1887
Clinoforms and Clinothems: Fundamental Elements of Basin Infill
  • E-ISSN: 1365-2117

Abstract

[

Conceptual stratigraphic section of the clinothem throughout the 4‐years bathymetric surveys. Bottom, year 2013: the shows compound progradation in the central sector, with a subaqueous Rollover Point (RP) at 8 m, whereas in the northern sector a single RP develops at an average of 3 m water depth. Center, year 2014: the shows compound progradation in both (central and northern) sectors, but a destruction phase in the central sector (eroded topset and RPs separated by a collapse depression) and a constructional phase in the northern sector (normal regression with compound clinothems) occur simultaneously. Top, year 2016: the shows a subaqueous RP at an average 5 m of water depth of the transverse bar in the central sector, whereas compound progradation is recorded in the northern sector. Note that in a subaerial delta, such as the modern Po Delta, subaerial RPs correspond to breaks in slope associated with the presence of mouth bars, whereas subaqueous nearshore RPs correspond to breaks in slope due to the presence of transverse bars and delta lobes.

, Abstract

Reconstructions of ancient delta systems rely typically on a two‐dimensional (2D) view of prograding clinothems but may miss their three‐dimensional (3D) stratigraphic complexity which can, instead, be best documented on modern delta systems by integrating high‐resolution geophysical data, historical cartography, core data and geomorphological reconstructions offshore. We quantitatively compare three precisely positioned, high‐resolution multi‐beam bathymetry maps in the delta front and pro delta sectors (0.3 to 10 m water depth) of , the most active of the modern Po Delta five branches. By investigating the detailed morphology of the prograding modern Po Delta, we shed new light on the mechanisms that control the topset to foreset transition in clinothems and show the temporal and spatial complexity of a delta and its pro delta slope, under the impact of oceanographic processes. This study documents the ephemeral nature of the rollover point at the transition between sandy topset (fluvial, delta plain to mouth‐bar) and muddy seaward‐dipping foreset deposits advancing, in this case, in >20 m of water depth. Three multibeam surveys, acquired between 2013 and 2016, document the complexity in space and time of the topset and foreset regions and their related morphology, a diagnostic feature that could not be appreciated using solely 2D, even very high‐resolution, seismic profiles. In addition, the comparison of bathymetric surveys gathered with one‐year lapses shows the migration of subaqueous sand dunes on the clinothem topset, the formation of ephemeral cut‐and‐fill features at the rollover point (few m below mean sea level), the presence of collapse depressions derived by sagging of sediments and fluid expulsion (possibly induced by storm waves) on the foreset, and splays of sand likely reflecting gravity flows on the lower foreset. Though the modern Po Delta is anthropogenic in many respects, its subaqueous clinothem can be studied as a scale model for ancient clinothems that are less resolved geometrically and far less constrained chronologically.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12426
2019-12-30
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/bre/32/2/bre12426.html?itemId=/content/journals/10.1111/bre.12426&mimeType=html&fmt=ahah

References

  1. Ainsworth, R. B., Vakarelov, B. K., MacEachern, J. A., Nanson, R. A., Lane, T. I., Rarity, F., & Dashtgard, S. E. (2016). Process‐driven architectural variability in mouth‐bar deposits: A case study from a mixed‐process mouth‐bar complex, Drumheller, Alberta, Canada. Journal of Sedimentary Research, 86(5), 512–541. https://doi.org/10.2110/jsr.2016.23
    [Google Scholar]
  2. Allison, M. A. (1998). Historical changes in the Ganges‐Brahmaputra delta front. Journal of Coastal Research, 14, 1269–1275.
