1887
Volume 30, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Reverse reactivation of normal faults, also termed “inversion”, has been extensively studied, whereas little is known about the strike‐slip reactivation of normal faults. At the same time, recognizing strike‐slip reactivation of normal faults in sedimentary basins is critical, as it may alter and impact basin physiography, accommodation and sediment supply and dispersal. Motivated by this, we present a study of a reactivated normal fault zone in the Liassic limestones and shales of Somerset, UK, to elucidate the effects of strike‐slip reactivation of normal faults, and the inherent deformation of relay zones that separate the original normal fault segments. The fault zone, initially extensional, exhibits a series of relay zones between right‐stepping segments, with the steps between the segments having subsequently become contractional due to sinistral strike‐slip movement. The relay zones have therefore been steepened and are cut by a series of connecting faults with reverse and strike‐slip components. The studied fault zone, and comparison with larger‐scale natural examples, leads us to conclude that the relays turned contractional steps are associated with (a) complex fault and fracture networks that accommodate shortening, (b) anomalously high numbers of fractures and faults, (c) layer‐parallel slip and (d) folding and uplift. Comparison with published statistics from global relay zones shows that whereas the reactivated relay zones feature aspect ratios similar to those of unreactivated relay zones, bed dips within reactivated relay zones are significantly steeper than unreactivated relay zones. Given the potential of reactivated relay zones to form areas of local uplift, they may affect basin structure and may also form potential traps for hydrocarbon or other fluids. The elevated faulting and fracturing, on the other hand, means reactivated relays are also likely loci for enhanced up‐fault flow.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12303
2018-08-02
2020-09-26
Loading full text...

Full text loading...

References

  1. Allen, M. B., Alsop, G. I., & Zhemchuzhnikov, V. G. (2001). Dome and basin refolding and transpressive inversion along the Karatau Fault System, southern Kazakstan. Journal of the Geological Society, 158, 83–95. https://doi.org/10.1144/jgs.158.1.83
    [Google Scholar]
  2. Anderson, E. M. (1951). The dynamics of faulting. Edinburgh, UK: Oliver and Boyd.
    [Google Scholar]
  3. Aris, Y., Coiffait, P. E., & Guiraud, M. (1998). Characterisation of Mesozoic–Cenozoic deformations and palaeostress fields in the Central Constantinois, northeast Algeria. Tectonophysics, 290, 59–85. https://doi.org/10.1016/S0040-1951(98)00012-2
    [Google Scholar]
  4. Balaguru, A., Nichols, G., & Hall, R. (2003). The origins of ‘circular basins’ of Sabah, Malaysia. Geological Society of Malaysia, 46, 335–351.
    [Google Scholar]
  5. Barton, C. M., Evans, D. J., Bristow, C. R., Freshney, E. C., & Kirby, G. A. (1998). Reactivation of relay zones and structural evolution of the Mere Fault and Wardour Monocline, northern Wessex Basin. Geological Magazine, 135, 383–395. https://doi.org/10.1017/S0016756898008759
    [Google Scholar]
  6. Bastesen, E., & Rotevatn, A. (2012). Evolution and structural style of relay zones in layered limestone–shale sequences: Insights from the Hammam Faraun Fault Block, Suez rift, Egypt. Journal of the Geological Society, 169, 477–488. https://doi.org/10.1144/0016-76492011-100
    [Google Scholar]
  7. Biddle, K. T., & Christie‐Blick, N. (1985). Glossary—strike‐slip deformation, basin formation, and sedimentation. SEPM Special Publications, 37, 375–384.
    [Google Scholar]
  8. Bosworth, W. (1985). Geometry of propagating continental rifts. Nature, 316, 625–627. https://doi.org/10.1038/316625a0
    [Google Scholar]
  9. Brun, J. P., & Nalpas, T. (1996). Graben inversion in nature and experiments. Tectonics, 15, 677–687. https://doi.org/10.1029/95TC03853
    [Google Scholar]
  10. Brune, S., Popov, A. A., & Sobolev, S. V. (2012). Modeling suggests that oblique extension facilitates rifting and continental break‐up. Journal of Geophysical Research: Solid Earth, 117(B8), B08402. https://doi.org/10.1029/2011JB008860
    [Google Scholar]
  11. Buchanan, J. G., & Buchanan, P. G. (Eds.) (1995). Basin inversion (p. 88). London, UK: Geological Society Special Publication.
