1887
Volume 29, Issue 4
  • E-ISSN: 1365-2117
PDF

Abstract

Abstract

Careful assessment of basin thermal history is critical to modelling petroleum generation in sedimentary basins. In this paper, we propose a novel approach to constraining basin thermal history using palaeoclimate temperature reconstructions and study its impact on estimating source rock maturation and hydrocarbon generation in a terrestrial sedimentary basin. We compile mean annual temperature (MAT) estimates from macroflora assemblage data to capture past surface temperature variation for the Piceance Basin, a high‐elevation, intermontane, sedimentary basin in Colorado, USA. We use macroflora assemblage data to constrain the temporal evolution of the upper thermal boundary condition and to capture the temperature change with basin uplift. We compare these results with the case where the upper thermal boundary condition is based solely upon a simplified latitudinal temperature estimate with no elevation effect. For illustrative purposes, 2 one‐dimensional (1‐D) basin models are constructed using these two different upper thermal boundary condition scenarios and additional geological and geochemical input data in order to investigate the impact of the upper thermal boundary condition on petroleum source rock maturation and kerogen transformation processes. The basin model predictions indicate that the source rock maturation is very sensitive to the upper thermal boundary condition for terrestrial basins with variable elevation histories. The models show substantial differences in source rock maturation histories and kerogen transformation ratio over geologic time. Vitrinite reflectance decreases by 0.21%Ro, source rock transformation ratio decreases 10.5% and hydrocarbon mass generation decreases by 16% using the macroflora assemblage data. In addition, we find that by using the macroflora assemblage data, the modelled depth profiles of vitrinite reflectance better matches present‐day measurements. These differences demonstrate the importance of constraining thermal boundary conditions, which can be addressed by palaeotemperature reconstructions from palaeoclimate and palaeo‐elevation data for many terrestrial basins. Although the palaeotemperature reconstruction compiled for this study is region specific, the approach presented here is generally applicable for other terrestrial basin settings, particularly basins which have undergone substantial subaerial elevation change over time.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12213
2016-09-14
2019-12-16
Loading full text...

Full text loading...

/deliver/fulltext/bre/29/4/bre12213.html?itemId=/content/journals/10.1111/bre.12213&mimeType=html&fmt=ahah

References

  1. Al‐Hajeri, M.M., AL Saeed, M., Derks, J., Fuchs, T., Hantschel, T., Kauerauf, A.I., Neumaier, M., Schenk, O., Swientek, O., Tessen, N., Welte, D., Wygrala, B., Kornpihl, D. & Peters, K.E. (2009) Basin and petroleum system modeling. Oilfield Rev., 21, 14–29.
    [Google Scholar]
  2. Baur, F., Littke, R., Wielens, H., Lampe, C. & Fuchs, T. (2010) Basin modeling meets rift analysis—a numerical modeling study from the Jeanne d'Arc basin, offshore Newfoundland, Canada. Mar. Pet. Geol., 27, 585–599.
    [Google Scholar]
  3. Beardsmore, G.R. & Cull, J.P. (2001) Crustal Heat Flow: A Guide to Measurement and Modelling. Cambridge University Press, Cambridge.
    [Google Scholar]
  4. Beerling, D.J. & Royer, D.L. (2011) Convergent Cenozoic CO2 history. Nat. Geosci., 4, 418–420.
    [Google Scholar]
  5. Blakey, R.C. (2014) Paleogeography and Paleotectonics of the Western Interior Seaway, Jurassic‐Cretaceous of North America. AAPG Search and Discovery Article #30392, 1–72
    [Google Scholar]
  6. Breecker, D.O., Sharp, Z.D. & McFadden, L.D. (2009) Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Geol. Soc. Am. Bull., 121, 630–640.
    [Google Scholar]
  7. Caves, J.K., Sjostrom, D.J., Mix, H.T., Winnick, M.J. & Chamberlain, C.P. (2014) Aridification of central Asia and uplift of the Altai and Hangay Mountains, Mongolia: stable isotope evidence. Am. J. Sci., 314, 1171–1201.
