1887
Volume 31, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

The Petrified Forest of Lesbos comprises silicified tree fossils at multiple stratigraphic levels within the Lower Miocene Sigri Pyroclastic Formation. Our objective was to understand the interplay of tectonic setting, structural evolution, volcanological setting and basin evolution in the preservation of this remarkable natural monument. Sections were logged for lithology, sedimentary structures and hydrothermal alteration. Orientations of fallen fossil trees were measured. Samples were taken for mineralogical and geochemical analysis. 40Ar/39Ar dating was carried out on mineral separates from four samples. Widespread andesite‐dacite domes, the Eressos Formation, intrude and overlie metamorphic basement and are overlain by the Sigri Pyroclastic Formation, which comprises several hundreds of metres of pyroclastic flow tuffs (unwelded ignimbrites) interbedded with fluvial conglomerate and volcaniclastic sandstone. The Sigri Pyroclastic Formation ranges in age from 21.5 to 22 Ma, where it overlies the lacustrine Gavathas Formation, to younger than 18.4 Ma. Tuffs and fluvial conglomerates in the Sigri Pyroclastic Formation coarsen eastwards, and petrified trees and soil horizons occur throughout the Formation. The recurrence of pyroclastic flows was approximately one every 20 ka, so destructive flows were relatively infrequent, allowing the development of climax vegetation between most eruptions. Conglomerate‐filled channels show that rivers flowed westwards. Tree fall directions indicate NW to N movement of pyroclastic flows, implying a source near the younger Mesotopos–Tavari caldera to the south. The basin, which formed in a NNE‐trending dextral strike‐slip regime, provided some topographic steering. Following the Sigri Pyroclastic Formation at ca. 18 Ma, there was a rapid increase in the pace of volcanic activity, with the eruption of thick lava sequences and welded ignimbrites, and intrusion of dykes and laccoliths in SW Lesbos. Rapid burial by permeable tuffs, silica from alteration of volcanic ash, and later hydrothermal circulation all contributed to the preservation of the petrified trees.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12365
2019-05-22
2024-04-26
Loading full text...

Full text loading...

References

  1. Agusti, J., Cabrera, L., Garces, M., Krijgsman, W., Oms, O., & Pares, J. M. (2001). A calibrated mammal scale for the Neogene of Western Europe. State of the art. Earth‐Science Reviews, 52, 247–260. https://doi.org/10.1016/S0012-8252(00)00025-8
    [Google Scholar]
  2. Allen, S. R. (2001). Reconstruction of a major caldera‐forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea. Journal of Volcanology and Geothermal Research, 105(1–2), 141–162. https://doi.org/10.1016/S0377-0273(00)00222-5
    [Google Scholar]
  3. Altunkaynak, Ş., & Genç, Ş. C. (2008). Petrogenesis and time‐progressive evolution of the Cenozoic continental volcanism in the Biga Peninsula, NW Anatolia (Turkey). Lithos, 102(1), 316–340. https://doi.org/10.1016/j.lithos.2007.06.003
    [Google Scholar]
  4. Ballhaus, C., Gee, C. T., Bockrath, C., Greef, K., Manfeldt, T., & Rhede, D. (2012). The silicification of trees in volcanic ash – an experimental study. Geochimica Et Cosmochimica Acta, 84, 62–74.
    [Google Scholar]
  5. Borsi, S., Ferrara, G., Innocenti, F., & Mazzuoli, R. (1972). Geochronology and petrology of recent volcanics in the eastern Aegean sea (West Anatolia and Lesbos Island). Bulletin of Volcanology, 36, 473–493.
    [Google Scholar]
  6. Branney, M. J., & Kokelaar, B. P. (2002). Pyroclastic density currents and the sedimentation of ignimbrites. Geological Society of London Memoir, 27, 143.
    [Google Scholar]
  7. Cas, R. A. F., & Wright, J. V. (1988). Volcanic successions modern and ancient (p. 528). London: Unwin Hyman.
    [Google Scholar]
  8. Cioni, R., Pistolesi, M., & Rosi, M. (2015). Plinian and subplinian eruptions. In H.Sigurdsson, B.Houghton, S.McNutt, H.Rymer, & J.Stix (Eds.), The Encyclopedia of Volcanoes (pp. 519–535). Amsterdam, The Netherlands: Academic Press.
    [Google Scholar]
  9. Dilek, Y., & Altunkaynak, Ş. (2009). Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: Mantle response to collision, slab break‐off, and lithospheric tearing in an orogenic belt. Geological Society, London, Special Publications, 311, 213–233. https://doi.org/10.1144/SP311.8
    [Google Scholar]
  10. Govers, R., & Wortel, M. J. R. (2005). Lithosphere tearing at STEP faults: Response to edges of subduction zones. Earth and Planetary Science Letters, 236, 505–523. https://doi.org/10.1016/j.epsl.2005.03.022
    [Google Scholar]
  11. Hatzfeld, D. (1999). The present‐day tectonics of the Aegean as deduced from seismicity. Geological Society of London Special Publication, 156, 416–426. https://doi.org/10.1144/GSL.SP.1999.156.01.19
    [Google Scholar]
  12. Hecht, J. (1972–1976). Geological map of Greece, 1∶50,000, Plomari‐Mytilene, Ayia Paraskevi, Mithimna, Polychnitos and Eressos sheets.
