1887
Volume 32, Issue 3
  • E-ISSN: 1365-2117

Abstract

[Abstract

The El Rito and Galisteo depocenters in north‐central New Mexico archive tectonically‐driven Paleogene drainage reorganization, the effects of which influenced sedimentation along the northwestern margin of the Gulf of Mexico. Although separated by ~100 km and lacking depositional chronology for the El Rito Formation, the two aforementioned New Mexican depocenters are commonly considered remnants of a single basin with coeval deposition and shared accommodation mechanism. Detrital zircon U‐Pb maximum depositional ages indicate that the El Rito and Galisteo formations are not coeval. Moreover, stratigraphic thickness trends and mapping relationships indicate different accommodation mechanisms for the Galisteo and El Rito depocenters; tectonically‐induced subsidence versus infilling of incised topography, respectively. The regional unconformity that bounds the base of both the El Rito and Galisteo formations is a correlative surface induced by local tectonic activity and associated drainage reorganization in the early Eocene, and was diachronously buried by northward onlap of fluvial sediments. Detrital zircon distributions in both depocenters indicate increased recycling of Mesozoic strata above the unconformity, but diverge upsection as topographic prominence of local basement‐involved uplifts waned. Sediment capture in these depocenters is coeval with deposition in other externally‐drained Laramide basins. Further, it corresponds to a period of low Laramide province‐derived sediment input and replacement by Appalachian‐sourced sediment along the northwestern margin of the Gulf of Mexico during a basin‐wide transgression. This illustrates the potential effect that pockets of sediment storage within the catchment of a transcontinental drainage system can have over the sedimentary record in the receiving marine basin.

,

Stratigraphic architecture, lithofacies, provenance, detrital zircon mixture modeling, and paleocurrent analysis elucidate Paleogene tectonic activity and basin development in north‐central New Mexico. Depocenters from this area comprised a portion of the headwaters of a dynamic transcontinental river system that exerted a first order effect on sediment character and volume received by the northwestern margin of the Gulf of Mexico. During the middle Eocene depocenters in north‐central New Mexico captured Laramide province‐derived sediment, which starved the Gulf of Mexico of this detritus, and permitted westward incursion of Appalachian‐derived sediment.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12373
2019-06-19
2024-04-26
Loading full text...

Full text loading...

References

  1. Ager, D. (1973). The nature of the stratigraphical record. New York, NY: John Wiley and Sons Inc.
    [Google Scholar]
  2. Amato, J., & Becker, T. (2012). Proterozoic rocks of the Caballo Mountains and Kingston mining district: U‐Pb geochronology and correlations within the Mazatzal Province of southern New Mexico. New Mexico Geological Society Guidebook, 63, 227–234.
    [Google Scholar]
  3. Amato, J. M., & Mack, G. H. (2012). Detrital zircon geochronology from the Cambrian‐Ordovician Bliss Sandstone, New Mexico: Evidence for contrasting Grenville‐age and Cambrian sources on opposite sides of the Transcontinental Arch. Geological Society of America Bulletin, 124(11–12), 1826–1840. https://doi.org/10.1130/B30657.1
    [Google Scholar]
  4. Averill, M. G., & Miller, K. C. (2013). Upper crustal structure of the southern Rio Grande rift: A composite record of rift and pre‐rift tectonics. In M. R.Hudson & V. J. S.Grauch (Eds.), New perspectives on Rio Grande Rift basins: From tectonics to groundwater (pp. 463–474). Boulder, CO: Geological Society of America Special Paper 494.
    [Google Scholar]
  5. Baltz, E. H. (1965). Stratigraphy and history of the Raton basin and notes on the San Luis basin. Colorado‐New Mexico. American Association Petroleum Geologists, 49(11), 2041–2075.
    [Google Scholar]
  6. Baltz, E. H. (1967). Stratigraphy and regional tectonic implications of part of Upper Cretaceous and Tertiary rocks, east‐central San Juan Basin, New Mexico. US Govt. Printing Office, 2330‐7102.
    [Google Scholar]
  7. Baltz, E. H. (1978). Resume of Rio Grande depression in north‐central New Mexico. Guidebook to the Rio Grande Rift. Circular, 63, 210–226.
    [Google Scholar]
  8. Becker, T. P., Thomas, W. A., Samson, S. D., & Gehrels, G. E. (2005). Detrital zircon evidence of Laurentian crustal dominance in the lower Pennsylvanian deposits of the Alleghenian clastic wedge in eastern North America. Sedimentary Geology, 182(1), 59–86. https://doi.org/10.1016/j.sedgeo.2005.07.014
    [Google Scholar]
  9. Becker, T. P., Thomas, W. A., & Gehrels, G. E. (2006). Linking late Paleozoic sedimentary provenance in the Appalachian basin to the history of Alleghenian deformation. American Journal of Science, 306(10), 777–798.
    [Google Scholar]
  10. Beggs, H. G. (1977). Interpretation of seismic reflection data from the central South Park Basin, Colorado. In H. K.Veal (Ed.), Exploration frontiers of the central and southern Rockies (pp. 67–76). Denver, CO: Rocky Mountain Association of Geologists.
