1887
Volume 32, Issue 5
  • E-ISSN: 1365-2117

Abstract

[Abstract

Hyaloclastites develop where lava interacts with water resulting in deposits that have a unique and often complex range of petrophysical properties. A combination of eruptive style and emplacement environment dictates the size, geometry and distribution of different hyaloclastite facies and their associated primary physical properties such as porosity, permeability and velocity. To date, links between the 3D facies variability within these systems and their petrophysical properties remain poorly understood. Hjörleifshöfði in southern Iceland presents an exceptional outcrop exposure of an emergent hyaloclastite sequence >1 km wide by >200 m high and enables an investigation of the distribution of the hyaloclastite deposits at seismic scale. Within this study we present a photogrammetry‐based 3D model from part of this recent hyaloclastite delta and incorporate previous work by Watton et al. (, 2013, , 19) to undertake detailed facies interpretation and quantification. Laboratory petrophysical analyses were performed on 34 core plugs cut from key field facies samples, including P‐ and S‐wave velocity, density, porosity and permeability at both ambient and confining pressure. Integration of the 3D model with the petrophysical data has enabled the production of pseudo‐wireline logs and property distribution maps which demonstrate the variability of physical properties within hyaloclastite sequences at outcrop to seismic scale. Through comparison of our data with examples of older buried hyaloclastite sequences we demonstrate that the wide‐ranging properties of young hyaloclastites become highly uniform in older sequences making their identification by remote geophysical methods for similar facies variations more challenging. Our study provides an improved understanding of the petrophysical property distribution within hyaloclastite sequences and forms a valuable step towards improving the understanding of similar subsurface sequences and their implications for imaging and fluid flow.

,

We present a photogrammetry‐based 3D reconstruction of Hjörleifshöfði in southern Iceland which provides an exceptional outcrop exposure of an emergent hyaloclastite sequence. By incorporating detailed facies interpretations and laboratory petrophysical analyses into the model, we have produced pseudo‐wireline logs and property distribution maps to demonstrate the variability of physical properties at seismic scale. Our study provides an improved understanding of the petrophysical property distribution within hyaloclastite sequences and forms a valuable step towards improving the understanding of similar subsurface sequences and their implications for imaging and fluid flow.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12415
2020-09-26
2024-04-26
Loading full text...

Full text loading...

References

  1. Abdelmalak, M. M., Planke, S., Faleide, J. I., Jerram, D. A., Zastrozhnov, D., Eide, S., & Myklebust, R. (2016). The development of volcanic sequences at rifted margins: New insights from the structure and morphology of the Vøring Escarpment, mid‐Norwegian Margin. Journal of Geophysical Research: Solid Earth, 121, 5212–5236. https://doi.org/10.1002/2015JB012788
    [Google Scholar]
  2. Alsop, G. I., & Marco, S. (2013). Seismogenic slump folds formed by gravity‐driven tectonics down a negligible subaqueous slope. Tectonophysics, 605, 48–69.