    [Google Scholar]
  12. Buchanan, P. G., & McClay, K. R. (1991). Sandbox experiments of inverted listric and planar fault systems. Tectonophysics, 188, 97–115. https://doi.org/10.1016/0040-1951(91)90317-L
    [Google Scholar]
  13. Cartwright, J. A., Trudgill, B. D., & Mansfield, C. S. (1995). Fault growth by segment linkage: An explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah. Journal of Structural Geology, 17, 1319–1326. https://doi.org/10.1016/0191-8141(95)00033-A
    [Google Scholar]
  14. Chadwick, R. A. (1986). Extension tectonics in the Wessex Basin, southern England. Journal of the Geological Society, London, 143, 444–465.
    [Google Scholar]
  15. Chadwick, R. A. (1993). Aspects of basin inversion in southern Britain. Journal of the Geological Society, London, 150, 311–322. https://doi.org/10.1144/gsjgs.150.2.0311
    [Google Scholar]
  16. Childs, C., Manzocchi, T., Nicol, A., Walsh, J. J., Soden, A. M., Conneally, J. C., & Delogkos, E. (2017). The relationship between normal drag, relay ramp aspect ratio and fault zone structure. Geological Society, London, Special Publications, 439, 355–372. https://doi.org/10.1144/SP439.16
    [Google Scholar]
  17. Childs, C., Watterson, J., & Walsh, J. J. (1995). Fault overlap zones within developing normal fault systems. Journal of the Geological Society, London, 152, 535–549. https://doi.org/10.1144/gsjgs.152.3.0535
    [Google Scholar]
  18. Clifton, A. E., & Schlische, R. W. (2001). Nucleation, growth and linkage of faults in oblique rift zones: Results from experimental clay models and implications for maximum fault size. Geology, 29, 455–458. https://doi.org/10.1130/0091-7613(2001)029<0455:NGALOF>2.0.CO;2
    [Google Scholar]
  19. Coward, M. P. (1996). Balancing sections through inverted basins. In P. G.Buchanan , & D. A.Nieuwland (Eds.), Modern developments in structural interpretation, validation and modelling, Vol. 99 (pp. 51–77). London, UK: Geological Society, London, Special Publications.
    [Google Scholar]
  20. Crider, J. G., & Pollard, D. D. (1998). Fault linkage: Three‐dimensional mechanical interaction between echelon normal faults. Journal of Geophysical Research: Solid Earth, 103(B10), 24373–24391. https://doi.org/10.1029/98JB01353
    [Google Scholar]
  21. Cunningham, W. D., & Mann, P. (2007). Tectonics of strike‐slip restraining and releasing bends. Geological Society, London, Special Publications, 290, 1–12. https://doi.org/10.1144/SP290.1
    [Google Scholar]
  22. Dahlstrom, C. D. A. (1970). Structural geology in the eastern margin of the Canadian Rocky Mountains. Bulletin Canadian Petroleum Geology, 18, 332–406.
    [Google Scholar]
  23. Dart, C. J., McClay, K., & Hollings, P. N. (1995). 3D analysis of inverted extensional fault systems, southern Bristol Channel basin, U.K. In J. G.Buchanan , & P. G.Buchanan (Eds.), Basin inversion, Vol. 88 (pp. 393–413). London, UK: Geological Society, London, Special Publications.
