1887
Volume 32, Issue 6
  • E-ISSN: 1365-2117

Abstract

[

Two types of MTCs (shelf‐edge/upper slope‐derived and diapir‐derived) are identified based on their geometry, volume and source area in a minibasin of the Northern Gulf of Mexico. Shelf‐edge/upper slope‐derived MTCs are relatively large and sourced from the collapse of coeval shelf‐edge deltas, or supplied by reworked upper slope channels and lobes. They are preferentially deposited during the earlier phase of minibasin development. Diapir‐derived MTCs tend to be smaller than shelf‐edge/upper slope‐derived MTCs, they are sourced from the collapse of the salt diapir flanks and deposited during the latest phase of minibasin development.

, Abstract

Mass‐transport complexes (MTCs) dominate the stratigraphic record of many salt‐influenced sedimentary basins. Commonly in such settings, halokinesis is invoked as a primary trigger for MTC emplacement, although the link between specific phases of salt movement, and related minibasin dynamics, remains unclear. Here, we use high‐quality 3D seismic reflection and well data to constrain the composition, geometry and distribution (in time and space) of six MTCs preserved in a salt‐confined, supra‐canopy minibasin in the northern Gulf of Mexico, and to assess how their emplacement relate to regional and local controls. We define three main tectono‐sedimentary phases in the development of the minibasin: (a) initial minibasin subsidence and passive diapirism, during which time deposition was dominated by relatively large‐volume MTCs (c. 25 km3) derived from the shelf‐edge or upper slope; (b) minibasin margin uplift and steepening, during which time small‐volume MTCs (c. 20 km3) derived from the shelf‐edge or upper slope were emplaced; and (c) active diapirism, during which time very small volume MTCs (c. 1 km3) were emplaced, locally derived from the diapir flanks or roofs. We present a generic model that emphasizes the dynamic nature of minibasin evolution, and how MTC emplacement relates to halokinetic sequence development. Although based on a single data‐rich case study, our model may be applicable to other MTC‐rich, salt‐influenced sedimentary basins.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12429
2020-11-22
2024-04-26
Loading full text...

Full text loading...

