnan Basin is one of the largest Cenozoic rifted basins on the northern passive margin of the South China Sea. It is well known that since the Late Miocene, approximately 10 Ma after the end of the syn‐rift phase, this basin has exhibited rapid thermal subsidence. However, detailed analysis reveals a two‐stage anomalous subsidence feature of the syn‐rift subsidence deficit and the well‐known rapid post‐rift subsidence after 10.5 Ma. Heat‐flow data show that heat flow in the central depression zone is 70–105 mW m−2, considerably higher than the heat flow (<70 mW m−2) on the northern shelf. In particular, there is a NE‐trending high heat‐flow zone of >85 mW m−2 in the eastern basin. We used a numerical model of coupled geothermal processes, lithosphere thinning and depositional processes to analyse the origin of the anomalous subsidence pattern. Numerical analysis of different cases shows that the stretching factor β based on syn‐rift sequences is less than the observed crustal stretching factor β, and if the lithosphere is thinned with β during the syn‐rift phase (before 21 Ma), the present basement depth can be predicted fairly accurately. Further analysis does not support crustal thinning after 21 Ma, which indicates that the syn‐rift subsidence is in deficit compared with the predicted subsidence with the crustal stretching factor β. The observed high heat flow in the central depression zone is caused by the heating of magmatic injection equivalently at approximately 3–5 Ma, which affected the eastern basin more than the western basin, and the Neogene magmatism might be fed by the deep thermal anomaly. Our results suggest that the causes of the syn‐rift subsidence deficit and rapid post‐rift subsidence might be related. The syn‐rift subsidence deficit might be caused by the dynamic support of the influx of warmer asthenosphere material and a small‐scale thermal upwelling beneath the study area, which might have been persisting for about 10 Ma during the early post‐rift phase, and the post‐rift rapid subsidence might be the result of losing the dynamic support with the decaying or moving away of the deep thermal source, and the rapid cooling of the asthenosphere. We concluded that the excess post‐rift subsidence occurs to compensate for the syn‐rift subsidence deficit, and the deep thermal anomaly might have affected the eastern Qiongdongnan Basin since the Late Oligocene.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12179
2016-01-25
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/bre/29/3/bre12179.html?itemId=/content/journals/10.1111/bre.12179&mimeType=html&fmt=ahah

References

  1. Allen, M., Jackson, J. & Walker, R. (2004) Reply to comment by Rob Westaway on “Late Cenozoic reorganization of the Arabia‐Eurasia collision and the comparison of short‐term and long‐term deformation rates”. Tectonics, 23, TC5007, doi:10.1029/2004TC001695.
    [Google Scholar]
  2. Barckhausen, U., Engels, M., Franke, D., Ladage, S. & Pubellier, M. (2014) Evolution of the South China Sea: revised ages for breakup and seafloor spreading. Mar. Pet. Geol., 58, 599–611.
    [Google Scholar]
  3. Bialas, R.W., Buck, W.R. & Qin, R. (2010) How much magma is required to rift a continent?Earth Planet. Sci. Lett., 292, 68–78.
    [Google Scholar]
  4. Briais, A., Patriat, P. & Tapponnier, P. (1993) Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the tertiary tectonics of Southeast Asia. J. Geophys. Res. Solid Earth (1978–2012), 98, 6299–6328.
    [Google Scholar]
  5. Brune, S., Popov, A.A. & Sobolev, S.V. (2013) Quantifying the thermo‐mechanical impact of plume arrival on continental break‐up. Tectonophysics, 604, 51–59.
    [Google Scholar]
  6. Buck, W.R. (2004) Consequences of asthenospheric variability on continental rifting. Rheol. Deform. Lithosphere Cont. Mar., 62, 1–30.
    [Google Scholar]
  7. Buntebarth, G. (1984) Geothermics: An Introduction.
  8. Burov, E.B. & Diament, M. (1995) The effective elastic thickness (Te) of continental lithosphere: what does it really mean?J. Geophys. Res., 100(B3), 3905–3927.
    [Google Scholar]
  9. Burov, E., Guillou‐Frottier, L., d'Acremont, E., Le Pourhiet, L. & Cloetingh, S. (2007) Plume head–lithosphere interactions near intra‐continental plate boundaries. Tectonophysics, 434, 15–38.
