1887
Volume 30, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

The geometry and evolution of rivers originating from the Tibetan plateau are influenced by topography and climate change during the India‐Asia collision. The Yangtze River is the longest among these rivers and formed due to capturing many rivers on the eastern Tibetan Plateau by the middle Yangtze. The timing of these capture events is still controversial. Here, we use detrital muscovite 40Ar/39Ar and zircon U–Pb ages to constrain the provenance of late Cenozoic sediments in the Jianghan Basin in the middle reaches of the Yangtze River. The combined data suggest that late Pliocene sediments were mainly derived from a local source in the Jianghan Basin including the Dabie Shan. The middle Pleistocene sediments were derived from the Min River west of the Three Gorges. This implies that at least one river, perhaps the palaeo‐Han River, originating from the Dabie Shan region, flowed through the centre of the Jianghan Basin during the late Pliocene. The appearance of sediment from the Min River in the Jianghan Basin somewhere between late Pliocene and middle Pleistocene suggests that the Three Gorges section of the Yangtze River was formed somewhere between late Pliocene and middle Pleistocene (N– Q).

Loading

Article metrics loading...

/content/journals/10.1111/bre.12268
2017-11-11
2020-07-15
Loading full text...

Full text loading...

References

  1. An, Z.S., Kutzbach, J.E., Prell, W.L. & Porter, S.C. (2001) Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan plateau since Late Miocene times. Nature, 411, 62–66.
    [Google Scholar]
  2. Clark, M.K., Schoenbohm, L.M., Royden, L.H., Whipple, K.X., Burchfiel, B.C., Zhang, X., Tang, W., Wang, E. & Chen, L. (2004) Surface uplift, tectonics, and erosion of eastern Tibet from large‐scale drainage patterns. Tectonics, 23, https://doi.org/10.1029/2002TC001402.
    [Google Scholar]
  3. Clark, M.K., House, M.A., Royden, L.H., Whipple, K.X., Burchfiel, B.C., Zhang, X. & Tang, W. (2005) Late Cenozoic uplift of southeastern Tibet. Geology, 33, 525–528.
    [Google Scholar]
  4. Clift, P.D., Blusztajn, J. & Duc, N.A. (2006) Large‐scale drainage capture and surface uplift in eastern Tibet‐SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam. Geophys. Res. Lett., 33, L19403. https://doi.org/10.1029/2006gl027772.
    [Google Scholar]
  5. Clift, P.D., Van Long, H., Hinton, R., Ellam, R.M., Hannigan, R., Tan, M.T., Blusztajn, J. & Duc, N.A. (2008) Evolving east Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River‐Song Hong sediments. Geochem. Geophys. Geosyst., 9, Q04039. https://doi.org/10.1029/2007GC001867.
    [Google Scholar]
  6. Dong, Y.P., Zhang, G.W., Neubauer, F., Liu, X.M., Genser, J. & Hauzenberger, C. (2011) Tectonic evolution of the Qinling orogen, China: review and synthesis. J. Asian Earth Sci., 41, 213–237.
    [Google Scholar]
  7. Fan, D.D., Li, C.X., Kazumi, Y., Zhou, B.C., Li, B.H., Wang, Q., Yang, S.Y., Deng, B. & Wu, G.X. (2005) Monazite age spectra in the Late Cenozoic strata of the Changjiang delta and its implication on the Changjiang run‐through time. Sci. China Series D‐Earth Sci., 48, 1718–1727.
    [Google Scholar]
  8. Godard, V., Pik, R., Lave, J., Cattin, R., Tibari, B., de Sigoyer, J., Pubellier, M. & Zhu, J. (2009) Late Cenozoic evolution of the central Longmen Shan, eastern Tibet: Insight from (U‐Th)/He thermochronometry. Tectonics, 28, https://doi.org/10.1029/2008TC002407.
    [Google Scholar]
  9. Gu, J.W., Chen, J., Sun, Q.L., Wang, Z.H., Wei, Z.X. & Chen, Z.Y. (2014) China's Yangtze delta: geochemical fingerprints reflecting river connection to the sea. Geomorphology, 227, 166–173.
    [Google Scholar]
  10. Harrison, T.M., Célérier, J., Aikman, A.B., Hermann, J. & Heizler, M.T. (2009) Diffusion of 40Ar in muscovite. Geochim. Cosmochim. Acta, 73, 1039–1051.
    [Google Scholar]
  11. He, M.Y., Zheng, H.B. & Clift, P.D. (2013) Zircon U–Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China. Chem. Geol., 360–361, 186–203.
    [Google Scholar]
  12. Hoang, L.v., Wu, F.‐Y., Clift, P.D., Wysocka, A. & Swierczewska, A. (2009) Evaluating the evolution of the Red River system based on in situ U‐Pb dating and Hf isotope analysis of zircons. Geochem. Geophys. Geosyst., 10, Q11008. https://doi.org/10.1029/2009gc002819.