    [Google Scholar]
  8. Chamberlain, C.P., Mix, H.T., Mulch, A., Hren, M.T., Kent‐Corson, M.L., Davis, S.J., Horton, T.W. & Graham, S.A. (2012) The Cenozoic climatic and topographic evolution of the western North American Cordillera. Am. J. Sci., 312, 213–262.
    [Google Scholar]
  9. Chase, C.G., Gregory‐Wodzicki, K.M., Parrish, J.T. & DeCelles, P.G. (1998) Topographic history of the western Cordillera of North America and controls on climate. Oxford Monogr. Geol. Geophys., 39, 73–99.
    [Google Scholar]
  10. Cole, R. & Cumella, S. (2003) Stratigraphic architecture and reservoir characteristics of the Mesaverde Group, southern Piceance Basin, Colorado. In: Piceance Basin 2003 Guidebook (Ed. by K.M.Peterson , T.M.Olsen & D.S.Anderson ), pp. 385–442. Rocky Mountain Association of Geologists, Denver, CO, US.
    [Google Scholar]
  11. Davis, S.J., Mix, H.T., Wiegand, B.A., Carroll, A.R. & Chamberlain, C.P. (2009) Synorogenic evolution of large‐scale drainage patterns: Isotope paleohydrology of sequential laramide basins. Am. J. Sci., 309, 549–602.
    [Google Scholar]
  12. DeCelles, P.G. & Graham, S.A. (2015) Cyclical processes in the North American Cordilleran orogenic system. Geology, 43, 499–502.
    [Google Scholar]
  13. Dickinson, W.R., Lawton, T.F., Pecha, M., Davis, S.J., Gehrels, G.E. & Young, R.A. (2012) Provenance of the Paleogene Colton Formation (Uinta Basin) And Cretaceous—Paleogene provenance evolution in the Utah foreland: evidence from U‐Pb ages of detrital zircons, paleocurrent trends, and sandstone petrofacies. Geosphere, 8, 854–880.
    [Google Scholar]
  14. Fall, A., Eichhubl, P., Cumella, S.P., Bodnar, R.J., Laubach, S.E. & Becker, S.P. (2012) Testing the basin‐centered gas accumulation model using fluid inclusion observations: Southern Piceance Basin, Colorado. AAPG Bull., 96, 2297–2318.
    [Google Scholar]
  15. Fall, A., Eichhubl, P., Bodnar, R.J., Laubach, S.E. & Davis, J.S. (2014) Natural hydraulic fracturing of tight‐gas sandstone reservoirs, Piceance Basin, Colorado. Geol. Soc. Am. Bull., 127, 61–75.
    [Google Scholar]
  16. Fan, M., Hough, B.G. & Passey, B.H. (2014) Middle to late Cenozoic cooling and high topography in the central Rocky Mountains: constraints from clumped isotope geochemistry. Earth Planet. Sci. Lett., 408, 35–47.
    [Google Scholar]
  17. Forest, C.E. (1995) Palaeoaltimetry from energy conservation principles. Nature, 374, 347–350.
    [Google Scholar]
  18. Fricke, H.C. & Wing, S.L. (2004) Oxygen isotope and paleobotanical estimates of temperature and δ18O‐latitude gradients over North America during the early Eocene. Am. J. Sci., 304, 612–635.
    [Google Scholar]
  19. Gao, Y., Ibarra, D.E., Wang, C., Caves, J.K., Chamberlain, C.P., Graham, S.A. & Wu, H. (2015) Mid‐latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous. Geology, 43, 287–290.
    [Google Scholar]
  20. Goldner, A., Huber, M. & Caballero, R. (2012) Does Antarctic glaciation cool the world?Clim. Past Discuss., 8, 2645–2693.
    [Google Scholar]
  21. Goldner, A., Herold, N. & Huber, M. (2014) The challenge of simulating the warmth of the mid‐Miocene climatic optimum in CESM1. Clim. Past, 10, 523–536.
