1887
Volume 31, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

Apatite fission‐track (AFT) thermochronology and (U‐Th)/He (AHe) dating, combined with paleothermometers and independent geologic constraints, are used to model the thermal history of Devonian Catskill delta wedge strata. The timing and rates of cooling determines the likely post‐orogenic exhumation history of the northern Appalachian Foreland Basin (NAB) in New York and Pennsylvania. AFT ages generally young from west to east, decreasing from ~185 to 120 Ma. AHe single‐grain ages range from ~188 to 116 Ma. Models show that this part of the Appalachian foreland basin experienced a non‐uniform, multi‐stage cooling history. Cooling rates vary over time, ~1–2 °C/Myr in the Early Jurassic to Early Cretaceous, ~0.15–0.25 °C/Myr from the Early Cretaceous to Late Cenozoic, and ~1–2 °C/Myr beginning in the Miocene. Our results from the Mesozoic are broadly consistent with earlier studies, but with the integration of multiple thermochronometers and multi‐kinetic annealing algorithms in newer inverse thermal modeling programs, we constrain a Late Cenozoic increase in cooling which had been previously enigmatic in eastern U.S. low‐temperature thermochronology datasets. Multi‐stage cooling and exhumation of the NAB is driven by post‐orogenic basin inversion and catchment drainage reorganization, in response to changes in base level due to rifting, plus isostatic and dynamic topographic processes modified by flexure over the long (~200 Myr) post‐orogenic period. This study compliments other regional exhumation data‐sets, while constraining the timing of post‐orogenic cooling and exhumation in the NAB and contributing important insights on the post‐orogenic development and inversion of foreland basins along passive margins.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12354
2019-04-29
2024-04-26
Loading full text...

Full text loading...

References

  1. Amidon, W. H., Roden‐Tice, M., Anderson, A. J., McKeon, R. E., & Shuster, D. L. (2016). Late Cretaceous unroofing of the White Mountains, New Hampshire, USA: An episode of passive margin rejuvenation?Geology, 44(6), 415–418. https://doi.org/10.1130/G37429.1
    [Google Scholar]
  2. Armstrong, P. A. (2005). Thermochronometers in sedimentary basins. Reviews in Mineralogy and Geochemistry, 58, 499–525. https://doi.org/10.2138/rmg.2005.58.19
    [Google Scholar]
  3. Ault, A. K., Flowers, R. M., & Bowring, S. A. (2013). Phanerozoic surface history of the Slave craton. Tectonics, 32(5), 1066–1083. https://doi.org/10.1002/tect.20069
    [Google Scholar]
  4. Bailey, D. G., & Lupulescu, M. V. (2015). Spatial, temporal, mineralogical, and compositional variations in Mesozoic kimberlitic magmatism in New York State. Lithos, 212, 298–310. https://doi.org/10.1016/j.lithos.2014.11.022
    [Google Scholar]
  5. Barbarand, J., Carter, A., Wood, I., & Hurford, T. (2003). Compositional and structural control of fission‐track annealing in apatite. Chemical Geology, 198, 107–137. https://doi.org/10.1016/s0009-2541(02)00424-2
    [Google Scholar]
  6. Beaumont, C., Quinlan, G. M., & Hamilton, J. (1987). The Alleghanian orogeny and its relationship to the evolution of the eastern interior, North Ameri~In C.Beaumont & A. J.Tankard (Eds.), Sedimentary basins and basin‐forming mechanisms Mem. 12 (pp. 425–445). Halifax: Atlantic Geoscience Society.
    [Google Scholar]
  7. Bishop, P. (2007). Long‐term landscape evolution: Linking tectonics and surface processes. Earth Surface Processes and Landforms: the Journal of the British Geomorphological Research Group, 32(3), 329–365. https://doi.org/10.1002/esp.1493
    [Google Scholar]
  8. Blackmer, G. C., Omar, G. I., & Gold, D. P. (1994). Post‐alleghanian unroofing history of the appalachian basin, Pennsylvania, from fission track analysis and thermal models. Tectonics, 13, 1259–1276. https://doi.org/10.1029/94tc01507
    [Google Scholar]
  9. Boettcher, S. S., & Milliken, K. L. (1994). Mesozoic‐cenozoic unroofing of the Southern Appalachian Basin: Apatite fission track evidence from middle Pennsylvanian sandstones. The Journal of Geology, 102, 655–668. https://doi.org/10.1086/629710
    [Google Scholar]
  10. Braun, J., & Beaumont, C. (1989). A physical explanation of the relation between flank uplifts and the breakup unconformity at rifted continental margins. Geology, 17(8), 760–764. https://doi.org/10.1130/0091-7613(1989)017<0760:APEOTR>2.3.CO;2
    [Google Scholar]