    [Google Scholar]
  3. Amorosi, A., Bruno, L., Campo, B., Costagli, B., Dinelli, E., Hong, W., … Vaiani, S. C. (2019). Tracing clinothem geometry and sediment pathways in the prograding Holocene Po Delta system through integrated core stratigraphy. Basin Research, 1–10. https://doi.org/10.1111/bre.12360
    [Google Scholar]
  4. Amorosi, A., Bruno, L., Campo, B., Morelli, A., Rossi, V., Scarponi, D., … Drexler, T. M. (2017). Global sea‐level control on local parasequence architecture from the Holocene record of the Po Plain, Italy. Marine Petroleum Geology, 87, 99–111. https://doi.org/10.1016/j.marpetgeo.2017.01.020
    [Google Scholar]
  5. Amorosi, A., Maselli, V., & Trincardi, F. (2016). Onshore to offshore anatomy of a late Quaternary source‐to‐sink system (Po Plain‐Adriatic Sea, Italy). Earth‐Science Reviews, 153, 212–237. https://doi.org/10.1016/j.earscirev.2015.10.010
    [Google Scholar]
  6. Anderson, J. B., Wallace, D. J., Simms, A. R., Rodriguez, A. B., & Milliken, K. T. (2014). Variable response of coastal environments of the northwestern Gulf of Mexico to sea‐level rise and climate change: Implications for future change. Marine Geology, 352, 348–366. https://doi.org/10.1016/j.margeo.2013.12.008
    [Google Scholar]
  7. Artegiani, A., Paschini, E., Russo, A., Bregant, D., Raicich, F., & Pinardi, N. (1997). The Adriatic Sea general circulation. Part I: Air–sea interactions and water mass structure. Journal of Physical Oceanography, 27(8), 1492–1514. https://doi.org/10.1175/1520-0485(1997)027<1492:tasgcp>2.0.co;2
    [Google Scholar]
  8. Barrell, J. (1912). Criteria for the recognition of ancient delta deposits. Bulletin of the Geological Society of America, 23(1), 377–446. https://doi.org/10.1130/GSAB-23-377
    [Google Scholar]
  9. Benetazzo, A., Bergamasco, A., Bonaldo, D., Falcieri, F. M., Sclavo, M., Langone, L., & Carniel, S. (2014). Response of the Adriatic Sea to an intense cold air outbreak: Dense water dynamics and wave‐induced transport. Progress in Oceanography, 128, 115–138. https://doi.org/10.1016/j.pocean.2014.08.015
    [Google Scholar]
  10. Berné, S., Jouet, G., Bassetti, M. A., Dennielou, B., & Taviani, M. (2007). Late Glacial to Preboreal sea‐level rise recorded by the Rhône deltaic system (NW Mediterranean). Marine Geology, 245(1–4), 65–88. https://doi.org/10.1016/j.margeo.2007.07.006
    [Google Scholar]
  11. Bhattacharya, J. P., & Giosan, L. (2003). Wave‐influenced deltas: Geomorphological implications for facies reconstruction. Sedimentology, 50(1), 187–210. https://doi.org/10.1046/j.1365-3091.2003.00545.x
    [Google Scholar]
  12. Blum, M. D., & Roberts, H. H. (2009). Drowning of the Mississippi Delta due to insufficient sediment supply and global sea‐level rise. Nature Geoscience, 2(7), 488. https://doi.org/10.1038/ngeo553
    [Google Scholar]
  13. Boldrin, A., Langone, L., Miserocchi, S., Turchetto, M., & Acri, F. (2005). Po River plume on the Adriatic continental shelf: Dispersion and sedimentation of dissolved and suspended matter during different river discharge rates. Marine Geology, 222, 135–158. https://doi.org/10.1016/j.margeo.2005.06.010
    [Google Scholar]
  14. Bosman, A., Casalbore, D., Anzidei, M., Muccini, F., Carmisciano, C., & Chiocci, F. (2015). The first ultra‐high resolution Digital Terrain Model of the shallow‐water sector around Lipari Island (Aeolian Islands, Italy). Annals of Geophysics, 58, S0218. https://doi.org/10.4401/ag-6746
    [Google Scholar]
  15. Bosman, A., Romagnoli, C., Madricardo, F., Correggiari, A., Remia, A., Zubalich, R., … Trincardi, F. (2019). Short‐term evolution of Po della Pila delta lobe from high‐resolution multibeam bathymetry (2013–2016). Estuarine, Coastal and Shelf Science, 233. https://doi.org/10.1016/j.ecss.2019.106533
    [Google Scholar]
  16. Braga, F., Zaggia, L., Bellafiore, D., Bresciani, M., Giardino, C., Lorenzetti, G., … Brando, V. E. (2017). Mapping turbidity patterns in the Po river prodelta using multi‐temporal Landsat 8 imagery. Estuarine, Coastal and Shelf Science, 198, 555–567. https://doi.org/10.1016/j.ecss.2016.11.003
    [Google Scholar]
  17. Brucker, S., Hughes Clarke, J. E., Beaudoin, J., Lessels, C., Czotter, K., Loschiavo, R., & Hill, P. (2007). Monitoring flood‐related change in bathymetry and sediment distribution over the Squamish Delta, Howe Sound, British Columbia. In US Hydro. Conf (Vol. 16).