    [Google Scholar]
  10. Calvès, G., Clift, P.D. & Inam, A. (2008) Anomalous subsidence on the rifted volcanic margin of Pakistan: no influence from Deccan plume. Earth Planet. Sci. Lett., 272, 231–239.
    [Google Scholar]
  11. Chen, L., Lu, Y., Wang, Z. & Sun, Z. (2011) Structure of carbonate platform margin and characteristics of reef and their controlling factors in western deep‐water region of South China Sea. Petrol. Geol. Exp., 33(6), 607–612.
    [Google Scholar]
  12. Clift, P.D. & Sun, Z. (2006) The sedimentary and tectonic evolution of the Yinggehai‐Song Hong basin and the southern Hainan Margin, South China Sea: implications for Tibetan uplift and monsoon intensification. J. Geophys. Res. Solid Earth, 111, B06405, doi:10.1029/2005JB004048.
    [Google Scholar]
  13. Clift, P.D. & Turner, J. (1998) Paleogene igneous underplating and subsidence anomalies in the Rockall‐Faeroe‐Shetland area. Mar. Pet. Geol., 15, 223–243.
    [Google Scholar]
  14. Clift, P., Lin, J. & Barckhausen, U. (2002) Evidence of low flexural rigidity and low viscosity lower continental crust during continental break‐up in the South China Sea. Mar. Pet. Geol., 19, 951–970.
    [Google Scholar]
  15. Cloetingh, S. & Kooi, H. (1992) Intraplate stresses and dynamical aspects of rifted basins. Tectonophysics, 215, 167–185.
    [Google Scholar]
  16. Contreras, J., Zühlke, R., Bowman, S. & Bechstädt, T. (2010) Seismic stratigraphy and subsidence analysis of the southern Brazilian margin (Campos, Santos and Pelotas Basins). Mar. Pet. Geol., 27, 1952–1980.
    [Google Scholar]
  17. Davies, J.H. & Bunge, H.‐P. (2006) Are splash plumes the origin of minor hotspots?Geology, 34, 349–352.
    [Google Scholar]
  18. Davis, M. & Kusznir, N. (2004) Depth‐dependent lithospheric stretching at rifted continental margins. In: Proceedings of NSF Rifted Margins Theoretical Institute (Ed. by G.D.Karner ), pp. 92–136. Columbia University Press, New York.
    [Google Scholar]
  19. Ding, W., Franke, D., Li, J. & Steuer, S. (2013) Seismic stratigraphy and tectonic structure from a composite multi‐channel seismic profile across the entire Dangerous Grounds, South China Sea. Tectonophysics, 582, 162–176.
    [Google Scholar]
  20. Driscoll, N.W. & Karner, G.D. (1998) Lower crustal extension across the Northern Carnarvon basin, Australia: Evidence for an eastward dipping detachment. J. Geophys. Res. Solid Earth (1978–2012), 103, 4975–4991.
    [Google Scholar]
  21. Ebinger, C.J., van Wijk, J. & Keir, D. (2013) The time scales of continental rifting: implications for global processes. Geol. Soc. Am. Spec. Pap., 500, 371–396.
    [Google Scholar]
  22. Franke, D., Savva, D., Pubellier, M., Steuer, S., Mouly, B., Auxietre, J.‐L., Meresse, F. & Chamot‐Rooke, N. (2014) The final rifting evolution in the South China Sea. Mar. Pet. Geol., 58, 704–720.
    [Google Scholar]
  23. Gong, Z., Li, S., Xie, T., Zhang, Q., Xu, S., Xia, K., Yang, J., Sun, Y. & Liu, L. (1997) Continental Margin Basin Analysis and Hydrocarbon Accumulation of the Northern South China Sea. pp. 1–178. Science Press, Beijing.
    [Google Scholar]
  24. Haq, B.U., Hardenbol, J. & Vail, P.R. (1987) Chronology of fluctuating sea levels since the Triassic (250 Myr Ago to Present). Science, 235, 1156–1167.
    [Google Scholar]
  25. He, L., Wang, K., Xiong, L. & Wang, J. (2001) Heat flow and thermal history of the South China Sea. Phys. Earth Planet. Inter., 126, 211–220.
    [Google Scholar]
  26. Hoang, N. & Flower, M. (1998) Petrogenesis of Cenozoic basalts from Vietnam: implication for origins of a ‘diffuse igneous province’. J. Petrol., 39, 369–395.