    [Google Scholar]
  22. Hantschel, T. & Kauerauf, A.I. (2009) Fundamentals of Basin and Petroleum Systems Modeling. Springer, Berlin.
    [Google Scholar]
  23. Hayfield, T. & Racine, J.S. (2008) Nonparametric econometrics: the np package. J. Stat. Softw., 27, 1–32.
    [Google Scholar]
  24. Hendrix, M.S., Graham, S.A., Carroll, A.R., Sobel, E.R., McKnight, C.L., Schulein, B.J. & Wang, Z. (1992) Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, northwest China. Geol. Soc. Am. Bull., 104, 53–79.
    [Google Scholar]
  25. Hood, K.C. & Yurewicz, D.A. (2008) Assessing the Mesaverde basin‐centered gas play, Piceance Basin, Colorado. In: Understanding, Exploring, and Developing Tight‐Gas sands—2005 Vail Hedberg Conference: AAPG Hedberg Series (Ed. by S.P.Cumella , K.W.Shanley & W.K.Camp ), pp. 87–104. American Association of Petroleum Geologists, Vail, CO, USA.
  26. Hough, B.G., Fan, M. & Passey, B.H. (2014) Calibration of the clumped isotope geothermometer in soil carbonate in Wyoming and Nebraska, USA: implications for paleoelevation and paleoclimate reconstruction. Earth Planet. Sci. Lett., 391, 110–120.
    [Google Scholar]
  27. Huber, M. & Caballero, R. (2011) The early Eocene equable climate problem revisited. Clim. Past, 7, 603–633.
    [Google Scholar]
  28. Huntington, K.W., Wernicke, B.P. & Eiler, J.M. (2010) Influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry. Tectonics, 29, TC3005.
    [Google Scholar]
  29. Jagniecki, E.A. & Lowenstein, T.K. (2015) Evaporites of the Green River Formation, Bridger and Piceance Creek Basins: deposition, diagenesis, paleobrine chemistry, and eocene atmospheric CO2. In: Stratigraphy and Paleolimnology of the Green River Formation, Western USA (Ed. by M.E.Smith & A.R.Carrol ), pp. 277–312. Springer, Dordrecht.
    [Google Scholar]
  30. Johnson, R.C. (1989) Geologic history and hydrocarbon potential of Late Cretaceous‐age, low‐permeability reservoirs, Piceance Basin, western Colorado. USGS Bull., 1787‐E, 51 p.
    [Google Scholar]
  31. Johnson, R.C. & Flores, R.M. (2003) History of the Piceance Basin from latest Cretaceous through early Eocene and the chracterization of lower Tertiary sandstone reservoirs. In: Piceance Basin Guidebook (Ed. by K.M.Peterson , T.M.Olson & D.S.Anderson ), pp. 21–61.Rocky Mountain Association of Geologists, Denver, CO, USA.
    [Google Scholar]
  32. Johnson, R.C. & Nuccio, V.F. (1986) Structural and thermal history of the Piceance Creek basin, western Colorado, in relation to hydrocarbon occurrence in the Mesaverde group. In: Geology of Tight Reservoirs: AAPG Studies in Geology, 24 (Ed. by C.W.Spencer & R.F.Mast ), pp. 165–205. American Association of Petroleum Geologists, Tulsa, OK, USA.
    [Google Scholar]
  33. Johnson, R.C. & Rice, D.D. (1990) Occurrence and geochemistry of natural gases, Piceance basin, northwest Colorado. Am. Assoc. Pet. Geol. Bull., 74, 805–829.
    [Google Scholar]
  34. Johnson, R.C. & Roberts, S.B. (2003). The Mesaverde total petroleum system, Uinta‐Piceance Province, Utah and Colorado. In: Petroleum Systems and Geologic Assessment of Oil and Gas in the Uinta‐Piceance Province, Utah and Colorado: US Geological Survey Digital Data Series DDS‐69‐B.
  35. Kuhlmann, G., Adams, S., Anka, Z., Campher, C., Di Primio, R. & Horsfield, B. (2011) 3D petroleum systems modelling within a passive margin setting, Orange Basin, blocks 3/4, offshore South Africa—implications for gas generation, migration and leakage. S. Afr. J. Geol., 114, 387–414.