  18. Burgess, P. M., Steel, R. J., Granjeon, D., Hampson, G. J., & Dalrymple, R. W. (2008). Stratigraphic forward modeling of basin‐margin clinoform systems: Implications for controls on topset and shelf width and timing of formation of shelf‐edge deltas. Recent Advances in Models of Siliciclastic Shallow‐Marine Stratigraphy, 90, 35–45.
    [Google Scholar]
  19. Cattaneo, A., Correggiari, A., Langone, L., & Trincardi, F. (2003). The late‐Holocene Gargano subaqueous delta, Adriatic shelf: Sediment pathways and supply fluctuations. Marine Geology, 193(1–2), 61–91. https://doi.org/10.1016/S0025-3227(02)00614-X
    [Google Scholar]
  20. Cavaleri, L., Bertotti, L., Buizza, R., Buzzi, A., Masato, V., Umgiesser, G., & Zampieri, M. (2010). Predictability of extreme meteo‐oceanographic events in the Adriatic Sea. Quarterly Journal of the Royal Meteorological Society, 136(647), 400–413. https://doi.org/10.1002/qj.567
    [Google Scholar]
  21. Coleman, J. M. (1988). Dynamic changes and processes in the Mississippi River delta. Geological Society of America Bulletin, 100(7), 999–1015. https://doi.org/10.1130/0016-7606(1988)100<0999:DCAPIT>2.3.CO;2
    [Google Scholar]
  22. Coleman, J. M., & Wright, L. D. (1975). Modern river deltas: Variability of processes and sand bodies. In M. L.Broussard (Ed.), Deltas: Models for exploration (pp. 99–149). Houston, TX: Houston Geological Society.
    [Google Scholar]
  23. Correggiari, A., Cattaneo, A., & Trincardi, F. (2005a). Depositional patterns in the late Holocene Po delta system. In J. K.Bhattacharya, & L.Giosan (Eds.), River Deltas-Concepts, Models and Examples (pp. 365–392). SEPM Special Publication No. 83 (ISBN 1‐56576‐113‐8.).
    [Google Scholar]
  24. Correggiari, A., Cattaneo, A., & Trincardi, F. (2005b). The modern Po Delta system: Lobe switching and asymmetric prodelta growth. Marine Geology, 222–223, 49–74. https://doi.org/10.1016/j.margeo.2005.06.039
    [Google Scholar]
  25. Cosgrove, G. I., Hodgson, D. M., Poyatos‐Moré, M., Mountney, N. P., & McCaffrey, W. D. (2018). Filter or conveyor? Establishing relationships between clinoform rollover trajectory, sedimentary process regime, and grain character within intrashelf clinothems, offshore New Jersey, USA. Journal of Sedimentary Research, 88(8), 917–941. https://doi.org/10.2110/jsr.2018.44
    [Google Scholar]
  26. Cosgrove, G. I., Poyatos‐Moré, M., Lee, D., Hodgson, D. M., McCaffrey, W. D., & Mountney, N. P. (2019). Intra‐clinothem variability in sedimentary texture and process regime recorded down slope profiles. Sedimentology, 1–26. https://doi.org/10.1111/sed.12648
    [Google Scholar]
  27. Dixon, J. F., Steel, R. J., & Olariu, C. (2012). River‐dominated, shelf‐edge deltas: Delivery of sand across the shelf break in the absence of slope incision. Sedimentology, 59(4), 1133–1157. https://doi.org/10.1111/j.1365-3091.2011.01298.x
    [Google Scholar]
  28. Dixon, J. F., Steel, R. J., & Olariu, C. (2013). A model for cutting and healing of deltaic mouth bars at the shelf edge: Mechanism for basin‐margin accretion. Journal of Sedimentary Research, 83(3), 284–299. https://doi.org/10.2110/jsr.2013.25
    [Google Scholar]