    [Google Scholar]
  27. Hu, B., Wang, L., Yan, W., Liu, S., Cai, D., Zhang, G., Zhong, K., Pei, J. & Sun, B. (2013) The tectonic evolution of the Qiongdongnan Basin in the Northern margin of the South China Sea. J. Asian Earth Sci., 77, 163–182.
    [Google Scholar]
  28. Huang, J. & Zhao, D. (2006) High‐resolution mantle tomography of China and surrounding regions. J. Geophys. Res. Solid Earth, 111, B09305, doi:10.1029/2005JB004066.
    [Google Scholar]
  29. Huang, H., Qiu, X., Xu, H., Zhao, M., Hao, T., Xu, Y. & Li, J. (2011) Preliminary results of the earthquake observation and the onshore‐offshore seismic experiments on Xisha Block. Chin. J. Geophys., 54, 3161–3170.
    [Google Scholar]
  30. Huang, H., Lu, Y. & Zou, Z. (2012) Application of seismic sedimentology in platform edge reef, Songnan 3d area, Qiongdongnan Basin. Petrol. Geol. Exp., 34(1), 25–29.
    [Google Scholar]
  31. Jarvis, G.T. & McKenzie, D.P. (1980) Sedimentary basin formation with finite extension rates. Earth Planet. Sci. Lett., 48, 42–52.
    [Google Scholar]
  32. Ji, M., Zhang, G., Yang, H., Yang, D. & Li, C. (2014) Structural pattern and evolution of eastern sag belt, in deep‐water area of Qiongdongnan Basin. Mar. Geol. Front., 30(9), 26–35.
    [Google Scholar]
  33. Karner, G.D. & Driscoll, N.W. (1999) Style, timing and distribution of tectonic deformation across the Exmouth Plateau, Northwest Australia, determined from stratal architecture and quantitative basin modelling. Geol. Soc. Lond. Spec. Publ., 164, 271–311.
    [Google Scholar]
  34. Kooi, H., Cloetingh, S. & Burrus, J. (1992) Lithospheric necking and regional isostasy at extensional basins 1. Subsidence and gravity modeling with an application to the Gulf of Lions margin (Se France). J. Geophys. Res. Solid Earth (1978–2012), 97, 17553–17571.
    [Google Scholar]
  35. Lebedev, S. & Nolet, G. (2003) Upper mantle beneath Southeast Asia from S velocity tomography. J. Geophys. Res. Solid Earth, 108(B1), 2048, doi: 2010.1029/2000JB000073
    [Google Scholar]
  36. Lei, J., Zhao, D., Steinberger, B., Wu, B., Shen, F. & Li, Z. (2009) New seismic constraints on the upper mantle structure of the Hainan plume. Phys. Earth Planet. Inter., 173, 33–50.
    [Google Scholar]
  37. Lei, C., Ren, J.Y. & Tong, D.J. (2013) Geodynamics of the ocean‐continent transition zone, northern margin of the South China Sea: implications for the opening of the South China Sea. Chin. J. Geophys. Chin. Edn., 56, 1287–1299.
    [Google Scholar]
  38. Li, S., Lin, C., Zhang, Q., Yang, S. & Zu, P. (1998) Episodic rifting dynamics of marginal basins north of South China Sea and tectonic accidents since 10 Ma. Chin. Sci. Bull., 43(8), 797–810.
    [Google Scholar]
  39. Li, Y., Shi, X., Xu, H., He, J. & Liu, B. (2012) Temporal and spatial distribution of tectonic subsidence and discussion on formation mechanism of anomalous post‐rift tectonic subsidence in the Qiongdongnan Basin. J. Jilin. Univ. (Earth Science Edition), 41, 47–57.
    [Google Scholar]
  40. Li, C.F., Xu, X., Lin, J., Sun, Z., Zhu, J., Yao, Y.J., Zhao, X.X., Liu, Q.S., Kulhanek, D.K., Wang, J., Song, T.R., Zhao, J.F., Qiu, N., Guan, Y.X., Zhou, Z.Y., Williams, T., Bao, R., Briais, A., Brown, E.A., Chen, Y.F., Clift, P.D., Colwell, F.S., Dadd, K.A., Ding, W.W., Almeida, I.H., Huang, X.L., Hyun, S.M., Jiang, T., Koppers, A.A.P., Li, Q.Y., Liu, C.L., Liu, Z.F., Nagai, R.H., Peleo‐Alampay, A., Su, X., Tejada, M.L.G., Trinh, H.S., Yeh, Y.C., Zhang, C.L., Zhang, F. & Zhang, G.L. (2014) Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochem. Geophys. Geosyst., 15, 4958–4983.