    [Google Scholar]
  36. Leibovitz, M.B. (2010) Sequence Stratigraphy of the Upper Cretaceous Upper Williams Fork Formation, Piceance Basin, Northwest Colorado, and Its Contribution to the Basin‐Bentered Gas Accumulation, pp. 1–155. Univeristy of Colorado, Boulder.
    [Google Scholar]
  37. Lisiecki, L.E. & Raymo, M.E. (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003.
    [Google Scholar]
  38. McQuarrie, N. & Chase, C.G. (2000) Raising the Colorado Plateau. Geology, 28, 91–94.
    [Google Scholar]
  39. Mix, H.T. & Chamberlain, C.P. (2014) Stable isotope records of hydrologic change and paleotemperature from smectite in Cenozoic western North America. Geochim. Cosmochim. Acta, 141, 532–546.
    [Google Scholar]
  40. Mix, H.T., Mulch, A., Kent‐Corson, M.L. & Chamberlain, C.P. (2011) Cenozoic migration of topography in the North American Cordillera. Geology, 39, 87–90.
    [Google Scholar]
  41. Pagani, M., Liu, Z., LaRiviere, J. & Ravelo, A.C. (2010) High Earth‐system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nat. Geosci., 3, 27–30.
    [Google Scholar]
  42. Paton, D.A., Di Primio, R., Kuhlmann, G., Van Der Spuy, D. & Horsfield, B. (2007) Insights into the petroleum system evolution of the southern Orange Basin, South Africa. S. Afr. J. Geol., 110, 261–274.
    [Google Scholar]
  43. Patterson, P.E., Kronmueller, K. & Davies, T.D. (2003) Sequence stratigraphy of the Mesaverde Group and Ohio Creek conglomerate, northern Piceance Basin, Colorado. In: Piceance Basin 2003 Guidebook (Ed. by K.M.Peterson , T.M.Olsen & D.S.Anderson ), pp. 115–128. Rocky Mountain Association of Geologists, Denver, CO, USA.
    [Google Scholar]
  44. Pepper, A.S. & Corvi, P.J. (1995) Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen. Mar. Pet. Geol., 12, 291–319.
    [Google Scholar]
  45. Peters, N.A., Huntington, K.W. & Hoke, G.D. (2013) Hot or not? Impact of seasonally variable soil carbonate formation on paleotemperature and O‐isotope records from clumped isotope thermometryEarth Planet. Sci. Lett., 361, 208–218.
    [Google Scholar]
  46. Ritts, B.D., Yue, Y., Graham, S.A., Sobel, E.R., Abbink, O.A. & Stockli, D. (2008) From sea level to high elevation in 15 million years: uplift history of the northern Tibetan Plateau margin in the Altun Shan. Am. J. Sci., 308, 657–678.
    [Google Scholar]
  47. Rogers, N.T. (2012) Subsurface stratigraphy of the upper cretaceous lower mancos formation and related units, Piceance Basin, Northwestern Colorado. Master thesis, University of Colorado, Boulder.
  48. Senglaub, Y., Littke, R. & Brix, M.R. (2006) Numerical modelling of burial and temperature history as an approach for an alternative interpretation of the Bramsche anomaly, Lower Saxony Basin. Int. J. Earth Sci., 95, 204–224.
    [Google Scholar]
  49. Sjostrom, D.J., Hren, M., Horton, T.W., Waldbauer, J.R. & Chamberlain, C.P. (2006) Stable isotopic evidence for a pre‐late Miocene elevation gradient in the Great Plains‐Rocky Mountain Region, USA. GSA Spec. Pap., 398, 309–319.
    [Google Scholar]
  50. Smith, M.E., Carroll, A.R., Jicha, B.R., Cassel, E.J. & Scott, J.J. (2014) Paleogeographic record of Eocene Farallon slab rollback beneath western North America. Geology, 42, 1039–1042.
    [Google Scholar]
  51. Soeder, D.J. & Randolph, P.L. (1987) Porosity, permeability, and pore structure of the tight Mesaverde Sandstone, Piceance Basin, Colorado. SPE Formation Eval., 2, 129–136.