  11. Braun, J., van der Beek, P., & Batt, G. (2006). Quantitative thermochronology: Numerical methods for the interpretation of thermochronological data (258 pp). Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  12. Bray, R. J., Green, P. F., & Duddy, I. R. (1992). Thermal history reconstruction using apatite fission track analysis and vitrinite reflectance: A case study from the UK East Midlands and Southern North Sea. Special Publication of the Geological Society of London, 67, 3–25. https://doi.org/10.1144/gsl.sp.1992.067.01.01
    [Google Scholar]
  13. Brown, R. W., Beucher, R., Roper, S., Persano, C., Stuart, F., & Fitzgerald, P. G. (2013). Natural age dispersion arising from the analysis of broken crystals. Part I: Theoretical basis and implications for the apatite (U–Th)/He thermochronometer. Geochimica (Beijing)Et Cosmochimica Acta, 122, 478–497. https://doi.org/10.1016/j.gca.2013.05.041
    [Google Scholar]
  14. Burtner, R. L., Nigrini, A., & Donelick, R. A. (1994). Thermochronology of lower cretaceous source rocks in the idaho‐wyoming thrust belt. AAPG Bulletin, 78, 1613–1636. https://doi.org/10.1306/a25ff233-171b-11d7-8645000102c1865d
    [Google Scholar]
  15. Carlson, W. D., Donelick, R. A., & Ketcham, R. A. (1999). Variability of apatite fission‐track annealing kinetics: I. Experimental Results. American Mineralogist, 84, 1213–1223. https://doi.org/10.2138/am-1999-0901
    [Google Scholar]
  16. Chyi, L. L., Barnett, R. G., Burford, A. E., Quick, T. J., & Gray, R. J. (1987). Coalification patterns of the Pittsburgh coal: Their origin and bearing on hydrocarbon maturation. International Journal of Coal Geology, 7, 69–83. https://doi.org/10.1016/0166-5162(87)90013-9
    [Google Scholar]
  17. Corrigan, J., Cervany, P. F., Donelick, R. A., & Bergman, S. C. (1998). Postorogenic denudation along the late Paleozoic Ouachita trend, south central United States of America: Magnitude and timing constraints from apatite fission track data. Tectonics, 17, 587–603. https://doi.org/10.1029/98TC01316
    [Google Scholar]
  18. Crowley, K. D., Cameron, M., & Schaefer, R. L. (1991). Experimental studies of annealing of etched fission tracks in fluorapatite. Geochimica (Beijing)Et Cosmochimica Acta, 55, 1449–1465. https://doi.org/10.1016/0016-7037(91)90320-5
    [Google Scholar]
  19. Daniels, E. J., Altaner, S. P., Marshak, E., & Eggleston, J. R. (1990). Hydrothermal alteration in anthracite from eastern Pennsylvania: Implications for mechanisms of anthracite formation. Geology, 18, 247–250. https://doi.org/10.1130/0091-7613(1990)018<0247:HAIAFE>2.3.CO;2
    [Google Scholar]
  20. De Bruijne, C. H., & Andriessen, P. A. M. (2002). Far field effects of Alpine plate tectonism in the Iberian microplate recorded by fault‐related denudation in the Spanish Central System. Tectonophysics, 349(1–4), 161–184. https://doi.org/10.1016/S0040-1951(02)00052-5
    [Google Scholar]
  21. Donelick, R. A., Ketcham, R. A., & Carlson, W. D. (1999). Variability of apatite fission‐track annealing kinetics: II. Crystallographic orientation effects. American Mineralogist, 84, 1224–1234. https://doi.org/10.2138/am-1999-0902
    [Google Scholar]
  22. Donelick, R. A., O’Sullivan, P. B., & Ketcham, R. A. (2005). Apatite fission‐track analysis. Reviews in Mineralogy and Geochemistry, 58, 49–94.
    [Google Scholar]
  23. Dorobek, S. (1989). Migration of orogenic fluids through the Siluro‐Devonian Helderberg Group during the late Paleozoic deformation; Constraints on fluid sources and implications for thermal histories of sedimentary basins. Tectonophysics, 159, 25–45. https://doi.org/10.1016/0040-1951(89)90168-6
    [Google Scholar]
  24. East, J. A., Swezey, C. S., Repetski, J. E., & Hayba, D. O. (2012). Thermal maturity map of Devonian shale in the Illinois, Michigan, and Appalachian basins of North Ameri~U.S. Geol. Surv., Sci. Invest. Map, 3214.
  25. Eaton, D. W., & Frederiksen, A. (2007). Seismic evidence for convection‐driven motion of the North American plate. Nature, 446, 428–431. https://doi.org/10.1038/nature05675
    [Google Scholar]
  26. Ehlers, T. A., & Farley, K. A. (2003). Apatite (U‐Th)/He thermochronometry: Methods and applications to problems in tectonic and surface processes. Earth and Planetary Science Letters, 206, 1–14.
    [Google Scholar]
  27. Epstein, A. G., Epstein, J. B., & Harris, L. D. (1977). Conodont Color Alteration ‐ an Index to Organic Metamorphism. U.S. Geol. Surv. Professional Paper, 995, 1–27.
  28. Ettensohn, F. R. (2008). The Appalachian foreland basin in eastern United States. In K. J.Hsü (Ed.), Sedimentary basins of the world (pp. 105–179), Section: The Sedimentary Basins of the United States and Canada (Ed. by A.D. Miall), 5. Amsterdam: Elsevier Science.