    [Google Scholar]
  24. Davatzes, N. C., & Aydin, A. (2003). Overprinting faulting mechanisms in high porosity sandstones of SE Utah. Journal of Structural Geology, 25, 1795–1813. https://doi.org/10.1016/S0191-8141(03)00043-9
    [Google Scholar]
  25. Dewey, J., Cande, S., & Pitman, W. C. I. I. I. (1989). The tectonic evolution of the India/Eurasia collision zone. Ecolgae Geologicae Helvetiae, 82, 717–734.
    [Google Scholar]
  26. Dimmen, V., Rotevatn, A., Peacock, D. C., Nixon, C. W., & Nærland, K. (2017). Quantifying structural controls on fluid flow: Insights from carbonate‐hosted fault damage zones on the Maltese Islands. Journal of Structural Geology, 101, 43–57. https://doi.org/10.1016/j.jsg.2017.05.012
    [Google Scholar]
  27. Dockrill, B., & Shipton, Z. K. (2010). Structural controls on leakage from a natural CO2 geologic storage site: Central Utah, USA. Journal of Structural Geology, 32, 1768–1782. https://doi.org/10.1016/j.jsg.2010.01.007
    [Google Scholar]
  28. Dooley, T. P., & Schreurs, G. (2012). Analogue modelling of intraplate strike‐slip tectonics: A review and new experimental results. Tectonophysics, 574, 1–71. https://doi.org/10.1016/j.tecto.2012.05.030
    [Google Scholar]
  29. Ducea, M. N., Kidder, S., Chesley, J. T., & Saleeby, J. B. (2009). Tectonic underplating of trench sediments beneath magmatic arcs: The central California example. International Geology Review, 51, 1–26. https://doi.org/10.1080/00206810802602767
    [Google Scholar]
  30. Ebinger, C. J., Deino, A. L., Tesha, A. L., Becker, T., & Ring, U. (1993). Tectonic controls on rift basin morphology: Evolution of the Northern Malawi (Nyasa) Rift. Journal of Geophysical Research: Solid Earth, 98(B10), 17821–17836. https://doi.org/10.1029/93JB01392
    [Google Scholar]
  31. Engelder, T., & Peacock, D. C. P. (2001). Joint development normal to regional compression during flexural‐flow folding: The Lilstock buttress anticline, Somerset, England. Journal of Structural Geology, 23, 259–277. https://doi.org/10.1016/S0191-8141(00)00095-X
    [Google Scholar]
  32. Faulds, J. E., & Varga, R. J. (1998). The role of accommodation zones and transfer zones in the regional segmentation of extended terranes. In J. E.Faulds , & J. H.Stewart (Eds.), Accommodation zones and transfer zones: The regional segmentation of the Basin and Range Province, Vol. 323 (pp. 1–45). Boulder, CO: Geological Society of America Special Publication.
    [Google Scholar]
  33. Faure, S., Tremblay, A., Malo, M., & Angelier, J. (2006). Paleostress analysis of Atlantic crustal extension in the Quebec Appalachians. The Journal of Geology, 114, 435–448. https://doi.org/10.1086/504178
    [Google Scholar]
  34. Firth, E. A., Holwell, D. A., Oliver, N. H. S., Mortensen, J. K., Rovardi, M. P., & Boyce, A. J. (2015). Constraints on the development of orogenic style gold mineralisation at Mineral de Talca, Coastal Range, central Chile: Evidence from a combined structural, mineralogical, S and Pb isotope and geochronological study. Mineralium Deposita, 50, 675–696. https://doi.org/10.1007/s00126-014-0568-6
    [Google Scholar]
  35. Fossen, H., & Rotevatn, A. (2016). Fault linkage and relay structures in extensional settings – a review. Earth‐Science Reviews, 154, 14–28. https://doi.org/10.1016/j.earscirev.2015.11.014
    [Google Scholar]
  36. Fossen, H., Schultz, R. A., Rundhovde, E., Rotevatn, A., & Buckley, S. J. (2010). Fault linkage and graben stepovers in the Canyonlands (Utah) and the North Sea Viking Graben, with implications for hydrocarbon migration and accumulation. AAPG Bulletin, 94, 597–613. https://doi.org/10.1306/10130909088
    [Google Scholar]