    [Google Scholar]
  52. Sweeney, J.J. & Burnham, A.K. (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics (1). AAPG Bull., 74, 1559–1570.
    [Google Scholar]
  53. Wang, C., Zhao, X., Liu, Z., Lippert, P.C., Graham, S.A., Coe, R.S., Yi, H., Zhu, L., Liu, S. & Li, Y. (2008) Constraints on the early uplift history of the Tibetan Plateau. Proc. Natl Acad. Sci., 105, 4987–4992.
    [Google Scholar]
  54. Wang, C., Dai, J., Zhao, X., Li, Y., Graham, S.A., He, D., Ran, B. & Meng, J. (2014) Outward‐growth of the Tibetan Plateau during the Cenozoic: a review. Tectonophysics, 621, 1–43.
    [Google Scholar]
  55. Wilf, P. (1997) When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology, 23, 373–390.
    [Google Scholar]
  56. Wing, S.L. & Greenwood, D.R. (1994) Fossils and fossil climate: the case for equable continental interiors in the Eocene. In: Palaeoclimates and Their Modelling (Ed. by J. R.Allen , B.Oskins , B.Sellwood , P.Valdes & R.Spicer ), pp. 35–44. Springer, Dordrecht.
    [Google Scholar]
  57. Wolfe, J.A. (1979) Temperature parameters of humid to mesic forests of eastern Asia and relation to forests of other regions of the northern hemisphere and Australasia. U.S. Geol. Surv. Prof. Pap., 1106, 1–37.
    [Google Scholar]
  58. Wolfe, J.A. (1994) Tertiary climatic changes at middle latitudes of western North America. Palaeogeogr. Palaeoclimatol. Palaeoecol., 108, 195–205.
    [Google Scholar]
  59. Wolfe, J.A. (1995) Paleoclimatic estimates from Tertiary leaf assemblages. Annu. Rev. Earth Planet. Sci., 23, 119–142.
    [Google Scholar]
  60. Wolfe, J.A., Forest, C.E. & Molnar, P. (1998) Paleobotanical evidence of Eocene and Oligocene paleoaltitudes in midlatitude western North America. Geol. Soc. Am. Bull., 110, 664–678.
    [Google Scholar]
  61. Wygrala, B.P. (1989) Integrated study of an oil field in the Southern Po Basin Northern Italy. Ph.D. dissertation, University of Cologne, Germany.
  62. You, Y., Huber, M., Müller, R.D., Poulsen, C.J. & Ribbe, J. (2009) Simulation of the middle Miocene climate optimum. Geophys. Res. Lett., 36, 1–5.
    [Google Scholar]
  63. Yurewicz, D.A., Bohacs, K.M., Yeakel, J.D. & Kronmueller, K. (2003) Source rock analysis and hydrocarbon generation, Mesaverde Group and Mancos Shale, northern Piceance Basin, Colorado. In: Piceance Basin Guidebook (Ed. by K.M.Peterson , T.M.Olsen & D.S.Anderson ), pp. 130–153. Rocky Mountain Association of Geologists, Denver, CO, USA.
    [Google Scholar]
  64. Yurewicz, D.A., Kendall, J., Kronmueller, K., Ryan, T.C., Bohacs, K.M., Klimentidis, R.E., Meurer, M.E. & Yeakel, J.D. (2008) Controls on gas and water distribution, Mesaverde basin‐centered gas play, Piceance Basin, Colorado. In: Understanding, Exploring, and Developing Tight‐Gas sands—2005 Vail Hedberg Conference: AAPG Hedberg Series, No. 3 (Ed. by S.P.Cumella , K.W.Shanley & W.K.Camp ), pp. 105–136. American Association of Petroleum Geologists, Vail, CO, USA.
  65. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.
    [Google Scholar]
  66. Zhang, E., Hill, R.J., Katz, B.J. & Tang, Y. (2008) Modeling of gas generation from the Cameo Coal zone in the Piceance Basin, Colorado. AAPG Bull., 92, 1077–1106.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12213
Loading
/content/journals/10.1111/bre.12213
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error