    [Google Scholar]
  29. Faill, R. T. (1985). The Acadian Orogeny and the Catskill Delta. Geol. Soc. Am. Spec. Pap., 201, 15–38.
  30. Faill, R. T. (1998). A geologic history of the North‐central appalachians, Part 3. The Alleghany orogeny. American Journal of Science, 298, 131–179. https://doi.org/10.2475/ajs.298.2.131
    [Google Scholar]
  31. Farley, K. A. (2002). (U‐Th)/He dating: Techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry, 47, 819–844.
    [Google Scholar]
  32. Farley, K. A., Wolf, R. W., & Silver, L. T. (1996). The effects of long alpha‐stopping distances on (U‐Th)/He ages. Geochimica Et Cosmochimica Acta, 60, 4223–4229. https://doi.org/10.1016/s0016-7037(96)00193-7
    [Google Scholar]
  33. Fitzgerald, P. G., Baldwin, S. L., Webb, L. E., & O’Sullivan, P. B. (2006). Interpretation of (U‐Th)/He single grain ages from slowly cooled crustal terranes: A case study from the Transantarctic Mountains of southern Victoria Land. Chemical Geology, 225, 91–120. https://doi.org/10.1016/j.chemgeo.2005.09.001
    [Google Scholar]
  34. Flowers, R. M., & Kelley, S. A. (2011). Interpreting data dispersion and "inverted" dates in apatite (U‐Th)/He and fission‐track datasets: An example from the US midcontinent. Geochimica Et Cosmochimica Acta, 75, 5169–5186. https://doi.org/10.1016/j.gca.2011.06.016
    [Google Scholar]
  35. Flowers, R. M., Ketcham, R. A., Shuster, D. L., & Farley, K. A. (2009). Apatite (U‐Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica Et Cosmochimica Acta, 73, 2347–2365. https://doi.org/10.1016/j.gca.2009.01.015
    [Google Scholar]
  36. Foscolos, A. E., Powell, T. G., & Gunther, P. R. (1976). The use of clay minerals and inorganic and organic geochemical indicators for evaluating the degree of diagenesis and oil generating potential of shales. Geochimica Et Cosmochimica Acta, 40, 953–966. https://doi.org/10.1016/0016-7037(76)90144-7
    [Google Scholar]
  37. Friedman, G. M. (1987). Vertical movements of the crust: Case histories from the Northern Appalachian Basin. Geology, 15, 130–1133. https://doi.org/10.1130/0091-7613(1987)15<1130:VMOTCC>2.0.CO;2
    [Google Scholar]
  38. Friedman, G. M., & Sanders, J. E. (1982). Time‐temperature‐burial significance of Devonian anthracite implies former great (approx 6.5km) depth of burial of Catskill Mountains, New York. Geology, 10, 93–96. https://doi.org/10.1130/0091-7613(1983)11<123:carots>2.0.co;2
    [Google Scholar]
  39. Galbraith, R. F., & Laslett, G. M. (1993). Statistical models for mixed fission track ages. Nuclear Tracks and Radiation Measurements, 21, 459–470. 10.1016/1359‐0189(93)90185‐c
    [Google Scholar]
  40. Gallagher, K., & Brown, R. (1999). Denudation and uplift at passive margins: The record on the Atlantic Margin of southern Afri~Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1753), 835–859. https://doi.org/10.1098/rsta.1999.0354
    [Google Scholar]
  41. Gallagher, K., Brown, R., & Johnson, C. (1998). Fission track analysis and its applications to geological problems. Annual Review of Earth and Planetary Sciences, 26, 519–572.
    [Google Scholar]
  42. Gallen, S. F., Wegmann, K. W., & Bohnenstieh, D. R. (2013). Miocene rejuvenation of topographic relief in the southern Appalachians. GSA Today, 23, 4–10. https://doi.org/10.1130/GSATG163A.1
    [Google Scholar]
  43. Gerlach, J. B., & Cercone, K. R. (1993). Former Carboniferous overburden in the northern Appalachian Basin: A reconstruction based on vitrinite reflectance. Organic Geochemistry, 20, 223–232. https://doi.org/10.1016/0146-6380(93)90040-I
    [Google Scholar]
  44. Gleadow, A. J. W., & Duddy, I. R. (1984). Fission track dating and thermal history analysis of apatites from wells in the north‐west Canning Basin. In P. G.Purcell (Ed.), Canning Basin (pp. 377–387). Perth, WA: Geol. Soc. Australia/ Petrol. Explor. Soc. Australia.
    [Google Scholar]
  45. Gleadow, A. J. (1981). Fission‐track dating methods: What are the real alternatives?Nuclear Tracks, 5(1–2), 3–14. https://doi.org/10.1016/0191-278X(81)90021-4
    [Google Scholar]
  46. Gleadow, A. J. W., & Duddy, I. R. (1981). A natural long‐term track annealing experiment for apatite. Nuclear Tracks, 5, 169–174. https://doi.org/10.1016/0191-278X(81)90039-1
    [Google Scholar]
  47. Gleadow, A. J. W., Duddy, I. R., Green, P. F., & Hegarty, K. A. (1986). Fission track lengths in the apatite annealing zone and the interpretation of mixed ages. Earth and Planetary Science Letters, 78, 245–254. https://doi.org/10.1016/0012-821X(86)90065-8
    [Google Scholar]
  48. Gleadow, A. J. W., Duddy, I. R., & Lovering, J. F. (1983). Fission track analysis: A new tool for the evaluation of thermal histories and hydrocarbon potential. The APPEA Journal, 23, 93–102. https://doi.org/10.1071/AJ82009
    [Google Scholar]
  49. Gleadow, A. J. W., & Fitzgerald, P. G. (1987). Uplift history of the transantarctic mountains: New evidence from fission track dating of basement Apatites in the dry valleys area, Southern Victoria Land. Earth and Planetary Science Letters, 82, 1–14.
    [Google Scholar]
  50. Green, P. F., & Duddy, I. R. (2012). Thermal history reconstruction in sedimentary basins using apatite fission‐track analysis and related techniques. Analyzing the Thermal History of Sedimentary Basins: Methods and Case Studies: SEPM Special Publication, 103, 65–104.
