1887
Volume 32, Issue 4
  • E-ISSN: 1365-2117

Abstract

Abstract

The Dead Sea is an extensional basin developing along a transform fault plate boundary. It is also a terminal salt basin. Without knowledge of precise stratigraphy, it is difficult to differentiate between the role of plate and salt tectonics on sedimentary accumulation and deformation patterns. While the environmental conditions responsible for sediment supply are reasonably constrained by previous studies on the lake margins, the current study focuses on deciphering the detailed stratigraphy across the entire northern Dead Sea basin as well as syn and post‐depositional processes. The sedimentary architecture of the late Quaternary lacustrine succession was examined by integrating 851 km of seismic reflection data from three surveys with gamma ray and velocity logs and the stratigraphic division from an ICDP borehole cored in 2010. This allowed seismic interpretation to be anchored in time across the entire basin. Key surfaces were mapped based on borehole lithology and a newly constructed synthetic seismogram. Average interval velocities were used to calculate isopach maps and spatial and temporal sedimentation rates. Results show that the Amora Formation was deposited in a pre‐existing graben bounded by two N‐S trending longitudinal faults. Both faults remained active during deposition of the late Pleistocene Samra and Lisan Formations—the eastern fault continued to bound the basin while the western fault remained blind. On‐going plate motion introduced a third longitudinal fault, increasing accommodation space westwards from the onset of deposition of the Samra Formation. During accumulation of these two formations, sedimentation rates were uniform over the lake and similar. High lake levels caused an increase in hydrostatic pressure. This led to salt withdrawal, which flowed to the south and southwest causing increased uplift of the Lisan and En Gedi diapirs and the formation of localized salt rim synclines. This induced local seismicity and slumping, resulting in an increased thickness of the Lisan succession within the lake relative to its margins. Sedimentation rates of the Holocene Ze'elim Fm were 4–5 times higher than before. The analysis presented here resolves central questions of spatial extent and timing of lithology, deposition rates and their variability across the basin, timing of faulting at and below the lake floor, and timing and extent of salt and plate tectonic phases and their effect on syn and post‐depositional processes. Plate tectonics dictated the structure of the basin, while salt tectonics and sediment accumulation were primarily responsible for its fill architecture during the timeframe examined here.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12387
2019-07-30
2024-04-27
Loading full text...

Full text loading...

References

  1. Allen, P. A., & Allen, J. R. (1990). Basin analysis principals and applications (p. 451). Oxford: Blackwell Scientific Publication.
    [Google Scholar]
  2. Al‐Zoubi, A. S., Heinrichs, T., Qabbani, I., & ten Brink, U. S. (2007). The northern end of the dead sea basin: Geometry from reflection seismic evidence. Tectonophysics, 434, 55–69. https://doi.org/10.1016/j.tecto.2007.02.007
    [Google Scholar]
  3. Al‐Zoubi, A., & ten Brink, U. S. (2001). Salt diapirs in the Dead Sea basin and their relationship to quaternary extensional tectonics. Marine and Petroleum Geology, 18, 779–797. https://doi.org/10.1016/S0264-8172(01)00031-9
    [Google Scholar]
  4. Aydin, A., & Nur, A. (1982). Evolution of pull‐apart basins and their scale independence. Tectonics, 1, 91–105. https://doi.org/10.1029/TC001i001p00091
    [Google Scholar]
  5. Baer, G., Schattner, U., Wachs, D., Sandwell, D., Wdowinski, S., & Frydman, S. (2002). The lowest place on earth is subsiding—An InSAR (interferometric Synthetic Aperture Radar) perspective. Geological Society of America Bulletin, 114, 12–23. https://doi.org/10.1130/0016-7606(2002)114<0012:TLPOEI>2.0.CO;2
    [Google Scholar]
  6. Bartov, Y., Goldstein, S. L., Stein, M., & Enzel, Y. (2003). Catastrophic arid episodes in the Eastern Mediterranean linked with the North Atlantic Heinrich events. Geology, 31, 439–442. https://doi.org/10.1130/0091-7613(2003)031<0439:CAEITE>2.0.CO;2
    [Google Scholar]
  7. Bartov, Y., Stein, M., Enzel, Y., Agnon, A., & Reches, Z. (2002). Lake levels and sequence stratigraphy of lake lisan, the late pleistocene precursor of the Dead Sea. Quaternary Research, 57, 9–21. https://doi.org/10.1006/qres.2001.2284
    [Google Scholar]
  8. Ben‐Avraham, Z., Niemi, T. M., Heim, C., Negendank, J., & Nur, A. (1999). Holocene stratigraphy of the Dead Sea: Correlation of high‐resolution seismic reflection profiles to sediment cores. Journal of Geophysical Research, 104, 17617–17625. https://doi.org/10.1029/1999JB900084
    [Google Scholar]
  9. Ben‐Avraham, Z., & Schubert, G. (2006). Deep “drop down” basin in the southern Dead Sea. Earth and Planetary Science Letter, 251, 254–263.