    [Google Scholar]
  11. Bingler, E. C. (1968). Geology and mineral resources of Rio Arriba County, New Mexico. New Mexico Bureau of Mines and Mineral Resources Bulletin, 91, 157.
    [Google Scholar]
  12. Blum, M. D., Milliken, K. T., Pecha, M. A., Snedden, J. W., Frederick, B. C., & Galloway, W. E. (2017). Detrital‐zircon records of Cenomanian, Paleocene, and Oligocene Gulf of Mexico drainage integration and sediment routing: Implications for scales of basin‐floor fans. Geosphere, 13(6), 2169–2205. https://doi.org/10.1130/GES01410.1
    [Google Scholar]
  13. Brister, B. S., & Chapin, C. E. (1994). Sedimentation and tectonics of the Laramide San Juan sag, southwestern Colorado. The Mountain Geologist, 31(1), 2–18.
    [Google Scholar]
  14. Brister, B. S. (1992). The Blanco Basin Formation (Eocene), San Juan Mountains region, Colorado and New Mexico. New Mexico Geological Society Guidebook, 43rd Field Conference, San Juan Basin IV, 321–331.
    [Google Scholar]
  15. Bush, M. A., Horton, B. K., Murphy, M. A., & Stockli, D. F. (2016). Detrital record of initial basement exhumation along the Laramide deformation front, southern Rocky Mountains. Tectonics, 35(9), 2117–2130. https://doi.org/10.1002/2016TC004194
    [Google Scholar]
  16. Cardozo, N., & Allmendinger, R. W. (2013). Spherical projections with OSXStereonet. Computers & Geosciences, 51, 193–205. https://doi.org/10.1016/j.cageo.2012.07.021
    [Google Scholar]
  17. Cather, S. M. (1990). Stress and volcanism in the northern Mogollon‐Datil volcanic field, New Mexico: Effects of the post‐Laramide tectonic transition. Geological Society of America Bulletin, 102(11), 1447–1458. https://doi.org/10.1130/0016-7606(1990)102<1447:SAVITN>2.3.CO;2
    [Google Scholar]
  18. Cather, S. M. (1992). Suggested revisions to the Tertiary tectonic history of north‐central New Mexico: San Juan Basin IV. New Mexico Geological Society Guidebook, 43, 109–122.
    [Google Scholar]
  19. Cather, S. M. (2004). Laramide orogeny in central and northern New Mexico and southern Colorado: The Geology of New Mexico, A Geologic History. New Mexico Geological Society Special Publication, 11, 203–248.
    [Google Scholar]
  20. Cather, S. M. (2009). Stratigraphy and structure of the Laramide Carthage‐La Joya Basin, central New Mexico. New Mexico Geological Society, 60th Field Conference, Guidebook, 227–234.
    [Google Scholar]
  21. Cather, S. M., Connell, S. D., Lucas, S. G., Picha, M. G., & Black, B. A. (2002). Geologic map of the Hagan quadrangle, Santa Fe county, New Mexico. New Mexico Bureau of Geology and Mineral Resources, Open File‐Geologic Map 050.
    [Google Scholar]
  22. Cather, S. M., Peters, L., Dunbar, N. W., & McIntosh, W. C. (2003). Genetic stratigraphy, provenance, and new age constraints for the Chuska Sandstone. New Mexico‐Arizona: New Mexico Geological Society, 54th Field Conference, Guidebook, 397–412.
    [Google Scholar]
  23. Chamberlain, K. R., Frost, C. D., & Frost, B. R. (2003). Early Archean to Mesoproterozoic evolution of the Wyoming Province: Archean origins to modern lithospheric architecture. Canadian Journal of Earth Science, 40, 1357–1374.
    [Google Scholar]
  24. Chapin, C. E., & Cather, S. M. (1981). Eocene tectonics and sedimentation in the Colorado Plateau‐Rocky Mountain area: Relations of tectonics to ore deposits in the southern Cordillera. Arizona Geological Society Digest, 14, 173–198.
    [Google Scholar]
  25. Chapin, C. E., & Cather, S. M. (1983). Eocene tectonics and sedimentation in the Colorado Plateau Rocky Mountain area. In J. D.Lowell (Ed.), Rocky Mountain foreland basins and uplifts (pp. 33–56). Denver, CO: Rocky Mountain Association of Geologists.
    [Google Scholar]
  26. Chapin, C. E., Wilks, M., & McIntosh, W. C. (2004). Space‐time patterns of Late Cretaceous to present magmatism in New Mexico‐Comparison with Andean volcanism and potential for future volcanism. New Mexico Bureau of Geology and Mineral Resources Bulletin, 160, 13–40.
    [Google Scholar]
  27. Clark, K. (1966). Geology of the Sangre de Cristo Mountains and adjacent areas between Taos and Raton. New Mexico. New Mexico Geological Society Guidebook, l7, 56–65.