  51. Green, P. F., & Duddy, I. R. (2018). Apatite (U‐Th‐Sm)/He thermochronology on the wrong side of the tracks. Chemical Geology, 488, 21–33.
    [Google Scholar]
  52. Green, P. F., Duddy, I. R., & Bray, R. J. (1995). Applications of thermal history reconstruction in inverted basins. Special Publication of the Geological Society of London, 88, 149–165. https://doi.org/10.1144/gsl.sp.1995.088.01.10
    [Google Scholar]
  53. Green, P. F., Duddy, I. R., Gleadow, A. J. W., & Lovering, J. F. (1989). Apatite fission‐track analysis as a paleotemperature indicator for hydrocarbon exploration. In N. D.Naeser & T. H.McCulloh (Eds.), Thermal history of sedimentary basins (pp. 181–195). New York, NY: Springer.
    [Google Scholar]
  54. Green, P. F., Duddy, I. R., Gleadow, A. J. W., Tingate, P. R., & Laslett, G. M. (1986). Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chemical Geology: Isotope Geoscience Section, 59, 237–253. https://doi.org/10.1016/0168-9622(86)90074-6
    [Google Scholar]
  55. Gurney, G. G., & Friedman, G. M.(1986) Burial history of Cherry Valley carbonate sequence, from Cherry Valley, New York. Am. Assoc. Pet. Geol., Bull., 70.CONF‐8610158.
  56. Harrison, M. J., Marshak, S., & Onasch, C. M. (2004). Stratigraphic control of hot fluids on anthracitization, Lackawanna synclinorium, Pennsylvania. Tectonophysics, 378, 85–103. https://doi.org/10.1016/j.tecto.2003.10.010
    [Google Scholar]
  57. Harrison, T. M., & Zeitler, P. K. (2005). Fundamentals of noble gas thermochronometry. Reviews in Mineralogy and Geochemistry, 58, 123–149. https://doi.org/10.2138/rmg.2005.58.5
    [Google Scholar]
  58. Hatcher, R. D.Jr. (2010). The Appalachian orogen: A brief summary. In R. P.Tollo, M. J.Bartholomew, J. P.Hibbard & P. M.Karabinos (Eds.), From Rodinia to Pangea: The Lithotectonic Record of the appalachian region (pp. 1–19), GSA Memoir, 206. Boulder, CO: Geological Society of America.
    [Google Scholar]
  59. Heaman, L. M., & Kjarsgaard, B. A. (2000). Timing of eastern North American kimberlite magmatism; Continental extension of the Great Meteor Hotspot track?Earth and Planetary Science Letters, 178, 253–268. https://doi.org/10.1016/s0012-821x(00)00079-0
    [Google Scholar]
  60. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. https://doi.org/10.3410/f.725468011.793509714
    [Google Scholar]
  61. Horton, J. D. (2017) The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (ver. 1.1, August 2017): U.S. Geological Survey data release.
  62. House, M. A., Farley, K. A., & Kohn, B. P. (1999). An empirical test of helium diffusion in apatite: Borehole data from the Otway basin. Australia. Earth and Planetary Science and Letters, 170, 463–474. https://doi.org/10.1016/s0012-821x(00)00079-0
    [Google Scholar]
  63. Hower, J. C., & Gayer, R. A. (2002). Mechanisms of coal metamorphism: Case studies from Paleozoic coalfields. International Journal of Coal Geology, 50, 215–245. https://doi.org/10.1016/s0166-5162(02)00119-2
    [Google Scholar]
  64. Hulver, M. L. (1997). Post‐orogenic evolution of the Appalachian mountain system and its foreland. PhD Thesis, University of Chicago, Chicago, IL.
  65. Hurford, A. J., & Green, P. F. (1983). The zeta age calibration of fission‐track dating. Chemical Geology, 41, 285–317.
    [Google Scholar]
  66. Isachsen, Y. W., Landing, E., Lauber, J. M., Rickard, L. V., & Rogers, W. B.(1991) The geology of New York: a simplified account. N.Y. State Mus. Education Leaflet 28, New York State Museum/Geological Survey.
  67. Jamieson, R. A., & Beaumont, C. (1988). Orogeny and metamorphism: A model for deformation and pressure‐temperature‐time paths with applications to the central and southern Appalachians. Tectonics, 7(3), 417–445. https://doi.org/10.1029/TC007i003p00417
    [Google Scholar]
  68. Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. (2008). Hole‐filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT). Retrieved from http://srtm.csi.cgiar.org
  69. Jiang, S. (2012). Clay minerals from the perspective of oil and gas exploration. In M.Valaškova & G. S.Martynkova (Eds.), Clay minerals in nature ‐ Their characterization, modification and application (pp. 21‐38). InTech.
    [Google Scholar]
  70. Johnsson, M. J. (1985). Late Paleozoic‐Middle Mesozoic uplift rate, cooling rate and geothermal gradient for south‐central New York state. Nuclear Tracks and Radiation Measurements, 10(3), 295–301. https://doi.org/10.1016/0735-245X(85)90118-8
    [Google Scholar]
  71. Johnsson, M. J. (1986). Distribution of maximum burial temperatures across northern Appalachian Basin and implications for Carboniferous sedimentation patterns. Geology, 14, 384–387. https://doi.org/10.1130/0091-7613(1986)14<384:DOMBTA>2.0.CO;2
    [Google Scholar]
  72. Judson, S. (1975) Evolution of appalachian topography. In: Theories of Landform Development, Proceedings of the 6th Geomorphology Symposium (Ed. by W. N.Melhore, & R.C. Flemal),29–44. Publications in Geomorphology, State University of New York at Binghamton.