  29. Fagherazzi, S., Edmonds, D. A., Nardin, W., Leonardi, N., Canestrelli, A., Falcini, F., … Slingerland, R. L. (2015). Dynamics of river mouth deposits. Reviews of Geophysics, 53(3), 642–672. https://doi.org/10.1002/2014RG000451
    [Google Scholar]
  30. Falcieri, F. M., Benetazzo, A., Sclavo, M., Russo, A., & Carniel, S. (2014). Po River plume pattern variability investigated from model data. Continental Shelf Research, 87, 84–95. https://doi.org/10.1016/j.csr.2013.11.001
    [Google Scholar]
  31. Fanget, A. S., Berné, S., Jouet, G., Bassetti, M. A., Dennielou, B., Maillet, G. M., & Tondut, M. (2014). Impact of relative sea level and rapid climate changes on the architecture and lithofacies of the Holocene Rhone subaqueous delta (Western Mediterranean Sea). Sedimentary Geology, 305, 35–53. https://doi.org/10.1016/j.sedgeo.2014.02.004
    [Google Scholar]
  32. Friedrichs, C. T., & Scully, M. E. (2007). Modeling deposition by wave‐supported gravity flows on the Po River prodelta: From seasonal floods to prograding clinoforms. Continental Shelf Research, 27, 322–337. https://doi.org/10.1016/j.csr.2006.11.002
    [Google Scholar]
  33. Galloway, W. E. (1975). Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. In M. L.Broussard (Ed.), Deltas: models for exploration (pp. 87–98). Houston, TX: Houston Geological Society.
    [Google Scholar]
  34. Gamberi, F., Pellegrini, C., Dalla Valle, G., Scarponi, D., Bohacs, K., & Trincardi, F. (2019). Compound and hybrid clinothems of the last lowstand Mid‐Adriatic Deep: Processes, depositional environments, controls and implications for stratigraphic analysis of prograding systems. Basin Research. https://doi.org/10.1111/bre.12417
    [Google Scholar]
  35. Gerber, T. P., Pratson, L. F., Wolinsky, M. A., Steel, R., Mohr, J., Swenson, J. B., & Paola, C. (2008). Clinoform progradation by turbidity currents: Modeling and experiments. Journal of Sedimentary Research, 78(3), 220–238. https://doi.org/10.2110/jsr.2008.023
    [Google Scholar]
  36. Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., … Zarfl, C. (2019). Mapping the world's free‐flowing rivers. Nature, 569(7755), 215. https://doi.org/10.1038/s41586-019-1111-9
    [Google Scholar]
  37. Hampson, G. J., & Storms, J. E. (2003). Geomorphological and sequence stratigraphic variability in wave‐dominated, shoreface‐shelf parasequences. Sedimentology, 50(4), 667–701. https://doi.org/10.1046/j.1365-3091.2003.00570.x
    [Google Scholar]
  38. Helland‐Hansen, W., & Martinsen, O. J. (1996). Shoreline trajectories and sequences: Description of variable depositional‐dip scenarios. Journal of Sedimentary Research, 66(4), 670–688. https://doi.org/10.1306/d42683dd-2b26-11d7-8648000102c1865d
    [Google Scholar]
  39. Henriksen, S., Hampson, G. J., Helland‐Hansen, W., Johannessen, E. P., & Steel, R. J. (2009). Shelf edge and shoreline trajectories, a dynamic approach to stratigraphic analysis. Basin Research, 21(5), 445–453. https://doi.org/10.1111/j.1365-2117.2009.00432.x
    [Google Scholar]
  40. Johannessen, E. P., & Steel, R. J. (2005). Shelf‐margin clinoforms and prediction of deepwater sands. Basin Research, 17(4), 521–550. https://doi.org/10.1111/j.1365-2117.2005.00278.x
    [Google Scholar]