References

  1. Alves, T. M. (2015). Submarine slide blocks and associated soft‐sediment deformation in deep‐water basins: A review. Marine and Petroleum Geology, 67, 262–285. https://doi.org/10.1016/j.marpetgeo.2015.05.010
    [Google Scholar]
  2. Beaubouef, R., Abreu, V., Van Wagoner, J., Roberts, H., Rosen, N., Fillon, R., & Anderson, J. (2003). Basin 4 of the Brazos–Trinity slope system, western Gulf of Mexico: The terminal portion of a late Pleistocene lowstand systems tract. Shelf margin deltas and linked down slope petroleum systems: Global significance and future exploration potential. Proceedings of the 23rd Annual Research Conference, Gulf Coast Section SEPM Foundation, pp. 45–66.
    [Google Scholar]
  3. Beaubouef, R., & Friedmann, S. (2000). High resolution seismic/sequence stratigraphic framework for the evolution of Pleistocene intra slope basins, western Gulf of Mexico: Depositional models and reservoir analogs. Deep‐water reservoirs of the world: Gulf Coast Section SEPM 20th Annual Research Conference, pp. 40–60.
    [Google Scholar]
  4. Bentley, S.Sr, Blum, M., Maloney, J., Pond, L., & Paulsell, R. (2016). The Mississippi River source‐to‐sink system: Perspectives on tectonic, climatic, and anthropogenic influences, Miocene to Anthropocene. Earth‐Science Reviews, 153, 139–174. https://doi.org/10.1016/j.earscirev.2015.11.001
    [Google Scholar]
  5. Booth, J. R., Dean, M. C., DuVernay, A. E.III, & Styzen, M. J. (2003). Paleo‐bathymetric controls on the stratigraphic architecture and reservoir development of confined fans in the Auger Basin: Central Gulf of Mexico slope. Marine and Petroleum Geology, 20, 563–586. https://doi.org/10.1016/j.marpetgeo.2003.03.008
    [Google Scholar]
  6. Booth, J., DuVernay, A.III, Pfeiffer, D., & Styzen, M. (2000). Sequence stratigraphic framework, depositional models, and stacking patterns of ponded and slope fan systems in the Auger Basin: Central Gulf of Mexico slope. Perkins Research Conference, pp. 82–103.
    [Google Scholar]
  7. Boswell, R., Collett, T. S., Frye, M., Shedd, W., McConnell, D. R., & Shelander, D. (2012). Subsurface gas hydrates in the northern Gulf of Mexico. Marine and Petroleum Geology, 34, 4–30. https://doi.org/10.1016/j.marpetgeo.2011.10.003
    [Google Scholar]
  8. Brown, A. R. (2011). Interpretation of three‐dimensional seismic data, Society of Exploration Geophysicists and American Association of Petroleum Geologists.
    [Google Scholar]
  9. Bryn, P., Berg, K., Forsberg, C. F., Solheim, A., & Kvalstad, T. J. (2005). Explaining the Storegga slide. Marine and Petroleum Geology, 22, 11–19.
    [Google Scholar]
  10. Bull, S., Cartwright, J., & Huuse, M. (2009a). A review of kinematic indicators from mass‐transport complexes using 3D seismic data. Marine and Petroleum Geology, 26, 1132–1151. https://doi.org/10.1016/j.marpetgeo.2008.09.011
    [Google Scholar]
  11. Bull, S., Cartwright, J., & Huuse, M. (2009b). A subsurface evacuation model for submarine slope failure. Basin Research, 21, 433–443. https://doi.org/10.1111/j.1365-2117.2008.00390.x
    [Google Scholar]
  12. Byrkjeland, U., Bungum, H., & Eldholm, O. (2000). Seismotectonics of the Norwegian continental margin. Journal of Geophysical Research: Solid Earth, 105, 6221–6236. https://doi.org/10.1029/1999JB900275
    [Google Scholar]
  13. Canals, M., Lastras, G., Urgeles, R., Casamor, J. L., Mienert, J., Cattaneo, A., … Bryn, P. (2004). Slope failure dynamics and impacts from seafloor and shallow sub‐seafloor geophysical data: Case studies from the COSTA project. Marine Geology, 213, 9–72. https://doi.org/10.1016/j.margeo.2004.10.001
    [Google Scholar]
  14. Cashman, K., & Popenoe, P. (1985). Slumping and shallow faulting related to the presence of salt on the continental slope and rise off North Carolina. Marine and Petroleum Geology, 2, 260–271. https://doi.org/10.1016/0264-8172(85)90016-9
    [Google Scholar]
  15. Catuneanu, O. (2002). Sequence stratigraphy of clastic systems: Concepts, merits, and pitfalls. Journal of African Earth Sciences, 35, 1–43. https://doi.org/10.1016/S0899-5362(02)00004-0
    [Google Scholar]
  16. Catuneanu, O., Galloway, W. E., Kendall, C. G. S. C., Miall, A. D., Posamentier, H. W., Strasser, A., & Tucker, M. E. (2011). Sequence stratigraphy: Methodology and nomenclature. Newsletters on Stratigraphy, 44(3), 173–245. https://doi.org/10.1127/0078-0421/2011/0011
    [Google Scholar]