  73. Ketcham, R. A. (2005). Forward and inverse modeling of low‐temperature thermochronometry data. Reviews in Mineralogy and Geochemistry, 58, 275–314.
    [Google Scholar]
  74. Ketcham, R. A. (2012). Basin thermal history analysis using (U‐Th)/ He thermochronometry. SPEM Spec. Pub., 103, 105–123.
  75. Ketcham, R. A., Carter, A., Donelick, R. A., Barbarand, J., & Hurford, A. J. (2007). Improved measurement of fission‐track annealing in apatite using c‐axis projection. American Mineralogist, 92, 799–810.
    [Google Scholar]
  76. Ketcham, R. A., Donelick, R. A., & Carlson, W. D. (1999). Variability of apatite fission‐track annealing kinetics: III. Extrapolation to geological time scales. American Mineralogist, 84, 1235–1255. https://doi.org/10.2138/am-1999-0903
    [Google Scholar]
  77. Ketcham, R. A., Gautheron, C., & Tassan‐Got, L. (2011). Accounting for long alpha‐particle stopping distances in (U‐Th‐Sm)/He geochronology: Refinement of the baseline case. Geochimica (Beijing)Et Cosmochimica Acta, 75, 7779–7791. https://doi.org/10.1016/j.gca.2011.10.011
    [Google Scholar]
  78. Klitgord, K. D., Hutchinson, D. R., & Schouten, H. (1988) U.S. Atlantic continental margin: structural and tectonic framework. In R. E.Sheridan & J. A.Grow (Eds.), The Geology of North America, the Atlantic Continental Margin, U.S. (pp. 19–57), Decade of North American Geology Series, 2. Boulder, CO: Geological Society of America.
    [Google Scholar]
  79. Kohn, B., Chung, L., & Gleadow, A. J. W. (2018). Chapter 2. Fission‐track analysis: field collection, sample preparation and data acquisition. In M. G.Malusà, & P. G.Fitzgerald (Eds.), Fission‐track thermochronology and its application to geology (pp. 25‐48). Cham: Springer.
    [Google Scholar]
  80. Lakatos, S., & Miller, D. S. (1983). Fission‐track analysis of apatite and zircon defines a burial depth of 4 to 7 km for lowermost Upper Devonian, Catskill Mountains, New York. Geology, 11, 103–104. https://doi.org/10.1130/0091-7613(1983)11<103:FAOAAZ>2.0.CO;2
    [Google Scholar]
  81. Lash, G. G., & Blood, D. R. (2007). Origin of early overpressure in the upper devonian catskill delta complex. Western New York State. Basin Research, 19, 51–66.
    [Google Scholar]
  82. Laslett, G. M., Green, P. F., Duddy, I. R., & Gleadow, A. J. W. (1987). Thermal annealing of fission tracks in apatite 2. A quantitative analysis. Chemical Geology, 65, 1–13. https://doi.org/10.1016/0009-2541(87)90189-6
    [Google Scholar]
  83. Lehner, B., Verdin, K., & Jarvis, A. (2008). New global hydrography derived from spaceborne elevation data (HydroSHEDS). Eos, Transactions American Geophysical Union, 89(10), 93–94. https://doi.org/10.1029/2008EO100001
    [Google Scholar]
  84. Levine, J. R. (1986). Deep burial of coal‐bearing strata, Anthracite region, Pennsylvania: Sedimentation or tectonics. Geology, 14, 577–580. https://doi.org/10.1130/0091-7613(1986)14<577:DBOCSA>2.0.CO;2
    [Google Scholar]
  85. Lindberg, F. A. (1985). Northern appalachian region: COSUNA project. Tulsa, OK: American Association of Petroleum Geologists.
    [Google Scholar]
  86. Lister, G. S., Etheridge, M. A., & Symonds, P. A. (1991). Detachment models for the formation of passive continental margins. Tectonics, 10(5), 1038–1064. https://doi.org/10.1029/90TC01007
    [Google Scholar]
  87. Malusà, M. G., & Fitzgerald, P. G. (2018a). Fission‐track thermochronology and its application to geology (393 pp). Cham: Springer.
    [Google Scholar]
  88. Malusà, M. G., & Fitzgerald, P. G. (2018b). From cooling to exhumation: setting the reference frame for the interpretation of thermochronologic data. In M.G.Malusà & P.G.Fitzgerald (Eds.), Fission‐Track Thermochronology and its Application to Geology (pp. 147–164). Cham: Springer.
    [Google Scholar]
  89. McKeon, R. E., Zeitler, P. K., Pazzaglia, F. J., Idleman, B. D., & Enkelmann, E. (2014). Decay of an old orogen: Inferences about appalachian landscape evolution from low‐temperature thermochronology. Geological Society of America Bulletin, 126, 31–46.
    [Google Scholar]
  90. Meesters, A. G. C. A., & Dunai, T. J. (2002). Solving the production–diffusion equation for finite diffusion domains of various shapes: Part II. Application to cases with a‐ejection and nonhomogeneous distribution of the source. Chemical Geology, 186, 347–363. https://doi.org/10.1016/S0009-2541(02)00073-6
    [Google Scholar]
  91. Miller, D. S., & Duddy, I. R. (1989). Early cretaceous uplift and erosion of the Northern Appalachian Basin, New York, based on apatite fission track analysis. Earth and Planetary Science Letters, 93, 35–49.