    [Google Scholar]
  10. Bookman (Ken‐Tor), R., Enzel, Y., Agnon, A., & Stein, M. (2004). Late holocene lake levels of the Dead Sea. Geological Society of America Bulletin, 116, 555–571. https://doi.org/10.1130/B25286.1
    [Google Scholar]
  11. Charrach, J. (2018). Investigations into the Holocene geology of the Dead Sea basin. Carbonates and Evaporites, 1–28. https://doi.org/10.1007/s13146-018-0454-x
    [Google Scholar]
  12. Coianiz, L., Ben‐Avraham, Z., Stein, M., & Lazar, M. (2019). Spatial and temporal reconstruction of the late Quaternary Dead Sea sedimentary facies from geophysical properties. Journal of Applied Geophysics, 160, 15–27. https://doi.org/10.1016/j.jappgeo.2018.11.002
    [Google Scholar]
  13. Coianiz, L., Bialik, O., Ben‐Avraham, Z., & Lazar, M. (2019). Temporal and spatial reconstruction of the late Quaternary Dead Sea sedimentary facies from geophysical properties of three ICDP boreholes. Quaternary Science Reviews, 210, 175–189.
    [Google Scholar]
  14. Freund, R., Garfunkel, Z., Zak, I., Golberg, M., Weissbrod, T., & Derin, B. (1970). The shear along the Dead Sea rift. Philosophical Transactions of the Royal Society of London, Series A, 267, 107–130.
    [Google Scholar]
  15. Gardner, G. H. F., Gardner, L. W., & Gregory, A. R. (1974). Formation velocity and density – the diagnostic basis for stratigraphic traps. Geophysics, 39, 759–918.
    [Google Scholar]
  16. Garfunkel, Z. (1981). Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics, 80, 81–108. https://doi.org/10.1016/0040-1951(81)90143-8
    [Google Scholar]
  17. Garfunkel, Z. (1997). The history and formation of the Dead Sea basin. In Z.Ben‐Avraham, Y.Gat, & T. M.Niemi (Eds), The Dead Sea – the lake and its setting (pp. 36–56). Oxford: Oxford University Press, Oxford Monographs on Geology and Geophysics
    [Google Scholar]
  18. Garfunkel, Z., & Ben‐Avraham, Z. (1996). The structure of the Dead Sea basin. Tectonophysics, 266, 155–176. https://doi.org/10.1016/S0040-1951(96)00188-6
    [Google Scholar]
  19. Haase‐Schramm, A., Goldstein, S. L., & Stein, M. (2004). U‐Th dating of Lake Lisan (Late Pleistocene Dead Sea) aragonite and implications for glacial east Mediterranean climate change. Geochimica et Cosmochimica Acta, 68, 985–1005. https://doi.org/10.1016/j.gca.2003.07.016
    [Google Scholar]
  20. Haliva‐Cohen, A., Stein, M., Goldstein, S. L., Sandler, A., & Starinsky, A. (2012). Sources and transport routes of fine detritus material to the Late Quaternary Dead Sea basin. Quaternary Sciences Reviews, 50, 55–70. https://doi.org/10.1016/j.quascirev.2012.06.014
    [Google Scholar]