    [Google Scholar]
  41. Liu, F. & Wu, L. (2006) Topographic and morphologic characteristics and genesis analysis of Xisha trough sea area in the South China Sea. Mar. Geol. Quat. Geol., 26, 7.
    [Google Scholar]
  42. Lu, B., Sun, X., Zhang, G., Zhang, B., Lang, Y. & Wang, P. (2011) Seismic‐potential field response characteristics and identification of basement lithology of the Northern South China Sea basin. Chin. J. Geophys., 54, 563–572.
    [Google Scholar]
  43. Lucazeau, F. & Le Douaran, S. (1985) The blanketing effect of sediments in basins formed by extension: a numerical model. Application to the Gulf of Lion and Viking Graben. Earth Planet. Sci. Lett., 74, 92–102.
    [Google Scholar]
  44. Lucazeau, F., Leroy, S., Bonneville, A., Goutorbe, B., Rolandone, F., d'Acremont, E., Watremez, L., Düsünur, D., Tuchais, P. & Huchon, P. (2008) Persistent thermal activity at the Eastern Gulf of Aden after continental break‐up. Nat. Geosci., 1, 854–858.
    [Google Scholar]
  45. Lucazeau, F., Leroy, S., Autin, J., Bonneville, A., Goutorbe, B., Watremez, L., D'Acremont, E., Düsünur, D., Rolandone, F. & Huchon, P. (2009) Post‐Rift volcanism and high heat‐flow at the ocean‐continent transition of the Eastern Gulf of Aden. Terra Nova, 21, 285–292.
    [Google Scholar]
  46. Makhous, M. & Galushkin, Y.I. (2005) Basin Analysis and Modeling of the Burial, Thermal and Maturation Histories in Sedimentary Basins. Editions OPHRYS.
  47. McKenzie, D. (1978) Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett., 40, 25–32.
    [Google Scholar]
  48. Morley, C.K. & Westaway, R. (2006) Subsidence in the super‐deep Pattani and Malay basins of Southeast Asia: a coupled model incorporating lower‐crustal flow in response to post‐rift sediment loading. Basin Res., 18, 51–84.
    [Google Scholar]
  49. Moulin, M., Aslanian, D., Olivet, J.‐L., Contrucci, I., Matias, L., Géli, L., Klingelhoefer, F., Nouzé, H., Réhault, J.‐P. & Unternehr, P. (2005) Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic data (Zaïango Project). Geophys. J. Int., 162, 793–810.
    [Google Scholar]
  50. Nadin, P., Kusznir, N. & Cheadle, M. (1997) Early tertiary plume uplift of the North Sea and Faeroe‐Shetland basins. Earth Planet. Sci. Lett., 148, 109–127.
    [Google Scholar]
  51. Nissen, S.S., Hayes, D.E., Bochu, Y., Zeng, W., Chen, Y. & Nu, X. (1995a) Gravity, heat flow, and seismic constraints on the processes of crustal extension: northern margin of the South China Sea. J. Geophys. Res. Solid Earth (1978–2012), 100, 22447–22483.
    [Google Scholar]
  52. Nissen, S.S., Hayes, D.E., Buhl, P., Diebold, J., Yao, B.C., Zeng, W.J. & Chen, Y.Q. (1995b) Deep penetration seismic soundings across the northern margin of the South China Sea. J. Geophys. Res., 100(B11), 22407–22433.
    [Google Scholar]
  53. Péron‐Pinvidic, G. & Manatschal, G. (2008) The final rifting evolution at deep magma‐poor passive margins from Iberia‐Newfoundland: a new point of view. Int. J. Earth Sci., 98, 1581–1597.
    [Google Scholar]
  54. Pfender, M. & Villinger, H. (2002) Miniaturized data loggers for deep sea sediment temperature gradient measurements. Mar. Geol., 186, 557–570.
    [Google Scholar]
  55. Podladchikov, Y.Y., Poliakov, A. & Yuen, D. (1994) The effect of lithospheric phase transitions on subsidence of extending continental lithosphere. Earth Planet. Sci. Lett., 124, 95–103.
    [Google Scholar]
  56. Priestley, K. & McKenzie, D. (2006) The thermal structure of the lithosphere from shear wave velocities. Earth Planet. Sci. Lett., 244, 285–301.