    [Google Scholar]
  13. Hoang, L., Clift, P.D., Mark, D., Zheng, H. & Tan, M.T. (2010) Ar–Ar muscovite dating as a constraint on sediment provenance and erosion processes in the Red and Yangtze River systems, SE Asia. Earth Planet. Sci. Lett., 295, 379–389.
    [Google Scholar]
  14. Jia, J.T., Zheng, H.B., Huang, X.T., Wu, F.Y., Yang, S.Y., Wang, K. & He, M.Y. (2010) Detrital zircon U‐Pb ages of Late Cenozoic sediments from the Yangtze delta: implication for the evolution of the Yangtze River. Chinese Sci. Bull., 55, 1520–1528.
    [Google Scholar]
  15. Kapp, P., Yin, A., Manning, C.E., Harrison, T.M., Taylor, M.H. & Ding, L. (2003) Tectonic evolution of the early Mesozoic blueschist‐bearing Qiangtang metamorphic belt, central Tibet. Tectonics, 22, 1043. https://doi.org/10.1029/2002tc001383.
    [Google Scholar]
  16. Kirby, E. (2008) Geomorphic insights into the growth of eastern Tibet and implications for the recurrence of great earthquakes, AGU Fall Meeting Abstracts, p. 03.
  17. Kirby, E., Reiners, P.W., Krol, M.A., Whipple, K.X., Hodges, K.V., Farley, K.A., Tang, W.Q. & Chen, Z.L. (2002) Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: inferences from 40Ar/39Ar and (U‐Th)/He thermochronology. Tectonics, 21, https://doi.org/10.1029/2000TC001246.
    [Google Scholar]
  18. Kong, P., Zheng, Y. & Caffee, M.W. (2012) Provenance and time constraints on the formation of the first bend of the Yangtze River. Geochem. Geophys. Geosyst., 13, Q06017. https://doi.org/10.1029/2012gc004140.
    [Google Scholar]
  19. Lee, J.K.W., Williams, I.S. & Ellis, D.J. (1997) Pb, U and Th diffusion in natural zircon. Nature, 390, 159–162.
    [Google Scholar]
  20. Li, J.J., Xie, S.Y. & Kuang, M.S. (2001) Geomorphic evolution of the Yangtze Gorges and the time of their formation. Geomorphology, 41, 125–135.
    [Google Scholar]
  21. Liu, S.F., Steel, R. & Zhang, G.W. (2005) Mesozoic sedimentary basin development and tectonic implication, northern Yangtze Block, eastern China: record of continent–continent collision. J. Asian Earth Sci., 25, 9–27.
    [Google Scholar]
  22. McPhillips, D., Hoke, G.D., Liu‐Zeng, J., Bierman, P.R., Rood, D.H. & Niedermann, S. (2016) Dating the incision of the Yangtze River gorge at the First Bend using three‐nuclide burial ages. Geophys. Res. Lett., 43, 101–110.
    [Google Scholar]
  23. Najman, Y.M.R., Pringle, M.S., Johnson, M.R.W., Robertson, A.H.F. & Wijbrans, J.R. (1997) Laser 40Ar/39Ar dating of single detrital muscovite grains from early foreland‐basin sedimentary deposits in India: implications for early Himalayan evolution. Geology, 25, 535–538.
    [Google Scholar]
  24. Ouimet, W., Whipple, K., Royden, L., Reiners, P., Hodges, K. & Pringle, M. (2010) Regional incision of the eastern margin of the Tibetan Plateau. Lithosphere, 2, 50–63.16.
    [Google Scholar]
  25. Richardson, N.J., Densmore, A.L., Seward, D., Wipf, M. & Yong, L. (2010) Did incision of the Three Gorges begin in the Eocene?Geology, 38, 551–554.
    [Google Scholar]
  26. Shao, L., Li, C.A., Yuan, S.Y., Kang, C.G., Wang, J.T. & Li, T. (2012) Neodymium isotopic variations of the late Cenozoic sediments in the Jianghan Basin: implications for sediment source and evolution of the Yangtze River. J. Asian Earth Sci., 45, 57–64.
    [Google Scholar]
  27. Shen, C.B., Donelick, R.A., O'Sullivan, P.B., Jonckheere, R., Yang, Z., She, Z.B., Miu, X.L. & Ge, X. (2012a) Provenance and hinterland exhumation from LA‐ICP‐MS zircon U–Pb and fission‐track double dating of Cretaceous sediments in the Jianghan Basin, Yangtze block, central China. Sed. Geol., 281, 194–207.
    [Google Scholar]
  28. Shen, C.B., Mei, L.F., Peng, L., Chen, Y.Z., Yang, Z. & Hong, G.F. (2012b) LA‐ICPMS U–Pb zircon age constraints on the provenance of Cretaceous sediments in the Yichang area of the Jianghan Basin, central China. Cretac. Res., 34, 172–183.
    [Google Scholar]
  29. Sun, X.L., Li, C.A., Kuiper, K., Zhang, Z.J., Gao, J.H. & Wijbrans, J. (2016) Human impact on erosion patterns and sediment transport in the Yangtze River. Global Planet. Change, 143, 88–99.
    [Google Scholar]
  30. Tian, Y.T., Kohn, B.P., Hu, S.B. & Gleadow, A.J.W. (2015) Synchronous fluvial response to surface uplift in the eastern Tibetan Plateau: implications for crustal dynamics. Geophys. Res. Lett., 42, 29–35.