    [Google Scholar]
  92. Miller, S. R., Sak, P. B., Kirby, E., & Bierman, P. R. (2013). Neogene rejuvenation of central Appalachian topography: Evidence for differential rock uplift from stream profiles and erosion rates. Earth and Planetary Science Letters, 369, 1–12. https://doi.org/10.1016/j.epsl.2013.04.007
    [Google Scholar]
  93. Moodie, A. J., Pazzaglia, F. J., & Berti, C. (2018). Exogenic forcing and autogenic processes on continental divide location and mobility. Basin Research, 30(2), 344–369. https://doi.org/10.1111/bre.12256
    [Google Scholar]
  94. Moucha, R., Forte, A. M., Mitrovica, J. X., Rowley, D. B., Quere, S., Simmons, N. A., & Grand, S. P. (2008). Dynamic topography and long‐term sea‐level variations: There is no such thing as a stable continental platform. Earth and Planetary Science Letters, 271, 101–108. https://doi.org/10.1016/j.epsl.2008.03.056
    [Google Scholar]
  95. Moucha, R., & Ruetenik, G. A. (2017). Interplay between dynamic topography and flexure along the US Atlantic passive margin: Insights from landscape evolution modeling. Global and Planetary Change, 149, 72–78. https://doi.org/10.1016/j.gloplacha.2017.01.004
    [Google Scholar]
  96. Naeser, C. W. (1981). The fading of fission tracks in the geologic environment‐ data from deep drill holes. Nuclear Tracks, 5, 248–250. https://doi.org/10.1016/0191-278X(81)90055-X
    [Google Scholar]
  97. Naeser, C. W., Naeser, N. D., Newell, W. L., Southworth, S., Edwards, L. E., & Weems, R. E. (2016). Erosional and depositional history of the Atlantic passive margin as recorded in detrital zircon fission‐track ages and lithic detritus in Atlantic Coastal Plain sediments. American Journal of Science, 316(2), 110–168. https://doi.org/10.2475/02.2016.02
    [Google Scholar]
  98. Naeser, N. D., Naeser, C. W., & McCulloh, T. H. (1989). The application of fission‐track dating to the depositional and thermal history of rocks in sedimentary basins. In N. D.Naeser & T. H.McCulloh (Eds.), Thermal history of sedimentary basins (pp. 157–180). New York, NY: Springer.
    [Google Scholar]
  99. Nielsen, S. B., Clausen, O. R., & Mcgregor, E. (2015). basin%Ro: A vitrinite reflectance model derived from basin and laboratory data. Basin Research, 29, 515–536.
    [Google Scholar]
  100. Oliver, J. (1986). Fluids expelled tectonically from orogenic belts: Their role in hydrocarbon migration and other geologic phenomena. Geology, 14, 99–102. https://doi.org/10.1130/0091-7613(1986)14<99:FETFOB>2.0.CO;2
    [Google Scholar]
  101. Paola, C. (2000). Quantitative models of sedimentary basin filling. Sedimentology, 47, 121–178. https://doi.org/10.1046/j.1365-3091.2000.00006.x
    [Google Scholar]
  102. Pazzaglia, F. J., & Brandon, M. T. (1996). Macrogeomorphic evolution of the post‐Triassic Appalachian Mountains determined by deconvolution of the offshore basin sedimentary record. Basin Research, 8, 1–24. https://doi.org/10.1046/j.1365-2117.1996.00274.x
    [Google Scholar]
  103. Pazzaglia, F. J., & Gardner, T. W. (1994). Late Cenozoic flexural deformation of the middle U.S. Atlantic Passive Margin. Journal of Geophysical Research, 99, 12143–112157. https://doi.org/10.1029/93jb03130
    [Google Scholar]
  104. Pazzaglia, F. J., & Gardner, T. W. (2000). Late Cenozoic large‐scale landscape evolution of the U.S. Atlantic passive margin. In M.Summerfield (Ed.), Geomorphology and global tectonics (pp. 283–302). New York, NY: Global Tectonics: John Wiley.
    [Google Scholar]
  105. Poag, C. W., & Sevon, W. D. (1989). A record of Appalachian denudation in post‐rift Mesozoic and Cenozoic sedimentary deposits of the U.S. middle Atlantic continental margin. Geomorphology, 2, 119–157. https://doi.org/10.1016/0169-555X(89)90009-3
    [Google Scholar]
  106. Prince, P. S., Spotila, J. A., & Henika, W. S. (2010). New physical evidence of the role of stream capture in active retreat of the Blue Ridge escarpment, southern Appalachians. Geomorphology, 123(3–4), 305–319. https://doi.org/10.1016/j.geomorph.2010.07.023
    [Google Scholar]
  107. Prince, P. S., Spotila, J. A., & Henika, W. S. (2011). Stream capture as driver of transient landscape evolution in a tectonically quiescent setting. Geology, 39(9), 823–826. https://doi.org/10.1130/G32008.1
    [Google Scholar]
  108. Reed, J. S., Spotila, J. A., Eriksson, K. A., & Bodnar, R. J. (2005). Burial and exhumation history of Pennsylvanian strata, central Appalachian Basin: An integrated study. Basin Research, 17, 259–268. https://doi.org/10.1111/j.1365-2117.2005.00265.x
    [Google Scholar]
  109. Reiners, P. W., & Brandon, M. T. (2006). Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences, 34, 419–466.
    [Google Scholar]
  110. Reiners, P. W., & Farley, K. A. (2001). Influence of Crystal Size on Apatite (U‐Th)/He Thermochronology: An Example from the Bighorn Mountains. Wyoming. Earth and Planetary Science Letters, 188, 413–420. https://doi.org/10.1016/s0012-821x(01)00341-7
    [Google Scholar]
  111. Repetski, J. E., Ryder, R. T., Weary, D. J., Harris, A. G., & Trippi, M. H. (2008). Thermal Maturity Patterns (CAI and% Ro) in Upper Ordovician and Devonian Rocks of the Appalachian Basin. A Major Revision of U.S. Geol. Surv. Map I–917–E, Using New Subsurface Collections. U.S. Geol. Surv., Sci. Invest. Map, 3006, 26.