  17. Chopra, S., & Marfurt, K. J. (2007). Seismic attributes for prospect identification and reservoir characterization, Society of Exploration Geophysicists and European Association of Geoscientists and Engineers.
    [Google Scholar]
  18. Clare, M. A., Clarke, J. H., Talling, P. J., Cartigny, M. J., & Pratomo, D. (2016). Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord‐head delta. Earth and Planetary Science Letters, 450, 208–220. https://doi.org/10.1016/j.epsl.2016.06.021
    [Google Scholar]
  19. Clare, M. A., Talling, P. J., Challenor, P., Malgesini, G., & Hunt, J. (2014). Distal turbidites reveal a common distribution for large (>0.1 km3) submarine landslide recurrence. Geology, 42, 263–266.
    [Google Scholar]
  20. Coussens, M., Wall‐Palmer, D., Talling, P. J., Watt, S. F., Cassidy, M., Jutzeler, M., … Gernon, T. M. (2016). The relationship between eruptive activity, flank collapse, and sea level at volcanic islands: A long‐term (>1 Ma) record offshore Montserrat, Lesser Antilles. Geochemistry, Geophysics, Geosystems, 17, 2591–2611.
    [Google Scholar]
  21. Diegel, F. A., Karlo, J., Schuster, D., Shoup, R., & Tauvers, P. (1995). Cenozoic structural evolution and tectono‐stratigraphic framework of the northern Gulf Coast continental margin.
    [Google Scholar]
  22. Dott, R.Jr (1963). Dynamics of subaqueous gravity depositional processes. AAPG Bulletin, 47, 104–128. https://doi.org/10.1306/BC743973-16BE-11D7-8645000102C1865D
    [Google Scholar]
  23. Doughty‐Jones, G., Lonergan, L., Mayall, M., & Dee, S. (2019). The role of structural growth in controlling the facies and distribution of mass transport deposits in a deep‐water salt minibasin. Marine and Petroleum Geology, 104, 106–124. https://doi.org/10.1016/j.marpetgeo.2019.03.015
    [Google Scholar]
  24. Dugan, B., & Flemings, P. B. (2000). Overpressure and fluid flow in the New Jersey continental slope: Implications for slope failure and cold seeps. Science, 289, 288–291. https://doi.org/10.1126/science.289.5477.288
    [Google Scholar]
  25. Franco, S. I., Canet, C., Iglesias, A., & Valdés‐González, C. (2013). Seismic activity in the Gulf of Mexico. A preliminary analysis. Boletín De La Sociedad Geológica Mexicana, 65(3), 447–455. https://doi.org/10.18268/BSGM2013v65n3a2
    [Google Scholar]
  26. Frey Martinez, J., Cartwright, J., & Hall, B. (2005). 3D seismic interpretation of slump complexes: Examples from the continental margin of Israel. Basin Research, 17, 83–108. https://doi.org/10.1111/j.1365-2117.2005.00255.x
    [Google Scholar]
  27. Frohlich, C. (1982). Seismicity of the central Gulf of Mexico. Geology, 10, 103–106. https://doi.org/10.1130/0091-7613(1982)10<103:SOTCGO>2.0.CO;2
    [Google Scholar]
  28. Galloway, W. E. (2001). Cenozoic evolution of sediment accumulation in deltaic and shore‐zone depositional systems, northern Gulf of Mexico Basin. Marine and Petroleum Geology, 18, 1031–1040. https://doi.org/10.1016/S0264-8172(01)00045-9
    [Google Scholar]
  29. Galloway, W. E., Ganey‐Curry, P. E., Li, X., & Buffler, R. T. (2000). Cenozoic depositional history of the Gulf of Mexico basin. AAPG Bulletin, 84, 1743–1774. https://doi.org/10.1306/8626C37F-173B-11D7-8645000102C1865D
    [Google Scholar]
  30. Galloway, W. E., Whiteaker, T. L., & Ganey‐Curry, P. (2011). History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin. Geosphere, 7, 938–973. https://doi.org/10.1130/GES00647.1
    [Google Scholar]
  31. Gamboa, D., & Alves, T. M. (2016). Bi‐modal deformation styles in confined mass‐transport deposits: Examples from a salt minibasin in SE Brazil. Marine Geology, 379, 176–193. https://doi.org/10.1016/j.margeo.2016.06.003
    [Google Scholar]
  32. Gamboa, D., Alves, T., & Cartwright, J. (2011). Distribution and characterization of failed (mega) blocks along salt ridges, southeast Brazil: Implications for vertical fluid flow on continental margins. Journal of Geophysical Research, 116(B8), 1–20. https://doi.org/10.1029/2011JB008357
    [Google Scholar]
  33. Gangopadhyay, A., & Sen, M. K. (2008). A possible mechanism for the spatial distribution of seismicity in northern Gulf of Mexico. Geophysical Journal International, 175, 1141–1153. https://doi.org/10.1111/j.1365-246X.2008.03952.x
    [Google Scholar]
  34. Gee, M., Masson, D., Watts, A., & Allen, P. (1999). The Saharan debris£ ow: An insight into the mechanics of long runout submarine debris£ ows. Sedimentology, 46, 317–335.
    [Google Scholar]
  35. Giles, K. A., & Lawton, T. F. (2002). Halokinetic sequence stratigraphy adjacent to the El Papalote diapir, northeastern Mexico. AAPG Bulletin, 86, 823–840. https://doi.org/10.1306/61EEDBAC-173E-11D7-8645000102C1865D