  41. Johnson, L. C. (1891). The Nita crevasse. Geological Society of America Bulletin, 2, 20–25.
    [Google Scholar]
  42. Jouet, G., Berné, S., Rabineau, M., Bassetti, M. A., Bernier, P., Dennielou, B., … Taviani, M. (2006). Shoreface migrations at the shelf edge and sea-level changes around the Last Glacial Maximum (Gulf of Lions, NW Mediterranean). Marine Geology, 234, 21–42. https://doi.org/10.1016/j.margeo.2006.09.012
    [Google Scholar]
  43. Kenyon, P. M., & Turcotte, D. L. (1985). Morphology of a delta prograding by bulk sediment transport. Geological Society of America Bulletin, 96(11), 1457–1465. https://doi.org/10.1130/0016-7606(1985)96<1457:MOADPB>2.0.CO;2
    [Google Scholar]
  44. Maselli, V., Pellegrini, C., Del Bianco, F., Mercorella, A., Nones, M., Crose, L., … Nittrouer, J. A. (2018). River morphodynamic evolution under dam‐induced backwater: An example from the Po River (Italy). Journal of Sedimentary Research, 88(10), 1190–1204. https://doi.org/10.2110/jsr.2018.61
    [Google Scholar]
  45. Maselli, V., & Trincardi, F. (2013). Man Made Deltas. Scientific Reports, 3, 1926. https://doi.org/10.1038/srep01926
    [Google Scholar]
  46. Milligan, T. G., Hill, P. S., & Law, B. A. (2007). Flocculation and the loss of sediment from the Po River plume. Continental Shelf Research, 27(3–4), 309–321. https://doi.org/10.1016/j.csr.2006.11.008
    [Google Scholar]
  47. Muto, T., & Steel, R. J. (2002). In defense of shelf‐edge delta development during falling and lowstand of relative sea level. The Journal of Geology, 110(4), 421–436. https://doi.org/10.1086/340631
    [Google Scholar]
  48. Nelson, B. W. (1970). Hydrography, sediment dispersal, and recent historical development of the Po River Delta, Italy. In: J. P.Morgan (Ed.), Deltaic Sedimentation, Modern and Ancient (pp. 152–184). Tulsa, OK: Society of Economic Paleontologists and Mineralogists. Special Publication 15.
    [Google Scholar]
  49. Ninfo, A., Ciavola, P., & Billi, P. (2018). The Po Delta is restarting progradation: Geomorphological evolution based on a 47‐years Earth Observation dataset. Scientific Reports, 8(1), 3457. https://doi.org/10.1038/s41598-018-21928-3
    [Google Scholar]
  50. Nittrouer, C. A., & DeMaster, D. J. (1996). The Amazon shelf setting: Tropical, energetic, and influenced by a large river. Continental Shelf Research, 16(5–6), 553–573. https://doi.org/10.1016/0278-4343(95)00069-0
    [Google Scholar]
  51. Nittrouer, C. A., Kuehl, S. A., Figueiredo, G., Allison, M. A., Sommerfield, C. K., Rine, J. M., … Silveira, O. M. (1996). The geological record preserved by Amazon shelf sedimentation. Continental Shelf Research, 16, 817–841. https://doi.org/10.1016/0278-4343(95)00053-4
    [Google Scholar]
  52. Olariu, C., Steel, R. J., & Petter, A. L. (2010). Delta‐front hyperpycnal bed geometry and implications for reservoir modeling: Cretaceous Panther Tongue delta, Book Cliffs, Utah. AAPG Bulletin, 94(6), 819–845. https://doi.org/10.1306/11020909072
    [Google Scholar]