    [Google Scholar]
  3. Angkasa, S., Jerram, D. A., Millett, J. M., Svensen, H. H., Planke, S., Taylor, R. A., … Howell, J. (2017). Mafic intrusions, hydrothermal venting, and the basalt‐sediment transition: Linking onshore and offshore examples from the North Atlantic igneous province. Interpretation, 5(3), SK83–SK101. https://doi.org/10.1190/INT-2016-0162.1
    [Google Scholar]
  4. Bartetzko, A., Delius, H., & Pechnig, R. (2005). Effect of compositional and structural variations on log responses of igneous and metamorphic rocks. I: Mafic rocks. Geological Society, London, Special Publications, 240(1), 255–278. https://doi.org/10.1144/GSL.SP.2005.240.01.19
    [Google Scholar]
  5. Buckley, S. J., Howell, J. A., Enge, H. D., & Kurz, T. H. (2008). Terrestrial laser scanning in geology: Data acquisition, processing and accuracy considerations. Journal of the Geological Society, 165(3), 625–638. https://doi.org/10.1144/0016-76492007-100
    [Google Scholar]
  6. Buckley, S. J., Ringdal, K., Naumann, N., Dolva, B., Kurz, T. H., Howell, J. A., & Dewez, T. J. B. (2019). LIME: Software for 3-D visualization, interpretation, and communication of virtual geoscience models. Geosphere, 15(1), 222–235. https://doi.org/10.1130/GES02002.1
    [Google Scholar]
  7. Cole, P. D., Guest, J. E., Duncan, A. M., & Pacheco, J.-M. (2001). Capelinhos 1957–1958, Faial, Azores: Deposits formed by an emergent surtseyan eruption. Bulletin of Volcanology, 63, 204. https://doi.org/10.1007/s004450100136
    [Google Scholar]
  8. Eide, C. H., Schofield, N., Jerram, D. A., & Howell, J. A. (2017). Basin‐scale architecture of deeply emplaced sill complexes: Jameson Land, East Greenland. Journal of the Geological Society, 174(1), 23–40. https://doi.org/10.1144/jgs2016-018
    [Google Scholar]
  9. Einarsson, T., & Albertsson, K. J. (1988). The glacial history of Iceland during the past three million years. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 318(1191), 637–644.
    [Google Scholar]
  10. Enge, H. D., & Howell, J. A. (2010). Impact of deltaic clinothems on reservoir performance: Dynamic studies of reservoir analogs from the Ferron Sandstone Member and Panther Tongue, Utah. AAPG Bulletin, 94(2), 139–161. https://doi.org/10.1306/07060908112
    [Google Scholar]
  11. Farrell, N. J. C., Healy, D., & Taylor, C. W. (2014). Anisotropy of permeability in faulted porous sandstones. Journal of Structural Geology, 63, 50–67. https://doi.org/10.1016/j.jsg.2014.02.008
    [Google Scholar]
  12. Fitzgerald, E. M., & Bean, C. J. (2001). Sub‐basalt imaging problems and the application of Artificial Neural Networks. Journal of Applied Geophysics, 48, 183–197.
    [Google Scholar]
  13. Franzson, H., Guofinnsson, G. H., Helgadóttir, H. M., & Frolova, J. V. (2010). Porosity, density and chemical composition relationships in altered Icelandic hyaloclastites. Water‐Rock Interaction – Proceedings of the 13th International Conference on Water‐Rock Interaction, WRI‐13, 199–202.
    [Google Scholar]
  14. Frolova, J., Ladygin, V., Franzson, H., & Sigurdsson, O., Stefansson, V., & Sustrov, V. (2005). Petrophysical properties of fresh to mildly altered hyaloclastite tuffs. Proceedings World Geothermal Congress, Antalya, Turkey, 15 pp.
    [Google Scholar]
  15. Fuller, R. E. (1931). The aqueous chilling of basaltic lava on the Columbia River Plateau. American Journal of Science, 21, 281–300. https://doi.org/10.2475/ajs.s5-21.124.281
    [Google Scholar]
  16. Furnes, H., & Fridleifsson, I. B. (1974). Tidal effects on the formation of pillow lava/hyaloclastite deltas. Geology, 2, 381–384.
    [Google Scholar]
  17. Furnes, H., Hellevang, H., Hellevang, B., & Skjerlie, K. P. (2003). Volcanic evolution of oceanic crust in a Late Ordovician back‐arc basin: The Solund‐Stavfjord Ophiolite Complex, West Norway. Geochemistry, Geophysics, Geosystems, 4.
    [Google Scholar]
  18. Galland, O. (2012). Experimental modelling of ground deformation associated with shallow magma intrusions. Earth and Planetary Science Letters, 317, 145–156. https://doi.org/10.1016/j.epsl.2011.10.017
    [Google Scholar]
  19. Grove, C., Jerram, D. A., Gluyas, J. G., & Brown, R. J. (2017). Sandstone diagenesis in sediment–lava sequences: Exceptional examples of volcanically driven diagenetic compartmentalization in Dune valley, Huab outliers, Nw Namibia. Journal of Sedimentary Research, 87(12), 1314–1335. https://doi.org/10.2110/jsr.2017.75
    [Google Scholar]
  20. Hanson, R. E., & Schweickert, R. A. (1982). Chilling and brecciation of a Devonian rhyolite sill intruded into wet sediments, northern Sierra Nevada, California. Journal of Geology, 90, 717–724.