  37. Gartrell, A., Zhang, Y., Lisk, M., & Dewhurst, D. (2004). Fault intersections as critical hydrocarbon leakage zones: Integrated field study and numerical modelling of an example from the Timor Sea, Australia. Marine and Petroleum Geology, 21, 1165–1179. https://doi.org/10.1016/j.marpetgeo.2004.08.001
    [Google Scholar]
  38. Gawthorpe, R. L., & Hurst, J. M. (1993). Transfer zones in extensional basins: Their structural style and influence on drainage development and stratigraphy. Journal of the Geological Society, London, 150, 1137–1152. https://doi.org/10.1144/gsjgs.150.6.1137
    [Google Scholar]
  39. Gawthorpe, R. L., & Leeder, M. R. (2000). Tectono‐sedimentary evolution of active extensional basins. Basin Research, 12, 195–218. https://doi.org/10.1046/j.1365-2117.2000.00121.x
    [Google Scholar]
  40. Giba, M., Walsh, J. J., & Nicol, A. (2012). Segmentation and growth of an obliquely reactivated normal fault. Journal of Structural Geology, 39, 253–267. https://doi.org/10.1016/j.jsg.2012.01.004
    [Google Scholar]
  41. Gibbs, A. D. (1984). Structural evolution of extensional basin margins. Journal of the Geological Society of London, 141, 609–620. https://doi.org/10.1144/gsjgs.141.4.0609
    [Google Scholar]
  42. Haq, S. S., & Davis, D. M. (1997). Oblique convergence and the lobate mountain belts of western Pakistan. Geology, 25, 23–26. https://doi.org/10.1130/0091-7613(1997)025<0023:OCATLM>2.3.CO;2
    [Google Scholar]
  43. Hartz, E., & Andresen, A. (1995). Caledonian sole thrust of central East Greenland: A crustal‐scale Devonian extensional detachment?Geology, 23, 637–640. https://doi.org/10.1130/0091-7613(1995)023<0637:CSTOCE>2.3.CO;2
    [Google Scholar]
  44. Hayward, N., & Ebinger, C. (1996). Variations in the along‐axis segmentation of the Afar Rift system. Tectonics, 15, 244–257. https://doi.org/10.1029/95TC02292
    [Google Scholar]
  45. Henstra, G. A., Gawthorpe, R. L., Helland‐Hansen, W., Ravnås, R., & Rotevatn, A. (2017). Depositional systems in multiphase rifts: Seismic case study from the Lofoten margin, Norway. Basin Research, 29, 447–469. https://doi.org/10.1111/bre.12183
    [Google Scholar]
  46. Henstra, G. A., Grundvåg, S. A., Johannessen, E. P., Kristensen, T. B., Midtkandal, I., Nystuen, J. P., … Windelstad, J. (2016). Depositional processes and stratigraphic architecture within a coarse‐grained rift‐margin turbidite system: The Wollaston Forland Group, east Greenland. Marine and Petroleum Geology, 76, 187–209. https://doi.org/10.1016/j.marpetgeo.2016.05.018
    [Google Scholar]
  47. Henstra, G. A., Rotevatn, A., Gawthorpe, R. L., & Ravnås, R. (2015). Evolution of a major segmented normal fault during multiphase rifting: The origin of plan‐view zigzag geometry. Journal of Structural Geology, 74, 45–63. https://doi.org/10.1016/j.jsg.2015.02.005
    [Google Scholar]
  48. Henza, A. A., Withjack, M. O., & Schlische, R. W. (2010). Normal‐fault development during two phases of non‐coaxial extension: An experimental study. Journal of Structural Geology, 32, 1656–1667. https://doi.org/10.1016/j.jsg.2009.07.007
    [Google Scholar]
  49. Huggins, P., Watterson, J., Walsh, J. J., & Childs, C. (1995). Relay zone geometry and displacement transfer between normal faults recorded in coal‐mine plans. Journal of Structural Geology, 17, 1741–1755. https://doi.org/10.1016/0191-8141(95)00071-K
    [Google Scholar]
  50. Jackson, C. A. L., Bell, R. E., Rotevatn, A., & Tvedt, A. B. (2017). Techniques to determine the kinematics of synsedimentary normal faults and implications for fault growth models. In C.Childs , R. E.Holdsworth , C. A. L.Jackson , T.Manzocchi , J. J.Walsh , & G.Yielding (Eds.), The geometry and growth of normal faults, Vol. 439 (pp. 187–217). London, UK: Geological Society, London, Special Publications.