  21. Joffe, S., & Garfunkel, Z. (1987). The kinematics of the circum Red Sea – A reevaluation. Tectonophysics, 141, 5–22.
    [Google Scholar]
  22. Kagan, E., Stein, M., & Marco, S. (2018). Integrated paleoseismic chronology of the last glacial Lake Lisan: From lake margin seismites to deep‐lake mass transport deposits. Journal of Geophysical Research: Solid Earth, 123, 2806–2824.https://doi.org/10.1002/2017JB014117
    [Google Scholar]
  23. Ken‐Tor, R., Agnon, A., Enzel, Y., Marco, S., Negendank, J. F. W., & Stein, M. (2001). High‐resolution geological record of historic earthquakes in the Dead Sea basin. Journal of Geophysical Research, 106, 2221–2234. https://doi.org/10.1029/2000JB900313
    [Google Scholar]
  24. Kitagawa, H., Stein, M., Goldstein, S. L., Nakamura, T., & Lazar, B. (2017). Radiocarbon chronology of the DSDDP core at the deepest floor of the Dead Sea. Radiocarbon, 59, 383–394. https://doi.org/10.1017/RDC.2016.120
    [Google Scholar]
  25. Lazar, M., Ben‐Avraham, Z., & Schattner, U. (2006). Formation of sequential basin along a strike slip fault – geophysical observations from the Dead Sea basin. Tectonophysics, 421, 53–69.
    [Google Scholar]
  26. Lodolo, E., Menichetti, M., Bartole, R., Ben‐Avraham, Z., Tassone, A., & Lippai, H. (2003). Magallanes‐Fagnano continental transform fault (Tierra del Fuego, southernmost South America). Tectonics, 22, https://doi.org/10.1029/2003TC001500
    [Google Scholar]
  27. Lubberts, R., & Ben‐Avraham, Z. (2002). Tectonic evolution of the Qumran basin from high‐resolution 3.5‐kHz seismic profiles and its implication for the evolution of the northern Dead Sea basin. Tectonophysics, 346, 91–113. https://doi.org/10.1016/S0040-1951(01)00230-X
    [Google Scholar]
  28. Machlus, M., Enzel, Y., Goldstein, S. L., Marco, S., & Stein, M. (2000). Reconstructing low levels of Lake Lisan by correlating fan‐delta and lacustrine deposits. Quaternary International, 73–74, 137–144. https://doi.org/10.1016/S1040-6182(00)00070-7
    [Google Scholar]
  29. Matmon, A., Fink, D., Davis, M., Niederman, S., Rood, D., & Frumkin, A. (2014). Unravelling rift margin evolution and escarpment development ages along the Dead Sea fault using cosmogenic burial ages. Quaternary Research, 82, 281–295.
    [Google Scholar]
  30. Migowski, C., Stein, M., Prasad, S., Negendank, J. F. W., & Agnon, A. (2006). Holocene climate variability and cultural evolution in the Near East from the Dead Sea sedimentary record. Quaternary Research, 66, 421–431. https://doi.org/10.1016/j.yqres.2006.06.010
    [Google Scholar]
  31. Neev, D., & Hall, J. K. (1979). Geophysical investigations in the Dead Sea. Sedimentary Geology, 23, 209–238. https://doi.org/10.1016/0037-0738(79)90015-0
    [Google Scholar]
  32. Neugebauer, I., Brauer, A., Schwab, M. J., Waldmann, N. D., Enzel, Y., Kitagawa, H., … Stein, M. (2014). Lithology of the long sediment record recovered by the ICDP Dead Sea Deep Drilling Project (DSDDP). Quaternary Science Reviews, 102, 149–165. https://doi.org/10.1016/j.quascirev.2014.08.013
    [Google Scholar]
  33. Neugebauer, I., Schwab, M. J., Waldmann, N. D., Tjallingii, R., Frank, U., Hadzhiivanova, E., … Brauer, A. (2016). Hydroclimatic variability in the Levant during the early last glacial (∼117–75 ka) derived from micro‐facies analyses of deep Dead Sea sediments. Climate of the Past, 12, 75–90.