    [Google Scholar]
  28. Clift, P. D., Blusztajn, J., & Nguyen, A. D. (2006). Large‐scale drainage capture and surface uplift in eastern Tibet‐SW China before 24 Ma inferred from sediments of the Hanoi Basin. Vietnam. Geophysical Research Letters, 33, 1–5. https://doi.org/10.1029/2006GL027772
    [Google Scholar]
  29. Clinkscales, C. A., & Lawton, T. F. (2015). Timing of Late Cretaceous shortening and basin development, Little Hatchet Mountains, southwestern New Mexico, USA‐implications for regional Laramide tectonics. Basin Research, 27, 453–472. https://doi.org/10.1111/bre.12083
    [Google Scholar]
  30. Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J. X. (2013). The ICS international chronostratigraphic chart. Episodes, 36(3), 199–204.
    [Google Scholar]
  31. Coney, P. J., & Reynolds, S. (1977). Cordilleran Benioff zones. Nature, 270(5636), 403–406. https://doi.org/10.1038/270403a0
    [Google Scholar]
  32. Constenius, K. N. (1996). Late Paleogene extensional collapse of the Cordilleran foreland fold and thrust belt. GSA Bulletin, 108(1), 20–39.
    [Google Scholar]
  33. Copeland, P., Currie, C. A., Lawton, T. F., & Murphy, M. A. (2017). Location, location, location: The variable lifespan of the Laramide orogeny. Geology, 45(3), 224–226. https://doi.org/10.1130/G38810.1
    [Google Scholar]
  34. Coutts, D., Matthew, W., & Hubbard, S. (2019). Assessment of widely used methods to derive depositional ages from detrital zircon populations. Geoscience Frontiers. https://doi.org/10.1016/j.gsf.2018.11.002 (in press).
    [Google Scholar]
  35. Craddock, W. H., & Kylander‐Clark, A. R. (2013). U‐Pb ages of detrital zircons from the Tertiary Mississippi River Delta in central Louisiana: Insights into sediment provenance. Geosphere, 9, 1832–1851. https://doi.org/10.1130/GES00917.1
    [Google Scholar]
  36. Daniel, C. G., Pfeifer, L. S., JonesIII, J. V., & McFarlane, C. M. (2013). Detrital zircon evidence for non‐Laurentian provenance, Mesoproterozoic (ca. 1490–1450) deposition and orogenesis in a constructed orogenic belt, northern New Mexico, USA: Defining the Picuris orogeny. Geological Society of America Bulletin, 125(9/10), 1423–1441.
    [Google Scholar]
  37. Davis, S. J., Wiegand, B. A., Carroll, A. R., & Chamberlain, C. P. (2008). The effect of drainage reorganization on paleoaltimetry studies: An example from the Paleogene Laramide foreland. Earth and Planetary Science Letters, 275, 258–268. https://doi.org/10.1016/j.epsl.2008.08.009
    [Google Scholar]
  38. Decelles, P. G. (2004). Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western USA. American Journal of Science, 304(2), 105–168. https://doi.org/10.2475/ajs.304.2.105
    [Google Scholar]
  39. Decelles, P. G., Langford, R. P., & Schwartz, R. K. (1983). Two new methods of paleocurrent determination from trough cross‐stratification. Journal of Sedimentary Research, 53, 2.
    [Google Scholar]
  40. Dickinson, W. R., Klute, M. A., Hayes, M. J., Hanecke, S. U., Lundin, E. R., McKittrick, M. A., & Olivares, M. D. (1988). Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region. Geological Society of American Bulletin, 100, 1023–1039. https://doi.org/10.1130/0016-7606(1988)100<1023:PAPSOL>2.3.CO;2
    [Google Scholar]
  41. Dickinson, W. R., & Gehrels, G. E. (2003). U-Pb ages of detrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau, USA: Paleogeographic implications. Sedimentary Geology, 163(1–2), 29–66. https://doi.org/10.1016/S0037-0738(03)00158-1.
    [Google Scholar]
  42. Dickinson, W. R., & Gehrels, G. E. (2008a). Sediment delivery to the Cordilleran foreland basin: Insights from U‐Pb ages of detrital zircons in Upper Jurassic and Cretaceous strata of the Colorado Plateau. American Journal of Science, 308(10), 1041–1082.
    [Google Scholar]
  43. Dickinson, W. R., & Gehrels, G. E. (2008b). U‐Pb ages of detrital zircons in relation to paleogeography: Triassic paleodrainage networks and sediment dispersal across southwest Laurentia. Journal of Sedimentary Research, 78, 745–764. https://doi.org/10.2110/jsr.2008.088
    [Google Scholar]
  44. Dickinson, W. R., & Gehrels, G. E. (2009). Use of U‐Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288, 115–125. https://doi.org/10.1016/j.epsl.2009.09.013
    [Google Scholar]
  45. Dickinson, W. R., & Snyder, W. S. (1978). Plate tectonics of the Laramide orogeny. In V. Matthews., III, (Ed.), Laramide Folding Associated with Basement Block Faulting in the Western United States: Geological Society of America Memoir 151 (pp. 355–366).
    [Google Scholar]
  46. Donahue, M. M. (2016). Episodic Uplift of the Rocky Mountains: Evidence from U‐Pb detrital zircon geochronology and low‐temperature thermochronology with a chapter on using mobile technology for geoscience education (Ph.D. thesis). University of New Mexico, Albuquerque.