    [Google Scholar]
  57. Qiu, X., Ye, S., Wu, S., Shi, X., Zhou, D., Xia, K. & Flueh, E.R. (2001) Crustal structure across the Xisha trough, Northwestern South China Sea. Tectonophysics, 341, 179–193.
    [Google Scholar]
  58. Reston, T.J. (2009) The extension discrepancy and syn‐rift subsidence deficit at rifted margins. Petrol. Geosci., 15, 217–237.
    [Google Scholar]
  59. Reston, T.J. & Morgan, J.P. (2004) Continental geotherm and the evolution of rifted margins. Geology, 32, 133–136.
    [Google Scholar]
  60. Royden, L. & Keen, C. (1980) Rifting process and thermal evolution of the continental margin of Eastern Canada determined from subsidence curves. Earth Planet. Sci. Lett., 51, 343–361.
    [Google Scholar]
  61. Royden, L., Sclater, J. & Von Herzen, R. (1980) Continental margin subsidence and heat flow: important parameters in formation of petroleum hydrocarbons. AAPG Bull., 64, 173–187.
    [Google Scholar]
  62. Ru, K. & Pigott, J.D. (1986) Episodic rifting and subsidence in the South China Sea. AAPG Bull., 70, 1136–1155.
    [Google Scholar]
  63. Rupke, L., Schmalholz, S., Schmid, D. & Podladchikov, Y. (2008) Automated thermotectonostratigraphic basin reconstruction: viking Graben case study. AAPG Bull., 92, 309–326.
    [Google Scholar]
  64. Sclater, J.G. & Christie, P. (1980) Continental stretching: an explanation of the post‐mid‐cretaceous subsidence of the Central North Sea Basin. J. Geophys. Res. Solid Earth (1978–2012), 85, 3711–3739.
    [Google Scholar]
  65. Shan, J.N., Zhang, G.C., Wu, J.F., Tang, X.Y., Zhao, C.Y., Song, Y. & Hu, S.B. (2011) Thermal structure and Moho Temperature of Qiongdongnan Basin, Northern Margin of the South China Sea. Chin. J. Geophys. Chin. Edn., 54, 2102–2109.
    [Google Scholar]
  66. Shi, X.B., Zhou, D. & Zhang, Y.X. (2000) Lithospheric thermal‐theological structures of the continental margin in the Northern South China Sea. Chin. Sci. Bull., 45, 2107–2112.
    [Google Scholar]
  67. Shi, X., Zhou, D., Qiu, X. & Zhang, Y. (2002) Thermal and rheological structures of the Xisha trough, South China Sea. Tectonophysics, 351, 285–300.
    [Google Scholar]
  68. Shi, X., Qiu, X., Xia, K. & Zhou, D. (2003) Characteristics of surface heat flow in the South China Sea. J. Asian Earth Sci., 22, 265–277.
    [Google Scholar]
  69. Shi, X., Burov, E., Leroy, S., Qiu, X. & Xia, B. (2005) Intrusion and its implication for subsidence: a case from the Baiyun Sag, on the northern margin of the South China Sea. Tectonophysics, 407, 117–134.
    [Google Scholar]
  70. Shi, X., Xu, H., Qiu, X., Xia, K., Yang, X. & Li, Y. (2008) Numerical modeling on the relationship between thermal uplift and subsequent Rapid Subsidence: discussions on the evolution of the Tainan Basin. Tectonics, 27 (6), TC6003. doi: 10.1029/2007TC002163.
    [Google Scholar]
  71. Shi, X., Kohn, B., Spencer, S., Guo, X., Li, Y., Yang, X., Shi, H. & Gleadow, A. (2011) Cenozoic denudation history of southern Hainan Island, South China Sea: constraints from low temperature thermochronology. Tectonophysics, 504, 100–115.
    [Google Scholar]
  72. Shi, X., Wang, Z., Jiang, H., Sun, Z., Sun, Z., Yang, J., Yu, C. & Yang, X. (2015) Vertical variations of geothermal parameters in rifted basins and heat flow distribution features of the Qiongdongnan Basin. Chin. J. Geophys., 58(3), 939–952.