    [Google Scholar]
  21. Head, J. W.III, & Wilson, L. (2003). Deep submarine pyroclastic eruptions: Theory and predicted landforms and deposits. Journal of Volcanology and Geothermal Research, 121, 155–193.
    [Google Scholar]
  22. Iyer, K., Schmid, D. W., Planke, S., & Millett, J. (2017). Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate. Earth and Planetary Science Letters, 467, 30–42. https://doi.org/10.1016/j.epsl.2017.03.023
    [Google Scholar]
  23. James, M., & Varley, N. (2012). Identification of structural controls in an active lava dome with high resolution DEMs: Volcán de Colima, Mexico. Geophysical Research Letters, 39, L22303. https://doi.org/10.1029/2012GL054245
    [Google Scholar]
  24. Jerram, D. A., Millett, J. M., Kück, J., Thomas, D., Planke, S., Haskins, E., … Pierdominici, S. (2019). Understanding volcanic facies in the subsurface: A combined core, wireline logging and image log data set from the PTA2 and KMA1 boreholes, Big Island, Hawai i. Scientific Drilling, 25, 15–33. https://doi.org/10.5194/sd-25-15-2019
    [Google Scholar]
  25. Jerram, D. A., Sharp, I. R., Torsvik, T. H., Poulsen, R., Watton, T., Freitag, U., … Machado, V. (2018). Volcanic constraints on the unzipping of Africa from South America: Insights from new geochronological controls along the Angola margin. Tectonophysics, 760, 252–266. https://doi.org/10.1016/j.tecto.2018.07.027
    [Google Scholar]
  26. Jerram, D. A., Single, R. T., Hobbs, R. W., & Nelson, C. E. (2009). Understanding the offshore flood basalt sequence using onshore volcanic facies analogues: An example from the Faroe‐Shetland basin. Geological Magazine, 146, 353–367. https://doi.org/10.1017/S0016756809005974
    [Google Scholar]
  27. Jerram, D. A., Svensen, H. H., Planke, S., Polozov, A. G., & Torsvik, T. H. (2016). The onset of flood volcanism in the north‐western part of the Siberian Traps: Explosive volcanism versus effusive lava flows. Palaeogeography, Palaeoclimatology, Palaeoecology, 441(1), 38–50. https://doi.org/10.1016/j.palaeo.2015.04.022
    [Google Scholar]
  28. Jerram, D. A., Widdowson, M., Wignall, P. B., Sun, Y., Lai, X., Bond, D. P. G., & Torsvik, T. H. (2016). Submarine palaeoenvironments during Emeishan flood basalt volcanism, SW China: Implications for plume–lithosphere interaction during the Capitanian, Middle Permian (‘end Guadalupian’) extinction event. Palaeogeography, Palaeoclimatology, Palaeoecology, 441(1), 65–73. https://doi.org/10.1016/j.palaeo.2015.06.009
    [Google Scholar]
  29. Johnson, J. S., & Smellie, J. L. (2007). Zeolite compositions as proxies for eruptive paleoenvironment. Geochemistry, Geophysics, Geosystems, 8.
    [Google Scholar]
  30. Jones, C. D., Ciais, P., Davis, S. J., Friedlingstein, P., Gasser, T., Peters, G. P., … Wiltshire, A. (2016). Simulating the Earth system response to negative emissions. Environmental Research Letters, 11, 095012. https://doi.org/10.1088/1748-9326/11/9/095012
    [Google Scholar]
  31. Klinkenberg, L. J. (1941, January). The permeability of porous media to liquids and gases. In Drilling and production practice. American Petroleum Institute.