    [Google Scholar]
  47. Dyman, T. S., Tysdal, R. G., Perry, W. J. J., Nichols, D. J., & Obradovich, J. D. (2008). Stratigraphy and structural setting of Upper Cretaceous frontier formation, western Centennial Mountains, southwestern Montana and southeastern Idaho. Cretaceous Research, 29(2), 237–248. https://doi.org/10.1016/j.cretres.2007.05.001.
    [Google Scholar]
  48. Eargle, D.H. (1968). Nomenclature of formations of Claiborne Group, Middle Eocene coastal plain of Texas, United States Geological Survey Bulletin 1251-D, United States Printing Office, Washignton D.C.
  49. Elsik, W. C., & Crabaugh, J. P. (2001). Palynostratigraphy of the upper Paleocene and lower Eocene Wilcox Group in the northwestern Gulf of Mexico basin. In D. K.Goodman & R. T.Clarke (Eds.), Proceedings of the IX International Palynological Congress, Houston, Texas (pp. 233–237). Baton Rouge, Louisiana: American Association of Palynologists Foundation.
    [Google Scholar]
  50. Erslev, E. A. (2001). Multistage, multidirectional Tertiary shortening and compression in north‐central New Mexico. Geological Society of America Bulletin, 113(1), 63–74. https://doi.org/10.1130/0016-7606(2001)113<0063:MMTSAC>2.0.CO;2
    [Google Scholar]
  51. Ewing, T. E. (2009). The ups and downs of Sabine Uplift and Gulf of Mexico basin: Jurassic basement blocks, Cretaceous thermal uplifts, and Cenozoic. Gulf Coast Association of Geological Societies Transactions, 59, 253–269.
    [Google Scholar]
  52. Fan, M., & Carrapa, B. (2014). Late Cretaceous‐early Eocene Laramide uplift, exhumation, and basin subsidence in Wyoming: Crustal responses to flat slab subduction. Tectonics, 33, 509–529. https://doi.org/10.1002/2012TC003221
    [Google Scholar]
  53. Galloway, W. E. (2002). Cenozoic evolution of sediment accumulation in deltaic and shore‐zone depositional systems, northern Gulf of Mexico Basin. Marine and Petroleum, 18, 1031–1040. https://doi.org/10.1016/S0264-8172(01)00045-9
    [Google Scholar]
  54. Galloway, W. E., Whiteaker, T. L., & Ganey‐Curry, P. (2011). History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin. Geosphere, 7(4), 938–973. https://doi.org/10.1130/GES00647.1
    [Google Scholar]
  55. Galusha, T., & Blick, J. C. (1971). Stratigraphy of the Santa Fe Group, New Mexico. American Museum of Natural History Bulletin, 144, 7–127.
    [Google Scholar]
  56. Gehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector‐inductively coupled plasma–mass spectrometry. Geochemistry, Geophysics, Geosystems, 9(3), 1–13. https://doi.org/10.1029/2007GC001805
    [Google Scholar]
  57. Gorham, T. W. (1979). Geology of the Galisteo Formation: Hagan basin, New Mexico (MS thesis). University of New Mexico, Albuquerque.
    [Google Scholar]
  58. Gorham, T. W., & Ingersoll, R. V. (1979). Evolution of the Eocene Galisteo basin, north‐central New Mexico: Santa Fe country. New Mexico Geological Society Guidebook, 30, 219–224.
    [Google Scholar]
  59. Green, G. N., & Jones, G. E. (1997). The digital geologic map of New Mexico in ARC/INFO format. U.S. Geological Survey Open‐File Report 97‐0052.
  60. Gries, R. (1983). North‐south compression of Rocky Mountain foreland structures. In J. D.Lowell & R.Gries (Eds.), Rocky Mountain foreland basins and uplifts (pp. 9–32). Denver, CO: Rocky Mountain Association of Geologists.
    [Google Scholar]
  61. Gries, R. R., Clayton, J. L., & Leonard, C. (1997). Geology, thermal maturation, and source rock geochemistry in a volcanic covered basin: San Juan Sag, south‐central Colorado. American Association of Petroleum Geologists Bulletin, 81, 1133–1160.
    [Google Scholar]
  62. Hilbert‐Wolf, H., Roberts, E., Downie, B., Mtelela, C., Stevens, N. J., & O’Conner, P. (2017). Application of U‐Pb detrital zircon geochronology to drill cuttings for age control in hydrocarbon exploration wells: A case study from the Rukwa Rift Basin, Tanzania. American Association of Petroleum Geologist Bulletin, 101(2), 143–159. https://doi.org/10.1306/06281616003
    [Google Scholar]
  63. Hilley, G. E., & Strecker, M. R. (2005). Processes of oscillatory basin filling and excavation in a tectonically active orogen: Quebrada del Toro Basin, NW Argentina. Geological Society of America Bulletin, 117, 7(8), 887–901. https://doi.org/10.1130/B25602.1
    [Google Scholar]
  64. Hudson, M. R., & Grauch, V. J. S. (2013). Introduction. In M. R.Hudson & V. J. S.Grauch (Eds.), New perspectives on Rio Grande Rift basins: From tectonics to groundwater (pp. 5–12). Geological Society of America Special Paper, 494.