    [Google Scholar]
  34. Niemi, T. M., & Ben‐Avraham, Z. (1994). Evidence for Jericho earthquakes from slumped sediments of the Jordan River Delta in the Dead Sea. Geology, 22, 395–398. https://doi.org/10.1130/0091-7613(1994)022<0395:EFJEFS>2.3.CO;2
    [Google Scholar]
  35. Niemi, T. M., & Ben‐Avraham, Z. (1997). Active tectonics in the Dead Sea basin. In T. M.Niemi, Z.Ben‐Avraham, & J.Gat (Eds.), The Dead Sea: The lake and its settings (pp. 73–81). New York, NY: Oxford University Press.
    [Google Scholar]
  36. Oryan, B., Villinger, H., Lazar, M., Schwab, M. J., Neugebauer, I., & Ben‐Avraham, Z. (2019). Heat flow in the Dead Sea from the ICDP boreholes and its implication for the structure of the basin. Quaternary Science Reviews, 210, 103–112. https://doi.org/10.1016/j.quascirev.2019.02.016
    [Google Scholar]
  37. Owen, G. (1987). Deformation processes in unconsolidated sands. In M. E.Jones & R. M. F.Preston (Eds.), Deformation of sediments and sedimentary rocks (Vol. 29, pp. 11–24). London, UK: Geological Society of London Special Publications.
    [Google Scholar]
  38. Rabus, B., Eineder, M., Roth, A., & Bamler, R. (2003). The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing, 57, 241–262. https://doi.org/10.1016/S0924-2716(02)00124-7
    [Google Scholar]
  39. Rozenbaum, A. G., Sandler, A., Stein, M., & Zilberman, E. (2019). The sedimentary and environmental history of Tortonian‐Messinian lakes at the East Mediterranean Margins (Northern Israel). Sedimentary Geology, 383, 268–292. https://doi.org/10.1016/j.sedgeo.2018.12.005
    [Google Scholar]
  40. Sade, A. R., Hall, J. K., Amit, G., Golan, A., Gur‐Arieh, L., & Tibor, G. (2006). The Israel national bathymetric survey—A new look at the seafloor off Israel. Israel Journal of Earth Sciences, 55, 185–187. https://doi.org/10.1560/IJES_55_3_185
    [Google Scholar]
  41. Sade, A. R., Hall, J. K., Sade, H., Amit, G., Tibor, G., Schulze, B., … Maratos, A. (2014). Multibeam bathymetric map of the Dead Sea, Geological Survey of Israel report GSI/01/2014. Israel, Jerusalem.
    [Google Scholar]
  42. Sagy, A., Reches, Z., & Agnon, A. (2003). Hierarchic three‐dimensional structure and slip partitioning in the western Dead Sea pull‐apart. Tectonics, 22, 1004. https://doi.org/10.1029/2001TC001323
    [Google Scholar]
  43. Shimoni, M., Hanssen, R., Van der Meer, F., Kampes, B. M., & Ben‐Dor, E. (2002). Salt diapir movements using SAR interferometry in the lisan peninsula, Dead Sea Rift. Proceedings of the SPIE, 4543, 151–160.
    [Google Scholar]
  44. Smit, J., Brun, J.-P., Cloetingh, S., & Ben-Avraham, Z. (2010). The rift-like structure and asymmetry of the Dead Sea Fault. Earth and Planetary Science Letters, 290(1–2), 74–82.
    [Google Scholar]
  45. Sneh, A., & Weinberger, R. (2014). Major structures of Israel and environs. Geological Survey of Israel scale 1: 500,000.
    [Google Scholar]
  46. Stein, M. (2014). The evolution of Neogene‐Quaternary water‐bodies in the Dead Sea rift valley. In Z.Garfunkel, Z.Ben Avraham, & E.Kagan (Eds.), Modern approaches in solid earth sciences vol 6 Dead Sea transform fault system: reviews (Vol. 6, pp. 279–318). Berlin, Germany: Springer.