  32. Labourdette, R., & Jones, R. R. (2007). Characterization of fluvial architectural elements using a three‐dimensional outcrop data set: Escanilla braided system, south‐central pyrenees, Spain. Geosphere, 3, 422–434. https://doi.org/10.1130/GES00087.1
    [Google Scholar]
  33. Lipman, P. W., & Moore, J. G. (1996). Mauna Loa lava accumulation rates at the Hilo drill site: Formation of lava deltas during a period of declining overall volcanic growth. Journal of Geophysical Research B: Solid Earth, 101, 11631–11641.
    [Google Scholar]
  34. Matter, J. M., Broecker, W. S., Stute, M., Gislason, S. R., Oelkers, E. H., Stefánsson, A., … Björnssond, G. (2009). Permanent carbon dioxide storage into basalt: The carbfix pilot project, Iceland. Energy Procedia, 1(1), 3641–3646. https://doi.org/10.1016/j.egypro.2009.02.160
    [Google Scholar]
  35. Mattox, T. N., & Mangan, M. T. (1997). Littoral hydrovolcanic explosions: A case study of lava‐seawater interaction at Kilauea Volcano. Journal of Volcanology and Geothermal Research, 75, 1–17.
    [Google Scholar]
  36. McCaffrey, K. J. W., Jones, R. R., Holdsworth, R. E., Wilson, R. W., Clegg, P., Imber, J., … Trinks, I. (2005). Unlocking the spatial dimension: Digital technologies and the future of geoscience fieldwork. Journal of the Geological Society, 162, 927–938. https://doi.org/10.1144/0016-764905-017
    [Google Scholar]
  37. Miller, K. G., Mountain, G. S., Wright, J. D., & Browning, J. V. (2011). A 180‐million‐year record of sea level and ice volume variations from continental margin and deep‐sea isotopic records. Oceanography, 24(2), 40–53. https://doi.org/10.5670/oceanog.2011.26
    [Google Scholar]
  38. Millett, J. M., Hole, M. J., Jolley, D. W., Schofield, N., & Campbell, E. (2015). Frontier exploration and the North Atlantic Igneous Province: New insights from a 2.6 km offshore volcanic sequence in the NE Faroe‐Shetland Basin. Journal of the Geological Society, 173(2), 320–336.
    [Google Scholar]
  39. Millett, J. M., Planke, S., Kästner, F., Blischke, A., Hersir, G. P., Halldórsdóttir, S., … Júlíusson, E. (2018). Sub‐surface geology and velocity structure of the Krafla high temperature geothermal field, Iceland: Integrated ditch cuttings, wireline and zero offset vertical seismic profile analysis. Journal of Volcanology and Geothermal Research, https://doi.org/10.1016/j.jvolgeores.2018.03.024
    [Google Scholar]
  40. Millett, J. M., Wilkins, A. D., Campbell, E., Hole, M. J., Taylor, R. A., Healy, D., … Blischke, A. (2016). The geology of offshore drilling through basalt sequences: Understanding operational complications to improve efficiency. Marine and Petroleum Geology, 77, 1177–1192. https://doi.org/10.1016/j.marpetgeo.2016.08.010
    [Google Scholar]
  41. Moore, J. G., Phillips, R. L., Grigg, R. W., Peterson, D. W., & Swanson, D. A. (1973). Flow of lava into the sea, 1969–1971, Kilauea volcano, Hawaii. Bulletin of the Geological Society of America, 84, 537–546.
    [Google Scholar]
  42. Nelson, C. E., Jerram, D. A., & Hobbs, R. W. (2009). Flood basalt facies from borehole data: Implications for prospectivity and volcanology in volcanic rifted margins. Petroleum Geoscience, 15, 313–324. https://doi.org/10.1144/1354-079309-842
    [Google Scholar]
  43. Nelson, C. E., Jerram, D. A., Hobbs, R. W., Terrington, R., & Kessler, H. (2011). Reconstructing flood basalt lava flows in three dimensions using terrestrial laser scanning. Geosphere, 7(1), 87–96. https://doi.org/10.1130/GES00582.1
    [Google Scholar]
  44. Neuhoff, P. S., Fridriksson, T., Arnórsson, S., & Bird, D. K. (1999). Porosity evolution and mineral paragenesis during low‐grade metamorphism of basaltic lavas Atteigarhorn, eastern Iceland. American Journal of Science, 299, 467–501.