    [Google Scholar]
  65. Humphreys, E. (2009). Relation of flat subduction to magmatism and deformation in the western United States. Geological Society of America Memoirs, 204, 85–98.
    [Google Scholar]
  66. Humphreys, E., Hessler, E., Dueker, K., Farmer, G. L., Erslev, E., & Atwater, T. (2003). How Laramide‐age hydration of North American lithosphere by the Farallon slab controlled subsequent activity in the western United States. International Geology Review, 45(7), 575–595. https://doi.org/10.2747/0020-6814.45.7.575
    [Google Scholar]
  67. Hutto, A. P., Yancey, T. E., & Miller, B. V. (2009). Provenance of Paleocene‐Eocene Wilcox Group sediments in Texas: The evidence from detrital zircons. Gulf Coast Association of Geological Societies Transactions, 59, 357–362.
    [Google Scholar]
  68. Ingersoll, R. V., Cavazza, W., Baldridge, W. S., & Shafiqullah, M. (1990). Cenozoic sedimentation and paleotectonics of north‐central New Mexico: Implications for initiation and evolution of the Rio Grande rift. Geological Society of America Bulletin, 102, 1280–1296. https://doi.org/10.1130/0016-7606(1990)102<1280:CSAPON>2.3.CO;2
    [Google Scholar]
  69. Johnson, R. B. (1959). Geology of the Huerfano Park area, Huerfano and Custer Counties, Colorado. U.S. Geological Survey Bulletin, 1071‐D, C87–C119.
    [Google Scholar]
  70. JonesIII, J. V., Connelly, J. N., Karlstrom, K. E., Williams, M. L., & Doe, M. F. (2009). Age, provenance, and tectonic setting of Paleoproterozoic quartzite successions in the southwestern United States. Geological Society of America Bulletin, 121(1–2), 247–264.
    [Google Scholar]
  71. JonesIII, J. V., Daniel, C. G., Frei, D., & Thrane, K. (2011). Revised regional correlations and tectonic implications of Paleoproterozoic and Mesoproterozoic metasedimentary rocks in northern New Mexico, USA: New findings from detrital zircon studies of the Hondo Group, Vadito Group, and Marquenas Formation. Geosphere, 7(4), 974–991. https://doi.org/10.1130/GES00614.1
    [Google Scholar]
  72. Karlstrom, K. E., & Bowring, S. A. (1988). Early Proterozoic assembly of tectonostratigraphic terranes in southwestern North America. The Journal of Geology, 96, 561–576. https://doi.org/10.1086/629252
    [Google Scholar]
  73. Karlstrom, K. E., & Humphreys, E. D. (1998). Persistent influence of Proterozoic accretionary boundaries in the tectonic evolution of southwestern North America. Rocky Mountain Geology, 33(2), 161–179.
    [Google Scholar]
  74. Kautz, P. F., Ingersoll, R. V., Baldridge, W. S., Damon, P. E., & Shafiqullah, M. (1981). Geology of Espinaso Formation (Oligocene), north‐central New Mexico. Geological Society of America Bulletin, 92, 2318–2400.
    [Google Scholar]
  75. Kay, B. (1986). Vein and breccia gold mineralization and associated igneous rocks at the Ortiz mine: New Mexico, USA (MS thesis). Colorado School of Mines, Golden, CO.
    [Google Scholar]
  76. Kelley, S. A., Chapin, C. E., & Corrigan, J. (1992). Late Mesozoic to Cenozoic cooling histories of the flanks of the northern and central Rio Grande rift, Colorado and New Mexico. New Mexico Bureau of Mines and Mineral Resources Bulletin, 145, 5–33.
    [Google Scholar]
  77. Kelley, S.A., Osburn, G.R., Ferguson, C., Moore, J., & Kempter, K. (2005). Geology of the Cañones 7.5-Minute quadrangle, Rio Arriba County, New Mexico: New Mexico Bureau of Geology and Mineral Resources, Open-file Geologic Map OF-GM 107, scale 1:24,000.
  78. Kuiper, N. H. (1960). Tests concerning random points on a circle. Indagationes Mathematicae, 63, 38–47. https://doi.org/10.1016/S1385-7258(60)50006-0
    [Google Scholar]
  79. Laskowski, A. K., Decelles, P. G., & Gehrels, G. E. (2013). Detrital Zircon geochronology of Cordilleran retroarc foreland basin strata, western North America. Tectonics, 32, 1027–1048. https://doi.org/10.1002/tect.20065
    [Google Scholar]
  80. Lawton, T. F. (2008). Laramide sedimentary basins. In A. D.Miall (Ed.), Sedimentary basins of the world (Vol. 5, pp. 429–450). Netherlands: Elsevier.
    [Google Scholar]
  81. Lawton, T. J., & Bradford, B. A. (2011). Correlation and provenance of upper Cretaceous (Campanian) fluvial strata, Utah, U.S.A., from zircon U-Pb geochronology and petrography. Journal of Sedimentary Research, 81, 495–512.