    [Google Scholar]
  31. Tian, Y.T., Kohn, B.P., Phillips, D., Hu, S.B., Gleadow, A.J.W. & Carter, A. (2016) Late Cretaceous–earliest Paleogene deformation in the Longmen Shan fold‐and‐thrust belt, eastern Tibetan Plateau margin: pre‐Cenozoic thickened crust?Tectonics, 35, 2293–2312.
    [Google Scholar]
  32. Vermeesch, P. (2004) How many grains are needed for a provenance study?Earth Planet. Sci. Lett., 224, 441–451.
    [Google Scholar]
  33. Vermeesch, P. (2013) Multi‐sample comparison of detrital age distributions. Chem. Geol., 341, 140–146.
    [Google Scholar]
  34. Vermeesch, P., Resentini, A. & Garzanti, E. (2016) An R package for statistical provenance analysis. Sed. Geol., 336, 14–25.
    [Google Scholar]
  35. Wang, J.T., Li, C.A., Yang, Y. & Wang, Q.L. (2009) The LA‐ICPMS U‐Pb detrital zircon geochronology and provenance study of sedimentary core in the Zhoulao town, Jianghan plain, China. Quat. Sci., 29, 343–351.
    [Google Scholar]
  36. Wei, H.H., Wang, E.C., Wu, G.L. & Meng, K. (2016) No sedimentary records indicating southerly flow of the paleo‐Upper Yangtze River from the First Bend in southeastern Tibet. Gondwana Res., 32, 93–104.
    [Google Scholar]
  37. Weislogel, A.L., Graham, S.A., Chang, E.Z., Wooden, J.L. & Gehrels, G.E. (2010) Detrital zircon provenance from three turbidite depocenters of the Middle‐Upper Triassic Songpan‐Ganzi complex, central China: record of collisional tectonics, erosional exhumation, and sediment production. Geol. Soc. America Bull., 122, 2041–2062.
    [Google Scholar]
  38. Weislogel, A.L., Graham, S.A., Chang, E.Z., Wooden, J.L., Gehrels, G.E. & Yang, H.S. (2006) Detrital zircon provenance of the Late Triassic Songpan‐Ganzi complex: Sedimentary record of collision of the North and South China blocks. Geology, 34, 97–100.
    [Google Scholar]
  39. Willis, B., Blackwelder, E., Hirth, F., Walcoff, C.D., Weller, S. & Girty, G.H. (1906) Research in China. Carnegie Institute, Washington, DC.
    [Google Scholar]
  40. Xiang, F., Zhu, L., Wang, C.S., Zhao, X.X., Chen, H.D. & Yang, W.G. (2007) Quaternary sediment in the Yichang area: implications for the formation of the Three Gorges of the Yangtze River. Geomorphology, 85, 249–258.
    [Google Scholar]
  41. Yang, S.Y., Li, C.X. & Yokoyama, K. (2006) Elemental compositions and monazite age patterns of core sediments in the Changjiang Delta: implications for sediment provenance and development history of the Changjiang River. Earth Planet. Sci. Lett., 245, 762–776.
    [Google Scholar]
  42. Yang, S.Y., Zhang, F. & Wang, Z.B. (2012) Grain size distribution and age population of detrital zircons from the Changjiang (Yangtze) River system, China. Chem. Geol., 296–297, 26–38.
    [Google Scholar]
  43. Zhang, P.Z. (2013) A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics, 584, 7–22.
    [Google Scholar]
  44. Zhang, Y.Q., Chen, W. & Yang, N. (2004) 40Ar/39Ar dating of shear deformation of the Xianshuihe fault zone in west Sichuan and its tectonic significance. Sci. China, Ser. D Earth Sci., 47, 794–803.
    [Google Scholar]
  45. Zhang, Y.F., Li, C.A., Wang, Q.L., Chen, L., Ma, Y.F. & Kang, C.G. (2008) Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges. Chin. Sci. Bull., 53, 584–590.
    [Google Scholar]
  46. Zhao, J.X., Li, C.A., Zhang, Y.F., Qiang, X.K. & Xiong, D.Q. (2016) Quaternary Chronostratigraphy of Borehole S3‐7 in Dongting Basin. J. Earth Sci., 41, 633–643. (In Chinese with English abstract).
    [Google Scholar]
  47. Zheng, H.B., Clift, P.D., Wang, P., Tada, R., Jia, J.T., He, M.Y. & Jourdan, F. (2013) Pre‐Miocene birth of the Yangtze River. Proc. Natl. Acad. Sci. USA, 110, 7556–7561.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12268
Loading
/content/journals/10.1111/bre.12268
Loading

Data & Media loading...

Supplements

Muscovite age distributions of sediments form cores and the Min River.

PDF

Comparison of zircon age distributions from Zhoulao core with the Min River.

PDF

Details of analytical methods.

WORD

Geochemistry data of muscovites.

40Ar/39Ar ages of muscovites.

Zircon U ‐Pb data.

Compiled zircon and muscovite data from previous studies.

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error