    [Google Scholar]
  51. Jackson, C. A. L., & Rotevatn, A. (2013). 3D seismic analysis of the structure and evolution of a salt‐influenced normal fault zone: A test of competing fault growth models. Journal of Structural Geology, 54, 215–234. https://doi.org/10.1016/j.jsg.2013.06.012
    [Google Scholar]
  52. Jankowski, L., & Probulski, J. (2011). Tectonic and basinal evolution of the Outer Carpathians based on example of geological structure of the Grabownica, Strachocina and Łodyna hydrocarbon deposits. Geologia, 37, 555–583.
    [Google Scholar]
  53. Kattenhorn, S. A., Aydin, A., & Pollard, D. D. (2000). Joints at high angles to normal fault strike: An explanation using 3‐D numerical models of fault‐perturbed stress fields. Journal of Structural Geology, 22, 1–23. https://doi.org/10.1016/S0191-8141(99)00130-3
    [Google Scholar]
  54. Kelly, P. G., McGurk, A., Peacock, D. C. P., & Sanderson, D. J. (1999). Reactivated normal faults in the Mesozoic of the Somerset coast, and the role of fault scale in reactivation. Journal of Structural Geology, 21, 493–509. https://doi.org/10.1016/S0191-8141(99)00041-3
    [Google Scholar]
  55. Kim, J. H. (1996). Mesozoic tectonics in Korea. Journal of Southeast Asian Earth Sciences, 13, 251–265. https://doi.org/10.1016/0743-9547(96)00032-3
    [Google Scholar]
  56. Kristensen, T. B., Rotevatn, A., Marvik, M., Henstra, G. A., Gawthorpe, R. L., & Ravnås, R. (2018). Structural evolution of sheared margin basins: The role of strain partitioning. Sørvestsnaget Basin, Norwegian Barents Sea. Basin Research, 30, 279–301. https://doi.org/10.1111/bre.12253
    [Google Scholar]
  57. Lake, S. D., & Karner, G. D. (1987). The structure and evolution of the Wessex Basin, southern England: An examples of inversion tectonics. Tectonophysics, 137, 347–378. https://doi.org/10.1016/0040-1951(87)90328-3
    [Google Scholar]
  58. Larsen, P.‐H. (1988). Relay structures in a Lower Permian basement‐involved extension system, East Greenland. Journal of Structural Geology, 10, 3–8. https://doi.org/10.1016/0191-8141(88)90122-8
    [Google Scholar]
  59. Long, J. J., & Imber, J. (2011). Geological controls on fault relay zone scaling. Journal of Structural Geology, 33, 1790–1800. https://doi.org/10.1016/j.jsg.2011.09.011
    [Google Scholar]
  60. Mansfield, C., & Cartwright, J. (2001). Fault growth by linkage: Observations and implications from analogue models. Journal of Structural Geology, 23, 745–763. https://doi.org/10.1016/S0191-8141(00)00134-6
    [Google Scholar]
  61. McClay, K. R. (1989). Analogue models of inversion tectonics. In M. A.Cooper , & G. D.Williams (Eds.), Inversion tectonics, Vol. 44 (pp. 41–59). London, UK: Geological Society, London, Special Publications.
    [Google Scholar]
  62. McClay, K., & Bonora, M. (2001). Analog models of restraining stepovers in strike‐slip fault systems. AAPG Bulletin, 85, 233–260.