  53. Orlić, M., Kuzmić, M., & Pasarić, Z. (1994). Response of the Adriatic Sea to the bora and sirocco forcing. Continental Shelf Research, 14(1), 91–116. https://doi.org/10.1016/0278-4343(94)90007-8
    [Google Scholar]
  54. Palinkas, C. M., Nittrouer, C. A., Wheatcroft, R. A., & Langone, L. (2005). The use of 7Be to identify event and seasonal sedimentation near the Po River delta, Adriatic Sea. Marine Geology, 222, 95–112. https://doi.org/10.1016/j.margeo.2005.06.011
    [Google Scholar]
  55. Palinkas, C. M., Ogston, A. S., & Nittrouer, C. A. (2010). Observations of event‐scale sedimentary dynamics with an instrumented bottom‐boundary‐layer tripod. Marine Geology, 274(1–4), 151–164. https://doi.org/10.1016/j.margeo.2010.03.012
    [Google Scholar]
  56. Patruno, S., Hampson, G. J., & Jackson, C. A. (2015). Quantitative characterisation of deltaic and subaqueous clinoforms. Earth‐Science Reviews, 142, 79–119. https://doi.org/10.1016/j.earscirev.2015.01.004
    [Google Scholar]
  57. Patruno, S., & Helland‐Hansen, W. (2018). Clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth‐Science Reviews, 185, 202–233. https://doi.org/10.1016/j.earscirev.2018.05.016
    [Google Scholar]
  58. Patruno, S., Scisciani, V., Helland‐Hansen, W., D'Intino, N., Reid, W., & Pellegrini, C. (2019). Upslope‐climbing shelf‐edge clinoforms and the stepwise evolution of the northern European glaciation (lower Pleistocene Eridanos Delta system, U.K. North Sea): When sediment supply overwhelms accommodation. Basin Research, https://doi.org/10.1111/bre.12379
    [Google Scholar]
  59. Pellegrini, C., Asioli, A., Bohacs, K. M., Drexler, T. M., Feldman, H. R., Sweet, M. L., … Trincardi, F. (2018). The late Pleistocene Po River lowstand wedge in the Adriatic Sea: Controls on architecture variability and sediment partitioning. Marine and Petroleum Geology, 96, 16–50. https://doi.org/10.1016/j.marpetgeo.2018.03.002
    [Google Scholar]
  60. Pellegrini, C., Maselli, V., Cattaneo, A., Piva, A., Ceregato, A., & Trincardi, F. (2015). Anatomy of a compound delta from the post‐glacial transgressive record in the Adriatic Sea. Marine Geology, 362, 43–59. https://doi.org/10.1016/j.margeo.2015.01.010
    [Google Scholar]
  61. Pellegrini, C., Maselli, V., Gamberi, F., Asioli, A., Bohacs, K. M., Drexler, T. M., & Trincardi, F. (2017). How to make a 350‐m‐thick lowstand systems tract in 17,000 years: The Late Pleistocene Po River (Italy) lowstand wedge. Geology, 45(4), 327–330. https://doi.org/10.1130/G38848.1
    [Google Scholar]
  62. Petter, A. L., & Steel, R. J. (2006). Hyperpycnal flow variability and slope organization on an Eocene shelf margin, Central Basin, Spitsbergen. AAPG Bulletin, 90(10), 1451–1472. https://doi.org/10.1306/04240605144
    [Google Scholar]
  63. Pirmez, C., Pratson, L. F., & Steckler, M. S. (1998). Clinoform development by advection‐diffusion of suspended sediment: Modeling and comparison to natural systems. Journal of Geophysical Research: Solid Earth, 103(B10), 24141–24157.