    [Google Scholar]
  82. Lindsey, D. A. (1998). Laramide structure of the central Sangre de Cristo Mountains and adjacent Raton Basin, southern Colorado. Mountain Geologist, 35(2), 55–70.
    [Google Scholar]
  83. Lipman, P. W., Steven, T. A., & Mehnert, H. H. (1970). Volcanic history of the San Juan Mountains, Colorado, as indicated by potassium‐argon dating. Geological Society of America Bulletin, 81, 2329–2352. https://doi.org/10.1130/0016-7606(1970)81[2329:VHOTSJ]2.0.CO;2
    [Google Scholar]
  84. Lisenbee, A. L. (2013). Multi‐stage Laramide deformation in the area of the southern Santa Fe embayment (Rio Grande rift), north‐central New Mexico. Geological Society of America Special Papers, 494, 239–260.
    [Google Scholar]
  85. Liu, L., & Gurnis, M. (2010). Dynamic subsidence and uplift of the Colorado Plateau. Geology, 38(7), 663–666. https://doi.org/10.1130/G30624.1
    [Google Scholar]
  86. Liu, L., Gurnis, M., Seton, M., Saleeby, J., Müller, R. D., & Jackson, J. M. (2010). The role of oceanic plateau subduction in the Laramide orogeny. Nature Geoscience, 3, 353–357. https://doi.org/10.1038/ngeo829
    [Google Scholar]
  87. Liu, S., & Currie, C. A. (2016). Farallon plate dynamics prior to the Laramide orogeny: Numerical models of flat subduction. Tectonophysics, 666(Suppl. C), 33–47. https://doi.org/10.1016/j.tecto.2015.10.010
    [Google Scholar]
  88. Logsdon, M. J. (1981). A preliminary basin analysis of the El Rito Formation (Eocene), north‐central New Mexico. Geological Society of America Bulletin, 92(12), 968–975. https://doi.org/10.1130/0016-7606(1981)92<968:APBAOT>2.0.CO;2
    [Google Scholar]
  89. Loring, A. K., & Armstrong, D. G. (1980). Cambrian‐Ordovician syenites of New Mexico, part of a regional alkali intrusive episode. Geology, 8, 344–348.
    [Google Scholar]
  90. Loucks, R. G., Dodge, M. M., & Galloway, W. E. (1986). Controls on porosity and Permeability of hydrocarbon reservoirs in lower Tertiary sandstones along the Texas gulf coast. Bureau of Economic Geology Report of Investigations, 149, 1–68.
    [Google Scholar]
  91. Lucas, S. G. (1982). Vertebrate paleontology, stratigraphy, and biostratigraphy of Eocene Galisteo Formation, north‐central New Mexico. New Mexico Bureau of Mines & Mineral Resources Circular, 186, 1–34.
    [Google Scholar]
  92. Lucas, S. G. (1984). Correlation of Eocene rocks of the northern Rio Grande rift and adjacent areas–Implications for Laramide tectonics. New Mexico Geological Society Fall Field Conference Guidebook, 35th Annual, 123–128.
    [Google Scholar]
  93. Lucas, S. G., & Ingersoll, R. V. (1981). Cenozoic continental deposits of New Mexico: An overview. Geological Society of America Bulletin, 92(12), 917–932. https://doi.org/10.1130/0016-7606(1981)92<917:CCDONM>2.0.CO;2
    [Google Scholar]
  94. Lucas, S. G., & Williamson, T. E. (1993). Eocene vertebrates and late Laramide stratigraphy of New Mexico. New Mexico Museum of Natural History and Science Bulletin, 2, 145–158.
    [Google Scholar]
  95. Lucas, S. G., Cather, S., Abbott, J., & Williamson, T. (1997). Stratigraphy and tectonic implications of Paleogene strata in the Laramide Galisteo Basin, north–central New Mexico. Rio Grande Rift (Northern New Mexico). New Mexico Geology, 19(4), 89–95.
    [Google Scholar]
  96. Mackey, G. N., Horton, B. K., & Milliken, K. L. (2012). Provenance of Paleocene‐Eocene Wilcox Group, western Gulf of Mexico basin: Evidence for integrated drainage of the southern Laramide Rocky Mountains and Cordilleran arc. Geological Society of America Bulletin, 124(5/6), 1007–1024.
    [Google Scholar]
  97. Maldonado, F. (2008). Geologic Map of the Abiquiu Quadrangle, Scientific Investigation Map 2998, United States Geological Survey, Rio Arriba County, New Mexico.
    [Google Scholar]
  98. Maldonado, F., & Kelley, S. A. (2009). Revisions to the stratigraphic nomenclature of the Abiquiu Formation, Abiquiu and contiguous areas, north‐central New Mexico. New Mexico Geology, 31, 1.
    [Google Scholar]
  99. McCarley, A. B. (1981). Metamorphic terrane favored over Rocky Mountains as source of Claiborne Group, Eocene, Texas coastal plain. Journal of Sedimentary Petrology, 51, 1267–1276. https://doi.org/10.1306/212F7E82-2B24-11D7-8648000102C1865D
    [Google Scholar]
  100. McMillan, N. J., & McLemore, V. T. (2001). Cambrian‐Ordovician magmatism and extension in New Mexico and Colorado. New Mexico Bureau of Geology and Mineral Resources Bulletin, 160, 1–11.