    [Google Scholar]
  45. Neuhoff, P. S., Fridriksson, T., & Bird, D. K. (2000). Zeolite parageneses in the north Atlantic igneous province: Implications for geotectonics and groundwater quality of basaltic crust. International Geology Review, 42(1), 15–44. https://doi.org/10.1080/00206810009465068
    [Google Scholar]
  46. Nur, A., Mavko, G., Dvorkin, J., & Galmudi, D. (1998). Critical porosity: A key to relating physical properties to porosity in rocks. The Leading Edge, 17(3), 357–362. https://doi.org/10.1190/1.1437977
    [Google Scholar]
  47. O’Hara, M. J., & Mathews, R. E. (1981). Geochemical evolution in an advancing, periodically replenished, periodically tapped, continuously fractionated magma chamber. Journal of the Geological Society, 138(3), 237–277. https://doi.org/10.1144/gsjgs.138.3.0237
    [Google Scholar]
  48. Ollier, G., & Cochonat, P., Lénat, J.-F., Labazuy, P. (1998). Deep‐sea volcaniclastic sedimentary systems: An example from La Fournaise volcano, Réunion Island, Indian Ocean. Sedimentology, 45, 293–330. https://doi.org/10.1046/j.1365-3091.1998.0152e.x
    [Google Scholar]
  49. Parnell‐Turner, R., White, N., Henstock, T., Murton, B., Maclennan, J., & Jones, S. M. (2014). A continuous 55‐million‐year record of transient mantle plume activity beneath Iceland. Nature Geoscience, 7(12), 914–919. https://doi.org/10.1038/ngeo2281
    [Google Scholar]
  50. Pedersen, A. K., Larsen, L. M., Riisager, P., & Dueholm, K. S. (2002). Rates of volcanic deposition, facies changes and movements in a dynamic basin: The Nuussuaq Basin, West Greenland, around the C27n–C26r transition. Geological Society, London, Special Publications, 197(1), 157–181. https://doi.org/10.1144/GSL.SP.2002.197.01.07
    [Google Scholar]
  51. Petersen, U. K., Brown, R., & Andersen, M. S. (2013). P‐wave velocity distribution in basalt flows of the Enni Formation in the Faroe Islands from refraction seismic analysis. Geophysical Prospecting, 61(1), 168–186. https://doi.org/10.1111/j.1365-2478.2012.01065.x
    [Google Scholar]
  52. Planke, S. (1994). Geophysical response of flood basalts from analysis of wire line logs: Ocean Drilling Program Site 642, Vøring volcanic margin. Journal of Geophysical Research: Solid Earth, 99(B5), 9279–9296. https://doi.org/10.1029/94JB00496
    [Google Scholar]
  53. Planke, S., & Cambray, H. (1998). Seismic properties of flood basalts from Hole 917A downhole data, southeast Greenland volcanic margin. Proceedings of the Ocean Drilling Program, Scientific Results, 152, 453–464.