    [Google Scholar]
  64. Plink‐Björklund, P. (2019). Shallow‐water deltaic clinoforms and process regime. Basin Research. https://doi.org/10.1111/bre.12384
    [Google Scholar]
  65. Pomaro, A., Cavaleri, L., Papa, A., & Lionello, P. (2018). 39 years of directional wave recorded data and relative problems, climatological implications and use. Scientific Data, 5, 180139. https://doi.org/10.1038/sdata.2018.139
    [Google Scholar]
  66. Porębski, S. J., & Steel, R. J. (2006). Deltas and sea‐level change. Journal of Sedimentary Research, 76(3), 390–403. https://doi.org/10.2110/jsr.2006.034
    [Google Scholar]
  67. Poyatos‐Moré, M., Jones, G. D., Brunt, R. L., Hodgson, D. M., Wild, R. J., & Flint, S. S. (2016). Mud‐dominated basin‐margin progradation: Processes and implications. Journal of Sedimentary Research, 86(8), 863–878. https://doi.org/10.2110/jsr.2016.57
    [Google Scholar]
  68. Rabineau, M., Berné, S., Ledrezen, E., Lericolais, G., Marsset, T., & Rotunno, M. (1998). 3D architecture of lowstand and transgressive Quaternary sand bodies on the outer shelf of the Gulf of Lion, France. Marine and Petroleum Geology, 15(5), 439–452. https://doi.org/10.1016/S0264-8172(98)00015-4
    [Google Scholar]
  69. Rich, J. L. (1951). Three critical environments of deposition, and criteria for recognition of rocks deposited in each of them. Geological Society of America Bulletin, 62(1), 1–20. https://doi.org/10.1130/0016-7606(1951)62[1:TCEODA]2.0.CO;2
    [Google Scholar]
  70. Rodriguez, A. B., Hamilton, M. D., & Anderson, J. B. (2000). Facies and evolution of the modern Brazos Delta, Texas: Wave versus flood influence. Journal of Sedimentary Research, 70(2), 283–295. https://doi.org/10.1306/2DC40911-0E47-11D7-8643000102C1865D
    [Google Scholar]
  71. Rossi, V. M., Perillo, M. M., Steel, R. J., & Olariu, C. (2017). Quantifying mixed‐process variability in shallow‐marine depositional systems: What are sedimentary structures really telling us?Journal of Sedimentary Research, 87(10), 1060–1074. https://doi.org/10.2110/jsr.2017.49
    [Google Scholar]
  72. Rovere, M., Pellegrini, C., Chiggiato, J., Campiani, E., & Trincardi, F. (2019). Impact of dense bottom water on a continental shelf: An example from the SW Adriatic margin. Marine Geology, 408, 123–143. https://doi.org/10.1016/j.margeo.2018.12.002
    [Google Scholar]
  73. Shaw, J. B., Mohrig, D., & Wagner, R. W. (2016). Flow patterns and morphology of a prograding river delta. Journal of Geophysical Research: Earth Surface, 121(2), 372–391. https://doi.org/10.1002/2015JF003570
    [Google Scholar]
  74. Steckler, M. S., Mountain, G. S., Miller, K. G., & Christie‐Blick, N. (1999). Reconstruction of Tertiary progradation and clinoform development on the New Jersey passive margin by 2‐D backstripping. Marine Geology, 154(1–4), 399–420. https://doi.org/10.1016/S0025-3227(98)00126-1
    [Google Scholar]
  75. Steel, R. J., & Olsen, T. (2002). Clinoforms, clinoform trajectory and deepwater sands. In J. M.Armentrout, & N. C.Rosen (Eds.), Sequence stratigraphic models for exploration and production: Evolving methodology, emerging models and application histories (pp. 367–381). Proceeding of the 22nd Annual Bob F. Perkins Research Conference. Gulf Coast Section, Society of Economic Paleontologists and Mineralogists (GCSSEPM).