    [Google Scholar]
  73. Stein, C.A. & Stein, S. (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359, 123–129.
    [Google Scholar]
  74. Su, M., Xie, X., Jiang, T., Li, J., Sun, Z., Tian, S., Zhang, C., He, Y. & Zhang, C. (2011) Characteristics of S40 boundary and its significance in Qiongdongnan Basin, northern continental margin of South China Sea. Earth Sci. J. China Univ. Geosci., 36, 886–894.
    [Google Scholar]
  75. Sun, Z., Zhou, D., Zhong, Z., Zeng, Z. & Wu, S. (2003) Experimental evidence for the dynamics of the formation of the Yinggehai basin, NW South China Sea. Tectonophysics, 372, 41–58.
    [Google Scholar]
  76. Sun, Z., Zhong, Z., Keep, M., Zhou, D., Cai, D., Li, X., Wu, S. & Jiang, J. (2009) 3d analogue modeling of the South China Sea: a discussion on breakup pattern. J. Asian Earth Sci., 34, 544–556.
    [Google Scholar]
  77. Tang, Q. & Zheng, C. (2013) Crust and upper mantle structure and its tectonic implications in the South China Sea and adjacent regions. J. Asian Earth Sci., 62, 510–525.
    [Google Scholar]
  78. Tang, X., Zhang, G., Liang, J., Yang, S., Rao, S. & Hu, S. (2013) Influence of igneous intrusions on the temperature field and organic maturity of the Changchang Sag, Qiongdongnan Basin, South China Sea. Chin. J. Geophys., 56, 159–169.
    [Google Scholar]
  79. Taylor, B. & Hayes, D.E. (1983) Origin and history of the South China Sea Basin. Geophys. Monogr. Ser., 27, 23–56.
    [Google Scholar]
  80. Theissen, S. & Rüpke, L. (2010) Feedbacks of sedimentation on crustal heat flow: new insights from the Vøring Basin, Norwegian Sea. Basin Res., 22, 976–990.
    [Google Scholar]
  81. Tu, K., Flower, M.F., Carlson, R.W., Zhang, M. & Xie, G. (1991) Sr, Nd, and Pb isotopic compositions of Hainan basalts (South China): implications for a subcontinental lithosphere Dupal source. Geology, 19, 567–569.
    [Google Scholar]
  82. Turcotte, D. & Schubert, G. (1982) Geodynamics: Applications of Continuum Mechanics to Geological Problems. New York.
  83. Wang, C. & Huang, J. (2012). Mantle Transition Zone Structure around Hainan by Receiver Function Analysis. AGU Fall Meeting Abstracts.
  84. Wang, X., Li, Z., Li, X., Li, J., Xu, Y. & Li, X. (2013) Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: implications for potential linkages between plume and plate tectonics. Earth Planet. Sci. Lett., 377, 248–259.
    [Google Scholar]
  85. Wang, Z., Shi, X., Yang, J., Huang, B., Sun, Z., Wang, Y., Jiang, H., Yu, C. & Yang, X. (2014) Analyses on the tectonic thermal evolution and influence factors in the deep‐water Qiongdongnan Basin. Acta Oceanol. Sin., 33, 107–117.
    [Google Scholar]
  86. Wangen, M., Fjeldskaar, W., Faleide, J.I., Wilson, J., Zweigel, J. & Austegard, A. (2008) Forward modeling of stretching episodes and paleo heat flow of the vøring margin, NE Atlantic. J. Geodyn., 45, 83–98.
    [Google Scholar]
  87. Wei, X., Deng, J., XIE, W., Zhu, Y., Zhao, G., Li, Y. & Chen, Y. (2005) Constraints on biogenetic reef formation during evolution of the South China Sea and exploration potential analysis. Earth Sci. Front., 12 (3), 245–252.
    [Google Scholar]
  88. Wessel, P. & Smith, W.H. (1995) New version of the generic mapping tools. Eos, Transactions American Geophysical Union, 76, 329.
    [Google Scholar]
  89. White, N. (1994) An inverse method for determining lithospheric strain rate variation on geological timescales. Earth Planet. Sci. Lett., 122, 351–371.
    [Google Scholar]
  90. White, N. & Bellingham, P. (2002) A two‐dimensional inverse model for extensional sedimentary basins 1. Theory. J. Geophys. Res. Solid Earth (1978–2012), 107, ETG 17‐11–ETG 17‐20.
    [Google Scholar]
  91. Wu, B., Shi, X., Yang, X., Shi, H., Jiang, H. & Yang, J. (2014a) Analysis on lithospheric strength of the Baiyun Sag and its surrounding area in the Northern margin of the South China Sea. J. Trop. Oceanogr., 33(1), 62–68.