    [Google Scholar]
  54. Planke, S., Millett, J. M., Maharjan, D., Jerram, D. A., Abdelmalak, M. M., Groth, A., … Myklebust, R. (2017). Igneous seismic geomorphology of buried lava fields and coastal escarpments on the Vøring volcanic rifted margin. Interpretation, 5(3), SK161–SK177. https://doi.org/10.1190/INT-2016-0164.1
    [Google Scholar]
  55. Planke, S., Rasmussen, T., Rey, S. S., & Myklebust, R. (2005). Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. Petroleum Geology Conference Proceedings, 6, 833–844. https://doi.org/10.1144/0060833
    [Google Scholar]
  56. Planke, S., Symonds, P., Alvestad, E., & Skogseid, J. (2000). Seismic volcanostratigraphy of large‐volume basaltic extrusive complexes on rifted margins. Journal of Geophysical Research: Solid Earth, 105, 19335–19351. https://doi.org/10.1029/1999JB900005
    [Google Scholar]
  57. Reynolds, P., Planke, S., Millett, J. M., Jerram, D. A., Trulsvik, M., Schofield, N., & Myklebust, R. (2017). Hydrothermal vent complexes offshore Northeast Greenland: A potential role in driving the PETM. Earth and Planetary Science Letters, 467, 72–78. https://doi.org/10.1016/j.epsl.2017.03.031
    [Google Scholar]
  58. Sætre, C., Hellevang, H., Dennehy, C., Dypvik, H., & Clark, S. (2018). A diagenetic study of intrabasaltic siliciclastics sandstones from the Rosebank field. Marine and Petroleum Geology, 98, 335–355. https://doi.org/10.1016/j.marpetgeo.2018.08.026
    [Google Scholar]
  59. Santilano, A., Manzella, G., Gianelli, G., Donato, A., Gola, G., Nardini, I., … Botteghi, S. (2015). Convective, intrusive geothermal plays: What about tectonics?Geothermal Energy Science, 3, 51–59. https://doi.org/10.5194/gtes-3-51-2015
    [Google Scholar]
  60. Schiffman, P., Watters, R. J., Thompson, N., & Walton, A. W. (2006). Hyaloclastites and the slope stability of Hawaiian volcanoes: Insights from the Hawaiian scientific drilling Project's 3‐km drill core. Journal of Volcanology and Geothermal Research, 151, 217e228. https://doi.org/10.1016/j.jvolgeores.2005.07.030
    [Google Scholar]
  61. Schofield, N. J., Brown, D. J., Magee, C., & Stevenson, C. T. (2012). Sill morphology and comparison of brittle and non‐brittle emplacement mechanisms. Journal of the Geological Society, 169, 127–141. https://doi.org/10.1144/0016-76492011-078
    [Google Scholar]
  62. Schofield, N., Holford, S., Millett, J., Brown, D., Jolley, D., Passey, S. R., … Stevenson, C. (2017). Regional magma plumbing and emplacement mechanisms of the Faroe‐Shetland Sill Complex: Implications for magma transport and petroleum systems within sedimentary basins. Basin Research, 29(1), 41–63. https://doi.org/10.1111/bre.12164
    [Google Scholar]
  63. Sigmundsson, F. (1991). Post‐glacial rebound and asthenosphere viscosity in Iceland. Geophysical Research Letters, 18(6), 1131–1134. https://doi.org/10.1029/91GL01342
    [Google Scholar]
  64. Skilling, I. P. (2002). Basaltic pahoehoe lava‐fed deltas: Large‐scale characteristics, clast generation, emplacement processes and environmental discrimination. Geological Society Special Publication, 202, 91–113.
    [Google Scholar]
  65. Smellie, J. L., & Hole, M. J. (1997). Products and processes in pliocene‐recent, subaqueous to emergent volcanism in the Antarctic Peninsula: Examples of englacial Surtseyan volcano construction. Bulletin of Volcanology, 58, 628–646. https://doi.org/10.1007/s004450050167
    [Google Scholar]
  66. Sohn, Y. K., Park, K. H., & Seok‐Hoon, Y. (2008). Primary versus secondary and subaerial versus submarine hydrovolcanic deposits in the subsurface of Jeju Island, Korea. Sedimentology, 55, 899–924. https://doi.org/10.1111/j.1365-3091.2007.00927.x
    [Google Scholar]
  67. Stevenson, J. A., Mitchell, N. C., Mochrie, F., & Cassidy, M. (2012). Lava penetrating water: The different behaviours of pahoehoe and 'a'a at the Nesjahraun, Thingvellir, Iceland. Bulletin of Volcanology, 74, 33–46. https://doi.org/10.1007/s00445-011-0480-1
    [Google Scholar]
  68. Stroncik, N. A., & Schmincke, H. U. (2002). Palagonite – A review. International Journal of Earth Sciences, 91(4), 680–697. https://doi.org/10.1007/s00531-001-0238-7
    [Google Scholar]
  69. Sturkell, E., Einarsson, P., Sigmundsson, F., Geirsson, H., Olafsson, H., Pedersen, R., … Stefánsson, R. (2006). Volcano geodesy and magma dynamics in Iceland. Journal of Volcanology and Geothermal Research, 150(1–3), 14–34. https://doi.org/10.1016/j.jvolgeores.2005.07.010
    [Google Scholar]
  70. Sun, H., & Zhong, D. (2018). Origin and forming process of the porosity in volcanic hydrocarbon reservoirs of China. Journal of Volcanology and Geothermal Research, 350, 61–68. https://doi.org/10.1016/j.jvolgeores.2017.12.005
    [Google Scholar]
  71. Thien, B. M., Kosakowski, G., & Kulik, D. A. (2015). Differential alteration of basaltic lava flows and hyaloclastites in Icelandic hydrothermal systems. Geothermal Energy, 3(1), 11. https://doi.org/10.1186/s40517-015-0031-7
    [Google Scholar]
  72. Thomson, K. (2005). Volcanic features of the North Rockall Trough: Application of visualisation techniques on 3D seismic reflection data. Bulletin of Volcanology, 67, 116–128.