    [Google Scholar]
  76. Stefani, M., & Vincenzi, S. (2005). The interplay of eustasy, climate and human activity in the late Quaternary depositional evolution and sedimentary architecture of the Po Delta system. Marine Geology, 222, 19–48. https://doi.org/10.1016/j.margeo.2005.06.029
    [Google Scholar]
  77. Swenson, J. B., Paola, C., Pratson, L., Voller, V. R., & Murray, A. B. (2005). Fluvial and marine controls on combined subaerial and subaqueous delta progradation: Morphodynamic modeling of compound‐clinoform development. Journal of Geophysical Research: Earth Surface, 110(F2), 1–16. https://doi.org/10.1029/2004jf000265
    [Google Scholar]
  78. Syvitski, J. P. M., Kettner, A. J., Correggiari, A., & Nelson, B. W. (2005b). Distributary channels and their impact on sediment dispersal. Marine Geology, 246, 222–230. https://doi.org/10.1016/j.margeo.2005.06.030
    [Google Scholar]
  79. Syvitski, J. P., Vörösmarty, C. J., Kettner, A. J., & Green, P. (2005a). Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308(5720), 376–380. https://doi.org/10.1126/science.1109454
    [Google Scholar]
  80. Teatini, P., Tosi, L., & Strozzi, T. (2011). Quantitative evidence that compaction of Holocene sediments drives the present land subsidence of the Po Delta, Italy. Journal of Geophysical Research: Solid Earth, 116(B8), 1–10. https://doi.org/10.1029/2010jb008122
    [Google Scholar]
  81. Tesi, T., Langone, L., Goñi, M. A., Wheatcroft, R. A., Miserocchi, S., & Bertotti, L. (2012). Early diagenesis of recently deposited organic matter: A 9‐yr time‐series study of a flood deposit. Geochimica Et Cosmochimica Acta, 83, 19–36. https://doi.org/10.1016/j.gca.2011.12.026
    [Google Scholar]
  82. Tesi, T., Miserocchi, S., Goñi, M. A., Turchetto, M., Langone, L., De Lazzari, A., … Correggiari, A. (2011). Influence of distributary channels on sediment and organic matter supply in event‐dominated coastal margins: the Po prodelta as a study case. Biogeosciences, 8, 365–385. https://doi.org/10.5194/bg-8-365-2011
    [Google Scholar]
  83. Törnqvist, T. E., Bick, S. J., González, J. L., van der Borg, K., & de Jong, A. F. (2004). Tracking the sea‐level signature of the 8.2 ka cooling event: New constraints from the Mississippi Delta. Geophysical Research Letters, 31(23), 1–4. https://doi.org/10.1029/2004gl021429
    [Google Scholar]
  84. Traykovski, P., Wiberg, P. L., & Geyer, W. R. (2007). Observations and modeling of wave supported gravity flows on the Po prodelta and comparison to prior observations from the Eel shelf. Continental Shelf Research, 27, 375–399. https://doi.org/10.1016/j.csr.2005.07.008
    [Google Scholar]
  85. Trincardi, F., Cattaneo, A., & Correggiari, A. (2004). Mediterranean prodelta systems: Natural evolution and human impact investigated by EURODELTA. Oceanography, 17(4), 34–45. https://doi.org/10.5670/oceanog.2004.02
    [Google Scholar]
  86. Urgeles, R., Cattaneo, A., Puig, P., Liquete, C., De Mol, B., Amblàs, D., … Trincardi, F. (2011). A review of undulated sediment features on Mediterranean prodeltas: Distinguishing sediment transport structures from sediment deformation. Marine Geophysical Research, 32(1–2), 49–69. https://doi.org/10.1007/s11001-011-9125-1
    [Google Scholar]
  87. Visentini, M., & Borghi, G. (1938). Le spiagge padane. Ricerche Sulle Variazioni Delle Spiagge Italiane, CNR Report, Roma. vol. 7,137.
  88. Wright, L. D., Wiseman, W. J., Bornhold, B. D., Prior, D. B., Suhayda, J. N., Keller, G. H., … Fan, Y. B. (1988). Marine dispersal and deposition of Yellow River silts by gravity‐driven underflows. Nature, 332, 629–632. https://doi.org/10.1038/332629a0
    [Google Scholar]
  89. Yang, S. L., Milliman, J. D., Li, P., & Xu, K. (2011). 50,000 dams later: Erosion of the Yangtze River and its delta. Global and Planetary Change, 75(1–2), 14–20. https://doi.org/10.1016/j.gloplacha.2010.09.006
    [Google Scholar]
  90. Zhang, J., Steel, R., & Ambrose, W. (2016). Greenhouse shoreline migration: Wilcox deltas. AAPG Bulletin, 100(12), 1803–1831. https://doi.org/10.1306/04151615190
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12426
Loading
/content/journals/10.1111/bre.12426
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): modelling; sea‐level; sediment flux; sedimentology; sequence stratigraphy; stratigraphy

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error