    [Google Scholar]
  47. Stein, M., Torfstein, A., Gavrieli, I., & Yechieli, Y. (2010). Abrupt aridities and salt deposition in the post‐glacial Dead Sea and their North Atlantic connection. Quaternary Science Reviews, 29, 567–575. https://doi.org/10.1016/j.quascirev.2009.10.015
    [Google Scholar]
  48. Torfstein, A. (2017). The amora formation, Dead Sea basin. In Y.Enzel & O.Bar‐Yosef (Eds.), Quaternary of the levant: Environments, climate change, and humans (pp. 91–98). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/9781316106754.010
    [Google Scholar]
  49. Torfstein, A., Goldstein, S. L., Kushnir, Y., Enzel, Y., Haug, G., & Stein, M. (2015). Dead Sea drawdown and monsoonal impacts in the Levant during the last interglacial. Earth and Planetary Science Letters, 412, 235–244. https://doi.org/10.1016/j.epsl.2014.12.013
    [Google Scholar]
  50. Torfstein, A., Goldstein, S. L., Stein, M., & Enzel, Y. (2013). Impacts of abrupt climate changes in the levant from last glacial Dead Sea levels. Quaternary Science Reviews, 69, 1–7. https://doi.org/10.1016/j.quascirev.2013.02.015
    [Google Scholar]
  51. Torfstein, A., Haase‐Schramm, A., Waldmann, N., Kolodny, Y., & Stein, M. (2009). U‐series and oxygen isotope chronology of the mid‐Pleistocene Lake Amora (Dead Sea basin). Geochimica Et Cosmochimica Acta, 73, 2603–2630. https://doi.org/10.1016/j.gca.2009.02.010
    [Google Scholar]
  52. Waldmann, N. (2017). The stratigraphy and chronology of the samra formation. In Y.Enzel, & O.Bar‐Yosef (Eds.), Quaternary of the levant: Environments, climate change, and humans (pp. 99–106). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/9781316106754.011
    [Google Scholar]
  53. Waldmann, N., Neugebauer, I., Palchan, D., Hadzhiivanova, E., Taha, N., Brauer, A., & Enzel, Y. (2017). Sedimentology of the lacustrine formations in the Dead Sea basin. In Y.Enzel, & O.Bar‐Yosef (Eds.), Quaternary of the levant: Environments, climate change, and humans (pp. 83–90). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/9781316106754.009
    [Google Scholar]
  54. Waldmann, N., Stein, M., Ariztegui, D., & Starinsky, A. (2009). Stratigraphy, depositional environments and level reconstruction of the Last Interglacial Lake Samra in the Dead Sea basin. Quaternary Research, 72, 1–15. https://doi.org/10.1016/j.yqres.2009.03.005
    [Google Scholar]
  55. Weber, M., Alasonati Tašárová, Z., Abu‐Ayyash, K., Ben‐Avraham, Z., Choi, S., Darwish, J., El‐Kelani, R., Garfunkel, Z., Götze, H.J., Grünthal, G., Hofstetter, A., Kesten, D., Mechie, J., Meyer, U., Mohsen, A., Paschke, M., Petrunin, A., Ryberg, T., Sobolev, S.V., Stiller, M., and the DESERT and DESIRE Groups
    Weber, M., Alasonati Tašárová, Z., Abu‐Ayyash, K., Ben‐Avraham, Z., Choi, S., Darwish, J., El‐Kelani, R., Garfunkel, Z., Götze, H.J., Grünthal, G., Hofstetter, A., Kesten, D., Mechie, J., Meyer, U., Mohsen, A., Paschke, M., Petrunin, A., Ryberg, T., Sobolev, S.V., Stiller, M., and the DESERT and DESIRE Groups (2010). Results of geophysical studies across the Dead Sea Transform: The Arava/Araba Valley and the Dead Sea Basin. Israel Journal of Earth Sciences, 58, 147–162.
    [Google Scholar]
  56. Wu, J. E., McClay, K., Whitehouse, P., & Dooley, T. (2009). 4D analogue modelling of transtensional pull‐apart basins. Marine and Petroleum Geology, 26, 1608–1623.
    [Google Scholar]
  57. Zak, I. (1967). The geology of mount sedom. Ph.D. Thesis, Jerusalem: Hebrew University, p208.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12387
Loading
/content/journals/10.1111/bre.12387
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error