    [Google Scholar]
  92. Wu, S., Yang, Z., Wang, D., Lü, F., Lüdmann, T., Fulthorpe, C. & Wang, B. (2014b) Architecture, development and geological control of the Xisha carbonate platforms, Northwestern South China Sea. Mar. Geol., 350, 71–83.
    [Google Scholar]
  93. Xie, X., Müller, R.D., Li, S., Gong, Z. & Steinberger, B. (2006) Origin of anomalous subsidence along the Northern South China Sea margin and its relationship to dynamic topography. Mar. Pet. Geol., 23, 745–765.
    [Google Scholar]
  94. Xie, X., Müller, R.D., Ren, J., Jiang, T. & Zhang, C. (2008) Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, Northern South China Sea. Mar. Geol., 247, 129–144.
    [Google Scholar]
  95. Xu, X., Shi, X., Luo, X., Liu, F., Guo, X., Sha, Z. & Yang, X. (2006) Heat flow measurements in the Xisha trough of the South China Sea. Mar. Geol. Quat. Geol., 26, 51.
    [Google Scholar]
  96. Xu, Y., Wei, J., Qiu, H., Zhang, H. & Huang, X. (2012) Opening and evolution of the South China Sea constrained by studies on volcanic rocks: preliminary results and a research design. Chin. Sci. Bull., 57, 3150–3164.
    [Google Scholar]
  97. Yan, P., Deng, H., Liu, H., Zhang, Z. & Jiang, Y. (2006) The temporal and spatial distribution of volcanism in the South China Sea region. J. Asian Earth Sci., 27, 647–659.
    [Google Scholar]
  98. Yang, S., Fang, N., Yang, S., Yao, B. & Liang, D. (2011) A further discussion on formation background and tectonic constraints of igneous rocks in Central Sub‐Basin of the South China Sea. Earth Sci., 36, 455–470.
    [Google Scholar]
  99. Yuan, Y.S., Yang, S.C., Hu, S.B. & He, L.J. (2008) Tectonic subsidence of Qiongdongnan Basin and its main control factors. Chin. J. Geophys. Chin. Edn., 51, 376–383.
    [Google Scholar]
  100. Yuan, Y., Zhu, W., Mi, L., Zhang, G., Hu, S. & He, L. (2009) “Uniform geothermal gradient” and heat flow in the Qiongdongnan and Pearl River Mouth Basins of the South China Sea. Mar. Pet. Geol., 26, 1152–1162.
    [Google Scholar]
  101. Zhang, Y., Sun, Z., Zhou, D., Guo, X., Shi, X., Wu, X. & Pang, X. (2008) Stretching characteristics and its dynamic significance of the Northern continental margin of South China Sea. Sci. China, Ser. D Earth Sci., 51, 422–430.
    [Google Scholar]
  102. Zhao, D. (2007) Seismic images under 60 hotspots: search for mantle plumes. Gondwana Res., 12, 335–355.
    [Google Scholar]
  103. Zhao, Z., Sun, Z., Wang, Z., Sun, Z., Liu, J., Wang, Z. & Sun, L. (2013) The dynamic mechanism of post‐rift accelerated subsidence in Qiongdongnan Basin, Northern South China Sea. Mar. Geophys. Res., 34, 295–308.
    [Google Scholar]
  104. Zhu, W., Zhang, G., Yang, S., Li, X., Shi, H., Pang, X., Luo, Z., Huang, B. & He, M. (2007) The Natural Gas Geology in Continental Margin Basin of the Northern South China Sea. pp. 43–59. Petroleum Industry Press, Beijing.
    [Google Scholar]
  105. Zhu, M., Graham, S. & McHargue, T. (2009) the red river fault zone in the Yinggehai Basin, South China Sea. Tectonophysics, 476, 397–417.
    [Google Scholar]
  106. Ziegler, P.A. & Cloetingh, S. (2004) Dynamic processes controlling evolution of rifted basins. Earth Sci. Rev., 64, 1–50.
    [Google Scholar]
  107. Zou, H. & Fan, Q. (2010) U‐Th isotopes in Hainan basalts: implications for sub‐asthenospheric origin of EM2 mantle endmember and the dynamics of melting beneath Hainan Island. Lithos, 116, 145–152.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12179
Loading
/content/journals/10.1111/bre.12179
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error