    [Google Scholar]
  101. Miall, A. D. (1978). Lithofacies types and vertical profile models in braided river deposits: A summary. In A. D.Miall (Ed.), Fluvial sedimentology (Vol. 5, pp. 597–604). Alberta, Canada: Canadian Society of Petroleum Memoir.
    [Google Scholar]
  102. Nie, J., Stevens, T., Rittner, M., Stockli, D., Garzanti, E., Limonta, M., … Pan, B. (2015). Loess Plateau storage of Northeastern Tibetan Plateau‐derived Yellow River sediment. Nature Communications, 6, 8511. https://doi.org/10.1038/ncomms9511
    [Google Scholar]
  103. Paces, J. B., & Miller, J. D. (1993). Precise U‐Pb ages of Duluth complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Solid Earth, Journal of Geophysical Research, 98(B8), 13997–14013. https://doi.org/10.1029/93JB01159
    [Google Scholar]
  104. Park, H., Barbeau, D. L.Jr., Rickenbaker, A., Bachmann‐Krug, D., & Gehrels, G. (2010). Application of foreland basin detrital‐zircon geochronology to the reconstruction of the Southern and Central Appalachian Orogen. The Journal of Geology, 118(1), 23–44. https://doi.org/10.1086/648400
    [Google Scholar]
  105. Pillmore, C., & Flores, R. (1990). Cretaceous and Paleocene rocks of the Raton Basin, New Mexico and Colorado; stratigraphic‐environmental framework: Tectonic development of the southern Sangre de Cristo Mountains, New Mexico. New Mexico Geological Society Guidebook, 41, 333–336.
    [Google Scholar]
  106. Press, W. H. (2007). Numerical recipes, in the art of scientific computing (3rd ed.). Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  107. Prothero, D. R., & Lucas, S. G. (1996). Magnetic Stratigraphy of the Duchesnean Part of the Galisteo Formation, New Mexico. In D. R.Prothero & R. J.Emry (Eds.), The Terrestrial Eocene‐Oligocene Transition in North America (pp. 200–205). Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  108. Rasmussen, D. M., & Foreman, B. Z. (2017). Provenance of lower Paleogene strata in the Huerfano Basin: Implications for uplift of the Wet Mountains, Colorado, U.S.A. Journal of Sedimentary Research, 87, 579–593. https://doi.org/10.2110/jsr.2017.30
    [Google Scholar]
  109. Raynolds, R. G. (2002). Upper Cretaceous and Tertiary stratigraphy of the Denver basin, Colorado. Rocky Mountain Geology, 37(2), 111–134.
    [Google Scholar]
  110. Saylor, J. E., & Sundell, K. E. (2016). Quantifying comparison of large detrital geochronology data sets. Geosphere, 12(1), 203–220. https://doi.org/10.1130/GES01237.1
    [Google Scholar]
  111. Schoene, B., & Bowring, S. A. (2006). U‐Pb systematics of the McClure Mountasin syenite: Thermochronological constraints on the age of the 40Ar/39Ar standard MMhb. Contributions to Mineraal Petrology, 151, 615–630. https://doi.org/10.1007/s00410-006-0077-4
    [Google Scholar]
  112. Schumm, S. A. (1981). Evolution and response of the fluvial system, sedimentologic implications. Society of Economic Paleontologists and Mineralogists Special Publications, 31, 19–29.
    [Google Scholar]
  113. Sharman, G. R., Covault, J. A., Stockli, D. F., Wroblewski, A.‐J., & Bush, M. A. (2016). Early Cenozoic drainage reorganization of the United States Western Interior‐Gulf of Mexico sediment routing system. Geology, 45(2), 187–190. https://doi.org/10.1130/G38765.1
    [Google Scholar]
  114. Shaulis, B., Lapen, T. J., & Toms, A. (2010). Signal linearity of an extended range pulse counting detector: Applications to accurate and precise U‐Pb dating of zircon by laser ablation quadrupole ICP‐MS. Geochemistry, Geophysics, Geosystems, 11, 1–12. https://doi.org/10.1029/2010GC003198
    [Google Scholar]
  115. Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., … Whitehouse, M. J. (2008). Plešovice zircon—a new natural reference material for U‐Pb and Hf isotopic microanalysis. Chemical Geology, 249(1), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
    [Google Scholar]
  116. Smith, G. A., Larsen, D., Harlan, S. S., McIntosh, W. C., Erskine, D. W., & Taylor, S. (1991). A tale of two volcaniclastic aprons: Field guide to the sedimentology and physical volcanology of the Oligocene Espinaso Formation and Miocene Peralta Tuff, north‐central New Mexico. New Mexico Bureau of Mines and Mineral Resources Bulletin, 137, 87–103.
    [Google Scholar]
  117. Smith, L. N. (1992). Stratigraphy, sediment dispersal and paleogeography of the lower Eocene San Jose Formation, San Juan Basin, New Mexico and Colorado. New Mexico Geological Society Guidebook, 43rd Field Conference, San Juan Basins IV, 297–309.