    [Google Scholar]
  63. McClay, K. R., & Buchanan, P. G. (1992). Thrust faults in inverted extensional basins. In K. R.McClay (Ed.), Thrust tectonics (pp. 93–104). Dordrecht, The Netherlands: Springer. https://doi.org/10.1007/978-94-011-3066-0
    [Google Scholar]
  64. Morley, C. K. (1995). Developments in the structural geology of rifts over the last decade and their impact on hydrocarbon exploration. In J. J.Lambiase (Ed.), Hydrocarbon habitat in rift basins, Vol. 80 (pp. 1–32). London, UK: Geological Society Special Publication.
    [Google Scholar]
  65. Morley, C. K., Back, S., van Rensbergen, P., Crevello, P., & Lambiase, J. J. (2003). Characteristics of repeated, detached, Miocene–Pliocene tectonic inversion events, in a large delta province on an active margin, Brunei Darussalam, Borneo. Journal of Structural Geology, 25, 1147–1169. https://doi.org/10.1016/S0191-8141(02)00130-X
    [Google Scholar]
  66. Morley, C. K., Nelson, R. A., Patton, T. L., & Munn, S. G. (1990). Transfer zones in the East African rift system and their relevance to hydrocarbon exploration in rifts. AAPG Bulletin, 74, 1234–1253.
    [Google Scholar]
  67. Panien, M., Schreurs, G., & Pfiffner, A. (2005). Sandbox experiments on basin inversion: Testing the influence of basin orientation and basin fill. Journal of Structural Geology, 27, 433–445. https://doi.org/10.1016/j.jsg.2004.11.001
    [Google Scholar]
  68. Peacock, D. C. P. (2002). Propagation, interaction and linkage in normal fault systems. Earth‐Science Reviews, 58, 121–142. https://doi.org/10.1016/S0012-8252(01)00085-X
    [Google Scholar]
  69. Peacock, D. C. P., Knipe, R. J., & Sanderson, D. J. (2000a). Glossary of normal faults. Journal of Structural Geology, 22(3), 291–305. https://doi.org/10.1016/S0191-8141(00)80102-9
    [Google Scholar]
  70. Peacock, D. C. P., Knipe, R. J., & Sanderson, D. J. (2000b). Glossary of normal faults. Journal of Structural Geology, 22, 291–305. https://doi.org/10.1016/S0191-8141(00)80102-9
    [Google Scholar]
  71. Peacock, D. C. P., Nixon, C. W., Rotevatn, A., Sanderson, D. J., & Zuluaga, L. F. (2016). Glossary of fault and other fracture networks. Journal of Structural Geology, 92, 12–29. https://doi.org/10.1016/j.jsg.2016.09.008
    [Google Scholar]
  72. Peacock, D. C. P., Nixon, C. W., Rotevatn, A., Sanderson, D. J., & Zuluaga, L. F. (2017). Interacting faults. Journal of Structural Geology, 97, 1–22. https://doi.org/10.1016/j.jsg.2017.02.008
    [Google Scholar]
  73. Peacock, D. C. P., & Sanderson, D. J. (1991). Displacements, segment linkage and relay zones in normal fault zones. Journal of Structural Geology, 13, 721–733. https://doi.org/10.1016/0191-8141(91)90033-F
    [Google Scholar]
  74. Peacock, D. C. P., & Sanderson, D. J. (1994). Geometry and development of relay zones in normal fault systems. AAPG Bulletin, 78, 147–165.