    [Google Scholar]
  73. Thomson, K., & Schofield, N. (2008). Lithological and structural controls on the emplacement and morphology of sills in sedimentary basins. Geological Society Special Publication, 302, 31–44.
    [Google Scholar]
  74. Tribble, G. W. (1991). Underwater observations of active lava flows from Kilauea volcano, Hawaii. Geology, 19, 633–636.
    [Google Scholar]
  75. Tuffen, H. (2007). Models of ice melting and edifice growth at the onset of subglacial basaltic eruptions. Journal of Geophysical Research: Solid Earth, 112.
    [Google Scholar]
  76. Vollgger, S. A., & Cruden, A. R. (2016). Mapping folds and fractures in basement and cover rocks using UAV photogrammetry, Cape Liptrap and Cape Paterson, Victoria, Australia. Journal of Structural Geology, 85, 168–187.
    [Google Scholar]
  77. Vosgerau, H., Passey, S. R., Svennevig, K., Strunck, M. N., & Jolley, D. W. (2016). Reservoir architectures of interlava systems: A 3D photogrammetrical study of Eocene cliff sections, Faroe Islands. In M.Bowman, H. R.Smyth, T. R.Good, S. R.Passey, J. P. P.Hirst, & C. J.Jordan (Eds.), The value of outcrop studies in reducing subsurface uncertainty and risk in hydrocarbon exploration and production (Vol. 436, pp. 55–73). London, UK: Geological Society, Special Publications.
    [Google Scholar]
  78. Walker, G. P. L., & Croasdale, R. (1971). Characteristics of some basaltic pyroclastics. Bulletin Volcanologique, 35, 303–317.
    [Google Scholar]
  79. Walton, A. W., & Schiffman, P. (2003). Alteration of hyaloclastites in the HSDP 2 Phase 1 Drill Core 1. Description and paragenesis. Geochemistry, Geophysics, Geosystems, 4(5). https://doi.org/10.1029/2002GC000368
    [Google Scholar]
  80. Watton, T. J., Jerram, D. A., Thordarson, T., & Davies, R. J. (2013). Three‐dimensional lithofacies variations in hyaloclastite deposits. Journal of Volcanology and Geothermal Research, 250, 19–33. https://doi.org/10.1016/j.jvolgeores.2012.10.011
    [Google Scholar]
  81. Watton, T. J., Wright, K. A., Brown, R. J., & Jerram, D. A. (2014). The petrophysical and petrographical properties of hyaloclastite deposits: Implications for petroleum exploration. AAPG Bulletin, 98, 449–463. https://doi.org/10.1306/08141313029
    [Google Scholar]
  82. White, J. (2000). Subaqueous eruption‐fed density currents and their deposits. Precambrian Research, 101, 87–109.
    [Google Scholar]
  83. Wright, K. A., Davies, R. J., Jerram, D. A., Morris, J., & Fletcher, R. (2012). Application of seismic and sequence stratigraphic concepts to a lava‐fed delta system in the Faroe‐Shetland Basin, UK and Faroes. Basin Research, 24, 91–106.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12415
Loading
/content/journals/10.1111/bre.12415
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): basalt; eruption; fluid flow; lava delta; petrophysical distribution

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error