  13. Hilgen, F. J., Lourens, L. J., & Van Dam, J. A. (2012). The Neogene period. In F. M.Gradstein, J. G.Ogg, M. D.Schmitz, & G. M.Ogg (Eds.), The geological time scale (pp. 923–978). Amsterdam, the Netherlands: Elsevier BV.
    [Google Scholar]
  14. Ivanov, D., Utescher, T., Mosbrugger, V., Syabryaj, S., Djordjević‐Milutinović, D., & Molchanoff, S. (2011). Miocene vegetation and climate dynamics in Eastern and Central Paratethys (Southeastern Europe). Palaeogeography, Palaeoclimatology, Palaeoecology, 304(3–4), 262–275. https://doi.org/10.1016/j.palaeo.2010.07.006
    [Google Scholar]
  15. Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., … Driussi, O. (2013). Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics, 597, 1–33. https://doi.org/10.1016/j.tecto.2012.06.011
    [Google Scholar]
  16. Katsikatsos, G., Matarangas, D., Migiros, G., & Triantafyllis, E. (1982). Geological study of Lesbos island [in Greek] (p. 92). Athens: I.G.M.E.
    [Google Scholar]
  17. Keller, A. M., & Hendrix, M. S. (1997). Paleoclimatologic analysis of a Late Jurassic petrified forest, southeastern Mongolia. Palaios, 12, 282–291. https://doi.org/10.2307/3515428
    [Google Scholar]
  18. Koufos, G. D., Zouros, N., & Mourouzidou, O. (2003). Prodeinotherium bavaricum (Proboscidea, Mammalia) from Lesvos island, Greece; the appearance of deinotheres in the Eastern Mediterranean. Geobios, 36, 305–315. https://doi.org/10.1016/S0016-6995(03)00031-7
    [Google Scholar]
  19. Matysová, P., Rössler, R., Götze, J., Leichmann, J., Forbes, G., Taylor, E. L., … Grygar, T. (2010). Alluvial and volcanic pathways to silicified plant stems (Upper Carboniferous–Triassic) and their taphonomic and palaeoenvironmental meaning. Palaeogeography, Palaeoclimatology, Palaeoecology, 292(1–2), 127–143. https://doi.org/10.1016/j.palaeo.2010.03.036
    [Google Scholar]
  20. McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., … Veis, G. (2000). Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105, 5695–5719. https://doi.org/10.1029/1999JB900351
    [Google Scholar]
  21. Mourouzidou, O. (2001). Tectonics and stratigraphy of the Neogene deposits of Gavathas area (M.Sc. Thesis). Aristotle University of Thessaloniki, Lesvos (in Greek).
    [Google Scholar]
  22. Pe‐Piper, G. (1977). Source of the Miocene ignimbrites of Lesbos as shown by tephra orientations. Proceedings of the VI Colloquium on the geology of the Aegean Region, Athens, 939–944.
  23. Pe‐Piper, G. (1980a). Geochemistry of Miocene shoshonites, Lesbos, Greece. Contributions to Mineralogy and Petrology, 72(4), 387–396. https://doi.org/10.1007/BF00371346
    [Google Scholar]
  24. Pe‐Piper, G. (1980b). The Cenozoic volcanic sequence of Lesbos, Greece. Zeitschrift Der Deutschen Geologischen Gesellschaft, 131, 889–901.
    [Google Scholar]
  25. Pe‐Piper, G., Imperial, A. M., Piper, D. J. W., Zouros, N. C., & Anastasakis, G. (2019). Nature of the hydrothermal alteration of the Miocene Sigri Petrified Forest and host pyroclastic rocks, western Lesbos, Greece. Journal of Volcanology and Geothermal Research, 369, 172–187. https://doi.org/10.1016/j.jvolgeores.2018.11.018
    [Google Scholar]
  26. Pe‐Piper, G., Matarangas, D., Reynolds, P. H., & Chatterjee, A. K. (2003). Shoshonites from Agios Nectarios, Lesbos, Greece: Origin by mixing of felsic and mafic magma. European Journal of Mineralogy, 15, 117–125. https://doi.org/10.1127/0935-1221/2003/0015-0117
    [Google Scholar]
  27. Pe‐Piper, G., & Piper, D. J. W. (1992). Geochemical variation with time in the Cenozoic high‐K volcanic rocks of the island of Lesbos, Greece: Significance for shoshonite petrogenesis. Journal of Volcanology and Geothermal Research, 53, 371–387. https://doi.org/10.1016/0377-0273(92)90092-R
    [Google Scholar]
  28. Pe‐Piper, G., & Piper, D. J. W. (1993). Revised stratigraphy of the Miocene volcanic rocks of Lesbos, Greece. Neues Jahrbuch Für Geologie Und Palaeontologie Monatshefte, 2, 97–110.