  112. Riccio, S. J., Fitzgerald, P. G., Benowitz, J. A., & Roeske, S. M. (2014). The role of thrust faulting in the formation of the eastern Alaska Range: Thermochronological constraints from the Susitna Glacier thrust fault region of the intracontinental strike‐slip Denali fault system. Tectonics, 33(11), 2195–2217. https://doi.org/10.1002/2014TC003646
    [Google Scholar]
  113. Roden, M. K. (1991). Apatite fission‐track thermochronology of the Southern appalachian basin: Maryland, West Virginia, and Virginia. The Journal of Geology, 99, 41–53. https://doi.org/10.1086/629472
    [Google Scholar]
  114. Roden, M. K., & Miller, D. S. (1989). Apatite fission‐track thermochronology of the Pennsylvania Appalachian Basin. Geomorphology, 2, 39–51. https://doi.org/10.1016/0169-555X(89)90005-6
    [Google Scholar]
  115. Roden‐Tice, M. K., & Tice, S. J. (2005). Regional‐scale mid‐jurassic to late cretaceous unroofing from the adirondack mountains through central New England based on apatite fission‐track and (U‐Th)/He Thermochronology. The Journal of Geology, 113, 535–552. https://doi.org/10.1086/431908
    [Google Scholar]
  116. Roden‐Tice, M. K., Tice, S. J., & Schofield, I. S. (2000). Evidence for differential unroofing in the adirondack mountains, New York State, determined by apatite fission‐track thermochronology. The Journal of Geology, 108, 155–169.
    [Google Scholar]
  117. Roden‐Tice, M. K., West, D. P.Jr, Potter, J. K., Raymond, S. M., & Winch, J. L. (2009). Presence of a long‐term lithospheric thermal anomaly: Evidence from apatite fission‐track analysis in Northern New England. The Journal of Geology, 117, 627–641. https://doi.org/10.1086/605995
    [Google Scholar]
  118. Roden‐Tice, M. K., & Wintsch, R. P. (2002). Early cretaceous normal faulting in Southern New England: evidence from apatite and zircon fission‐track ages. The Journal of Geology, 110, 159–178. https://doi.org/10.1086/338281
    [Google Scholar]
  119. Ruppert, L. F., Hower, J. C., Ryder, R. T., Levine, J. R., Trippi, M. H., & Grady, W. C. (2010). Geologic controls on thermal maturity patterns in Pennsylvanian coal‐bearing rocks in the Appalachian basin. International Journal of Coal Geology, 81, 169–181. https://doi.org/10.1016/j.coal.2009.12.008
    [Google Scholar]
  120. Ryder, R. T., Hackley, P. C., Trippi, M. H., & Alimi, H. (2013). Evaluation of thermal maturity in the low maturity Devonian shales of the northern Appalachian Basin. American Association of Petroleum Geologists Search and Discovery, Article, 10477.
  121. Schneider, D. A., & Issler, D. R. (2018). Chapter 18. Application of low‐temperature thermochronology to hydrocarbon exploration. In M. G.Malusà & P. G.Fitzgerald (Eds.), Fission‐track thermochronology and its application to geology (pp. 315‐333). Cham: Springer.
    [Google Scholar]
  122. Sobel, E. R., & Seward, D. (2010). Influence of Etching Conditions on Apatite Fission‐Track Etch Pit Diameter. Chemical Geology, 271, 59–69.
    [Google Scholar]
  123. Spotila, J. A., Bank, G. C., Reiners, P. W., Naeser, C. W., Naeser, N. D., & Henika, B. S. (2004). Origin of the Blue Ridge escarpment along the passive margin of Eastern North Ameri~Basin Research, 16, 41–63. https://doi.org/10.1111/j.1365-2117.2003.00219.x
    [Google Scholar]
  124. Steckler, M. S., Omar, G. I., Karner, G. D., & Kohn, B. P. (1993). Pattern of hydrothermal circulation within the Newark basin from fission‐track analysis. Geology, 21(8), 735–738. https://doi.org/10.1130/0091-7613(1993)021<0735:POHCWT>2.3.CO;2
    [Google Scholar]
  125. Sweeney, J. J., & Burnham, A. K. (1990). Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74, 1559–1570.
    [Google Scholar]
  126. Taylor, J. P., & Fitzgerald, P. G. (2010). Low‐temperature thermal history and landscape development of the eastern Adirondack Mountains, New York: Constraints from apatite fission‐track thermochronology and apatite (U‐Th)/He dating. Geological Society of America Bulletin, 123, 412–426. https://doi.org/10.1130/b30138.1
    [Google Scholar]
  127. Thiede, R. C., Bookhagen, B., Arrowsmith, J. R., Sobel, E. R., & Strecker, M. R. (2004). Climatic control on rapid exhumation along the Southern Himalayan Front. Earth and Planetary Science Letters, 222, 791–806.