    [Google Scholar]
  75. Peacock, D. C. P., & Sanderson, D. J. (1995). Pull‐aparts, shear fractures and pressure solution. Tectonophysics, 241, 1–13. https://doi.org/10.1016/0040-1951(94)00184-B
    [Google Scholar]
  76. Peacock, D. C. P., & Sanderson, D. J. (1999). Deformation history and basin‐controlling faults in the Mesozoic sedimentary rocks of the Somerset coast. Proceedings of the Geologists Association, 110, 41–52. https://doi.org/10.1016/S0016-7878(99)80005-4
    [Google Scholar]
  77. Peacock, D. C. P., & Shepherd, J. (1997). Reactivated faults and transfer zones in the Southern Coalfield, Sydney Basin, Australia. Australian Journal of Earth Sciences, 44, 265–273. https://doi.org/10.1080/08120099708728309
    [Google Scholar]
  78. Rawnsley, K. D., Peacock, D. C. P., Rives, T., & Petit, J.‐P. (1998). Jointing in the Mesozoic sediments around the Bristol Channel Basin. Journal of Structural Geology, 20, 1641–1661. https://doi.org/10.1016/S0191-8141(98)00070-4
    [Google Scholar]
  79. Richard, P., & Krantz, R. W. (1991). Experiments on fault reactivation in strike‐slip mode. Tectonophysics, 188, 117–131. https://doi.org/10.1016/0040-1951(91)90318-M
    [Google Scholar]
  80. Roberts, D. G. (1989). Basin inversion in and around the British Isles. In M. A.Cooper , & G. D.Williams (Eds.), Inversion tectonics, Vol. 44 (pp. 131–150). London, UK: Geological Society, London, Special Publications.
    [Google Scholar]
  81. Rotevatn, A., & Bastesen, E. (2012). Fault linkage and damage zone architecture in tight carbonate rocks in the Suez Rift (Egypt): Implications for permeability structure along segmented normal faults, Vol. 374. London, UK: Geological Society, London, Special Publications.
  82. Rotevatn, A., & Bastesen, E. (2014). Fault linkage and damage zone architecture in tight carbonate rocks in the Suez Rift (Egypt): Implications for permeability structure along segmented normal faults. In G. H.Spence , J.Redfern , R.Aguilera , T. G.Bevan , J. W.Cosgrove , G. D.Couples , & J. M.Daniel (Eds.), Advances in the study of fractured reservoirs, Vol. 374 (pp. 79–95). London, UK: Geological Society, London, Special Publications.
    [Google Scholar]
  83. Rotevatn, A., Fossen, H., Hesthammer, J., Aas, T. E., & Howell, J. A. (2007). Are relay zones conduits for fluid flow? Structural analysis of a relay zone in Arches National Park, Utah. In L.Lonergan , R. J. H.Jolly , K.Rawnsley , & D. J.Sanderson (Eds.), Fractured reservoirs, Vol. 270 (pp. 55–71). London, UK: Geological Society, London, Special Publications.
    [Google Scholar]
  84. Rotevatn, A., & Jackson, C. A. L. (2014). 3D structure and evolution of folds during normal fault dip linkage. Journal of the Geological Society, London, 171, 821–829. https://doi.org/10.1144/jgs2014-045
    [Google Scholar]
  85. Rotevatn, A., Tveranger, J., Howell, J. A., & Fossen, H. (2009). Dynamic investigation of the effect of a relay zone on simulated fluid flow: Geocellular modelling of the Delicate Arch Ramp, Utah. Petroleum Geoscience, 15, 45–58. https://doi.org/10.1144/1354-079309-779
    [Google Scholar]
  86. Rowland, J. V., & Sibson, R. H. (2004). Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand. Geofluids, 4(4), 259–283. https://doi.org/10.1111/j.1468-8123.2004.00091.x
    [Google Scholar]
  87. Scotese, C. R. (1991). Jurassic and Cretaceous plate tectonic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 87, 493–501. https://doi.org/10.1016/0031-0182(91)90145-H
    [Google Scholar]
  88. Soliva, R., & Benedicto, A. (2004). A linkage criterion for segmented normal faults. Journal of Structural Geology, 26, 2251–2267. https://doi.org/10.1016/j.jsg.2004.06.008
    [Google Scholar]