    [Google Scholar]
  29. Pe‐Piper, G., & Piper, D. J. W. (2002). The igneous rocks of Greece: The anatomy of an orogen (p. 573). Stuttgart: Borntraeger.
    [Google Scholar]
  30. Pe‐Piper, G., & Piper, D. J. W. (2007). Neogene backarc volcanism of the Aegean: New insights into the relationship between magmatism and tectonics. Geological Society of America Special Paper, 418, 17–31.
    [Google Scholar]
  31. Pe‐Piper, G., & Piper, D. J. W. (2013). The effect of changing regional tectonics on an arc volcano: Methana, Greece. Journal of Volcanology and Geothermal Research, 260, 146–163. https://doi.org/10.1016/j.jvolgeores.2013.05.011
    [Google Scholar]
  32. Pe‐Piper, G., Zhang, Y., Piper, D. J. W., & Prelević, D. (2014). Relationship of Mediterranean type lamproites to large shoshonite volcanoes, Miocene of Lesbos, NE Aegean Sea. Lithos, 184, 281–299. https://doi.org/10.1016/j.lithos.2013.11.004
    [Google Scholar]
  33. Piper, D. J. W., Pe‐Piper, G., Anastasakis, G., & Reith, W. (2019). The volcanic history of Pyrgousa – volcanism before the eruption of the Kos Plateau Tuff. Bulletin of Volcanology, 81(5), 32. https://doi.org/10.1007/s00445-019-1290-0
    [Google Scholar]
  34. Quan, C., Liu, Y. S. C., Tang, H., & Utescher, T. (2014). Miocene shift of European atmospheric circulation from trade wind to westerlies. Scientific Reports, 4(1),6. https://doi.org/10.1038/srep05660
    [Google Scholar]
  35. Scott, A. C. (1990) Preservation, evolution and extinction of plants in Lower Carboniferous volcanic sequences in Scotland. In M. G.Lockley & A.Rice (Eds.), Volcanism and Fossil Biotas (Vol. 244, pp. 25–38). Boulder, Co: Geological Society of America, Special Papers.
    [Google Scholar]
  36. Sigleo, A. C. (1979). Geochemistry of silicified wood and associated sediments, Petrified Forest National Park, Arizona. Chemical Geology, 26(1–2), 151–163. https://doi.org/10.1016/0009-2541(79)90036-6
    [Google Scholar]
  37. Vamvoukakis, C., Seymour, K. S., Kouli, M., Lamera, S., & Denes, G. (2005). Investigation of non pristine volcanic structures acting as probable hosts to epithermal gold mineralization in the back arc region of the active Aegean arc, using combined satellite imagery and field data: Examples from Lesvos volcanic terrain. Developments in Volcanology, 7, 329–343.
    [Google Scholar]
  38. Vasileiadou, K., & Zouros, N. (2012). Early Miocene micromammals from the Lesvos Petrified Forest (Greece): Preliminary results. Palaeobiology and Palaeoenvironments, 92, 249–264. https://doi.org/10.1007/s12549-012-0080-x
    [Google Scholar]
  39. Velitzelos, E., & Zouros, N. (1998). New results on the petrified forest of Lesvos. Bulletin of the Geological Society of Greece, 32(2), 133–142.
    [Google Scholar]
  40. Yılmaz, Y., Genç, Ş. C., Gürer, F., Bozcu, M., Yılmaz, K., Karacik, Z., … Elmas, A. (2000). When did the western Anatolian grabens begin to develop?Geological Society, London, Special Publication, 173, 353–384. https://doi.org/10.1144/GSL.SP.2000.173.01.17
    [Google Scholar]
  41. Yuretich, R. F. (1984). Yellowstone fossil forests: New evidence for burial in place. Geology, 12(3), 159–162. https://doi.org/10.1130/0091-7613(1984)12<159:YFFNEF>2.0.CO;2
    [Google Scholar]
  42. Zouros, N., Velitzelos, E., Valiakos, E., & Ververis, K. (2004). Submarine petrified forest in Lesvos Greece. Proceedings of the 5th International Symposium on Eastern Mediterranean Geology, Thessaloniki, April 2004, 437–440.
  43. Zouros, N., Velitzelos, E., Valiakos, I., & Labaki, O. (2007). The Plaka Petrified forest park in Western Lesvos ‐ Greece. Bulletin of the Geological Society of Greece, 40, 1880–1891. https://doi.org/10.12681/bgsg.17182
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12365
Loading
/content/journals/10.1111/bre.12365
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error