    [Google Scholar]
  128. Tissot, B. P., & Welte, D. H. (1978). Petroleum formation and occurrence: A new approach to oil and gas exploration. Berlin, Germany: Springer‐Verlag.
    [Google Scholar]
  129. Ver Straeten, C. A. (2010). Lessons from the foreland basin: Northern Appalachian basin perspectives on the Acadian orogeny. In R. P.Tollo (Ed.), From rodinia to pangea: The lithotectonic record of the appalachian region (pp. 251‐282). Geol. Soc. Am. Mem., 206. Boulder, CO: Geological Society of America.
    [Google Scholar]
  130. Ver Straeten, C. A. (2009). The classic Devonian of the Catskill front: A foreland basin record of Acadian orogenesis. In: New York State Geological Association, 81st Annual Meeting Guidebook (Ed. by F. Vollmer), 7‐1–7‐54.
  131. Vermeesch, P. (2009). RadialPlotter: A Java application for fission track, luminescence and other radial plots. Radiation Measurements, 44, 409–410. https://doi.org/10.1016/j.radmeas.2009.05.003
    [Google Scholar]
  132. Vitorello, I., & Pollack, H. N. (1980). On the variation of continetal heat flow with age and the thermal evolution of continents. Journal of Geophysical Research, 85, 983–995.
    [Google Scholar]
  133. Weary, D. J., Ryder, R. T., & Nyahay, R. (2000) Thermal maturity patterns (CAI and %Ro) in the Ordovician and Devonian rocks of the Appalachian basin in New York State. U.S. Geol. Surv., Open Report 2000–496.
  134. Weisberg, W. R., Metcalf, J. R., & Flowers, R. M. (2018). Distinguishing slow cooling versus multiphase cooling and heating in zircon and apatite (U‐Th)/He datasets: The case of the McClure Mountain syenite standard. Chemical Geology, 485, 90–99. https://doi.org/10.1016/j.chemgeo.2018.03.038
    [Google Scholar]
  135. Whittaker, J. M., Goncharov, A., Williams, S. E., Müller, R. D., & Leitchenkov, G. (2013). Global sediment thickness data set updated for the Australian‐Antarctic Southern Ocean. Geochemistry, Geophysics, Geosystems, 14(8), 3297–3305. https://doi.org/10.1002/ggge.20181
    [Google Scholar]
  136. Wildman, M., Brown, R., Beucher, R., Persano, C., Stuart, F., Gallagher, K., … Carter, A. (2016). The chronology and tectonic style of landscape evolution along the elevated Atlantic continental margin of South Africa resolved by joint apatite fission track and (U‐Th‐Sm)/He thermochronology. Tectonics, 35(3), 511–545. https://doi.org/10.1002/2015TC004042
    [Google Scholar]
  137. Wildman, M., Cogné, N., & Beucher, R. (2018). Fission‐Track thermochronology applied to the evolution of passive continental margins. In M. G.Malusà & P. G.Fitzgerald (Eds.), Fission‐Track thermochronology and its application to geology (pp. 351–371). Cham: Springer.
    [Google Scholar]
  138. Withjack, M. O., & Schlische, R. W. (2005). A review of tectonic events on the passive margin of eastern North Ameri~In: Petroleum Systems of Divergent Continental Margin Basins (Ed. by P. J.Post, N. C.Rosen, D. L.Olson, S. L.Palmes, K. T.Lyons, & G.B. Newton). 25th Bob S. Perkins Research Conference, Gulf Coast Section of SEPM, Houston, TX, 203–235.
  139. Withjack, M. O., Schlische, R. W., & Olsen, P. E. (1998). Diachronous rifting, drifting, and inversion on the passive margin of central eastern North America: An analog for other passive margins. AAPG Bulletin, 82, 817–835. https://doi.org/10.1306/1d9bc60b-172d-11d7-8645000102c1865d
    [Google Scholar]
  140. Wolf, R. A., Farley, K. A., & Kass, D. M. (1998). Modeling of the temperature sensitivity of the apatite (U‐Th)/He thermochronometer. Chemical Geology, 148, 105–114.
    [Google Scholar]
  141. Wolf, R. A., Farley, K. A., & Silver, L. T. (1996). Helium diffusion and low‐temperature thermochronometry of apatite. Geochimica Et Cosmochimica Acta, 60, 4231–4240.
    [Google Scholar]
  142. Woodrow, D. L., Fletcher, F. W., & Ahrnsbrak, W. F. (1973). Paleogeography and paleoclimate at the deposition sites of the Devonian Catskill and old red facies. Geological Society of America Bulletin, 84, 3051–3064. 10.1130/0016‐7606(1973)84<3051:papatd>2.0.co;2
    [Google Scholar]
  143. Zeitler, P. K., Herczig, A. L., McDougall, I., & Honda, M. (1987). U‐Th‐He dating of apatite: A potential thermochronometer. Geochimica Et Cosmochimica Acta, 51, 2865–2868.
    [Google Scholar]
  144. Ziegler, P. A., & Cloetingh, S. (2004). Dynamic processes controlling evolution of rifted basins. Earth‐Science Reviews, 64(1–2), 1–50. https://doi.org/10.1016/S0012-8252(03)00041-2
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12354
Loading
/content/journals/10.1111/bre.12354
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error