  89. Sylvester, A. G. (1988). Strike‐slip faults. Geological Society of America Bulletin, 100, 1666–1703. https://doi.org/10.1130/0016-7606(1988)100<1666:SSF>2.3.CO;2
    [Google Scholar]
  90. Tavani, S., Mencos, J., Bausà, J., & Muñoz, J. A. (2011). The fracture pattern of the Sant Corneli Bóixols oblique inversion anticline (Spanish Pyrenees). Journal of Structural Geology, 33, 1662–1680. https://doi.org/10.1016/j.jsg.2011.08.007
    [Google Scholar]
  91. Turner, S. A., Liu, J. G., & Cosgrove, J. W. (2011). Structural evolution of the Piqiang Fault Zone, NW Tarim Basin, China. Journal of Asian Earth Sciences, 40, 394–402. https://doi.org/10.1016/j.jseaes.2010.06.005
    [Google Scholar]
  92. Van Hoorn, B. (1987). The south Celtic Sea/Bristol Channel basin: Origin, deformation and inversion history. Tectonophysics, 137, 309–334. https://doi.org/10.1016/0040-1951(87)90325-8
    [Google Scholar]
  93. Van Noten, K., Claes, H., Soete, J., Foubert, A., Özkul, M., & Swennen, R. (2013). Fracture networks and strike–slip deformation along reactivated normal faults in Quaternary travertine deposits, Denizli Basin, western Turkey. Tectonophysics, 588, 154–170. https://doi.org/10.1016/j.tecto.2012.12.018
    [Google Scholar]
  94. Walsh, J. J., Bailey, W. R., Childs, C., Nicol, A., & Bonson, C. G. (2003). Formation of segmented normal faults: A 3‐D perspective. Journal of Structural Geology, 25, 1251–1262. https://doi.org/10.1016/S0191-8141(02)00161-X
    [Google Scholar]
  95. Walsh, J. J., Nicol, A., & Childs, C. (2002). An alternative model for the growth of faults. Journal of Structural Geology, 24, 1669–1675. https://doi.org/10.1016/S0191-8141(01)00165-1
    [Google Scholar]
  96. Walsh, J. J., & Watterson, J. (1987). Distributions of cumulative displacement and seismic slip on a single normal fault. Journal of Structural Geology, 9, 1039–1046. https://doi.org/10.1016/0191-8141(87)90012-5
    [Google Scholar]
  97. Whittaker, A., & Green, G. W. (1983). Geology of the country around Weston‐super‐Mare. Memoir of the Geological Survey of Great Britain, Sheet 279 and parts of 263 and 295.
  98. Williams, G. D., Powell, C. M., & Cooper, M. A. (1989). Geometry and kinematics of inversion tectonics. In M. A.Cooper , & G. D.Williams (Eds.), Inversion tectonics, Vol. 44 (pp. 3–15). London, UK: Geological Society Special Publication.
    [Google Scholar]
  99. Wong, V., & Munguía, L. (2006). Seismicity, focal mechanisms, and stress distribution in the Tres Vírgenes volcanic and geothermal region, Baja California Sur, Mexico. Geofísica Internacional, 45, 23–37.
    [Google Scholar]
  100. Xu, S., Nieto‐Samaniego, Á. F., Alaniz‐Álvarez, S. A., & Cerca‐Martínez, L. M. (2011). Structural analysis of a relay zone in the Querétaro graben, central Mexico: Implications for relay zone development. Revista Mexicana de Ciencias Geológicas, 28, 275–289.
    [Google Scholar]
  101. Yamada, Y., & McClay, K. (2004). 3‐D analog modeling of inversion thrust structures. AAPG Memoirs, 82, 276–301.
    [Google Scholar]
  102. Zampieri, D., & Massironi, M. (2007). Evolution of a poly‐deformed relay zone between fault segments in the eastern Southern Alps, Italy. In W. D.Cunningham , & P.Mann (Eds.), Tectonics of strike‐slip restraining and releasing bends, Vol. 290 (pp. 351–366). London, UK: Geological Society, London, Special Publications.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12303
Loading
/content/journals/10.1111/bre.12303
Loading

Data & Media loading...

Supplements

 

  • Article Type: Research Article
Keyword(s): fault segmentation , reactivation , relay zone , restraining steps and strike‐slip
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error