    [Google Scholar]
  118. Smith, M. E., Carroll, A. R., Jicha, B. R., Cassel, E. J., & Scott, J. J. (2014). Paleogeographic record of Eocene Farallon slab rollback beneath western North America. Geology, 42(12), 1039–1042. https://doi.org/10.1130/g36025.1
    [Google Scholar]
  119. Soister, P. E., & Tschudy, R. H. (1978). Eocene rocks in the Denver basin. In J. D.Pruit & P. E.Coffin (Eds.), Energy resources of the Denver basin (pp. 231–235). Denver, CO: Rocky Mountain Association of Geologists.
    [Google Scholar]
  120. Stacey, J. S., & Kramers, J. (1975). Approximation of terrestrial lead isotope evolution by a two‐stage model. Earth and Planetary Science Letters, 26(2), 207–221. https://doi.org/10.1016/0012-821X(75)90088-6
    [Google Scholar]
  121. Stearns, C. E. (1943). The Galisteo Formation of north‐central New Mexico. The Journal of Geology, 51(5), 301–319. https://doi.org/10.1086/625156
    [Google Scholar]
  122. Stearns, C. E. (1953). Upper Cretaceous rocks of Galisteo‐Tonque area, north‐central New Mexico. American Association of Petroleum Geologists Bulletin, 37(5), 961–974.
    [Google Scholar]
  123. Stephens, M. A. (1970). Use of the Kolmogorov‐Smirnov, Cramer‐Von Mises, and related statistics without extensive tables. Journal of the Royal Statistical Society, Series B, 115–122.
    [Google Scholar]
  124. Sundell, K. E., & Saylor, J. E. (2017). Unmixing detrital geochronology age distributions. Geochemistry, Geophysics, Geosystems, 18, 1–15. https://doi.org/10.1002/2016GC006774
    [Google Scholar]
  125. Sundell, K. E. (2017). U‐Pb Toolbox at the University of Houston: An open‐source program for reducing and visualizing zircon U‐Pb data sets. Computers & Geosciences (Ph.D. thesis). University of Houston, Houston, TX.
    [Google Scholar]
  126. Tarduno, J. A., McWilliams, M., Debiche, M. G., Sliter, W. V., & Blake, M. C. (1985). Franciscan Complex Calera limestones: Accreted remnants of Farallon Plate oceanic plateaus. Nature, 317, 345–347. https://doi.org/10.1038/317345a0
    [Google Scholar]
  127. Todd, T. W., & Folk, R. L. (1957). Basal Claiborne of Texas, record of Appalachian tectonism during Eocene. American Association of Petroleum Geologists Bulletin, 41, 2545–2566.
    [Google Scholar]
  128. Wahl, P. J., Yancey, T. E., Pope, M. C., Miller, B. V., & Ayers, W. B. (2016). U‐Pb detrital zircon geochronology of the Upper Paleocene to Lower Eocene Wilcox Group, east‐central Texas. Geosphere, 12(5), 1517–1531. https://doi.org/10.1130/GES01313.1
    [Google Scholar]
  129. Weil, A. B., & Yonkee, A. (2012). Layer‐parallel shortening across the Sevier fold‐thrust belt and Laramide foreland of Wyoming: Spatial and temporal evolution of a complex geodynamic system. Earth and Planetary Science Letters, 357–358, 405–420. https://doi.org/10.1016/j.epsl.2012.09.021
    [Google Scholar]
  130. Wissink, G. K., Wilkinson, B. H., & Hoke, G. D. (2018). Pirwise sample comparisons and multidimensional scaling of detrital zircon ages with examples from the North American platform, basin, and passive margin settings. Lithosphere, 10(3), 478–491. https://doi.org/10.1130/L700.1.
    [Google Scholar]
  131. Woodburne, M. O., & SwisherIII, C. C. (1995). Land mammal high‐resolution geochronology, intercontinental overland dispersals, sea levels, climate, and vicariance. Society of Economic Paleontologists and Mineralogists, Special Paper, 54, 335–364.
    [Google Scholar]
  132. Woodward, L. A. (1987). Geology and mineral resources of Sierra Nacimiento and vicinity, New Mexico. New Mexico Bureau of Mines & Mineral Resources Memoirs, 42(84), 103–108.
    [Google Scholar]
  133. Woodward, L. A., Hultgren, M. C., Crouse, D. L., & Merrick, M. A. (1992). Geometry of Nacimiento‐Gallina fault system, northern New Mexico. New Mexico Geological Society Guidebook, 43rd Field Conference, San Juan Basin IV, 103–108.
    [Google Scholar]
  134. Yin, A., & Ingersoll, R. V. (1997). A model for evolution of Laramide axial basins in the Southern Rocky Mountains, USA. International Geology Review, 39(12), 1113–1123. https://doi.org/10.1080/00206819709465318
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12373
Loading
/content/journals/10.1111/bre.12373
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): detrital zircon U‐Pb; drainage reorganization; Gulf of Mexico; Laramide; stratigraphy

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error