    [Google Scholar]
  36. Giles, K. A., & Rowan, M. G. (2012). Concepts in halokinetic‐sequence deformation and stratigraphy. Geological Society, London, Special Publications, 363, 7–31. https://doi.org/10.1144/SP363.2
    [Google Scholar]
  37. Grozic, J. L. H. (2010). Interplay between gas hydrates and submarine slope failure. In D. C.Mosher, R. C.Shipp, L.Moscardelli, J. D.Chaytor, C. D. P.Baxter, H. J.Lee & R.Urgeles (Eds.), Submarine mass movements and their consequences. Advances in natural and technological hazards research (vol. 28). Dordrecht: Springer. https://doi.org/10.1007/978-90-481-3071-9_2
    [Google Scholar]
  38. Hampton, M. A., Lee, H. J., & Locat, J. (1996). Submarine landslides. Reviews of Geophysics, 34, 33–59. https://doi.org/10.1029/95RG03287
    [Google Scholar]
  39. Harbitz, C. B., Løvholt, F., & Bungum, H. (2014). Submarine landslide tsunamis: How extreme and how likely?Natural Hazards, 72, 1341–1374. https://doi.org/10.1007/s11069-013-0681-3
    [Google Scholar]
  40. Hearon, T. E., Rowan, M. G., Giles, K. A., & Hart, W. H. (2014). Halokinetic deformation adjacent to the deepwater Auger diapir, Garden Banks 470, northern Gulf of Mexico: Testing the applicability of an outcrop‐based model using subsurface data. Interpretation, 2, SM57–SM76. https://doi.org/10.1190/INT-2014-0053.1
    [Google Scholar]
  41. Hill, A., Southgate, J., Fish, P., & Thomas, S. (2011). Deepwater Angola part I: Geohazard mitigation. In S.Gourvenec & D.White (Eds.), Frontiers in Offshore Geotechnics II, (209–214). London: CRC Press. https://doi.org/10.1201/b10132
    [Google Scholar]
  42. Hjelstuen, B. O., Eldholm, O., & Faleide, J. I. (2007). Recurrent Pleistocene mega‐failures on the SW Barents Sea margin. Earth and Planetary Science Letters, 258, 605–618. https://doi.org/10.1016/j.epsl.2007.04.025
    [Google Scholar]
  43. Hudec, M. R., Jackson, M. P., & Schultz‐Ela, D. D. (2009). The paradox of minibasin subsidence into salt: Clues to the evolution of crustal basins. Geological Society of America Bulletin, 121, 201–221.
    [Google Scholar]
  44. Hühnerbach, V., & Masson, D. (2004). Landslides in the North Atlantic and its adjacent seas: An analysis of their morphology, setting and behaviour. Marine Geology, 213, 343–362. https://doi.org/10.1016/j.margeo.2004.10.013
    [Google Scholar]
  45. Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., … Shackleton, N. J. (1984). The orbital theory of Pleistocene climate: support from a revised chronology of the marine d18O record.
    [Google Scholar]
  46. Jackson, C.‐A.‐L., Duffy, O. B., Fernandez, N., Dooley, T., Hudec, M., Jackson, M., & Burg, G. (2019). The stratigraphic record of minibasin subsidence.
    [Google Scholar]
  47. Kioka, A., Schwestermann, T., Moernaut, J., Ikehara, K., Kanamatsu, T., McHugh, C. M., … Strasser, M. (2019). Megathrust earthquake drives drastic organic carbon supply to the hadal trench. Scientific Reports, 9, 1553. https://doi.org/10.1038/s41598-019-38834-x
    [Google Scholar]
  48. Kneller, E. A., & Johnson, C. A. (2011). Plate kinematics of the Gulf of Mexico based on integrated observations from the Central and South Atlantic.
    [Google Scholar]
  49. Kvalstad, T. J., Andresen, L., Forsberg, C. F., Berg, K., Bryn, P., & Wangen, M. (2005). The Storegga slide: Evaluation of triggering sources and slide mechanics. Marine and Petroleum Geology, 22, 245–256.
    [Google Scholar]
  50. Lastras, G., De Blasio, F. V., Canals, M., & Elverhøi, A. (2005). Conceptual and numerical modeling of the BIG'95 debris flow, western Mediterranean Sea. Journal of Sedimentary Research, 75, 784–797. https://doi.org/10.2110/jsr.2005.063
    [Google Scholar]
  51. Li, W., Alves, T. M., Wu, S., Völker, D., Zhao, F., Mi, L., & Kopf, A. (2015). Recurrent slope failure and submarine channel incision as key factors controlling reservoir potential in the South China Sea (Qiongdongnan Basin, South Hainan Island). Marine and Petroleum Geology, 64, 17–30. https://doi.org/10.1016/j.marpetgeo.2015.02.043
    [Google Scholar]
  52. Locat, J., & Lee, H. J. (2002). Submarine landslides: Advances and challenges. Canadian Geotechnical Journal, 39, 193–212. https://doi.org/10.1139/t01-089
    [Google Scholar]
  53. MacDonald, I., Guinasso, N.Jr, Sassen, R., Brooks, J., Lee, L., & Scott, K. (1994). Gas hydrate that breaches the sea floor on the continental slope of the Gulf of Mexico. Geology, 22, 699–702. https://doi.org/10.1130/0091-7613(1994)022<0699:GHTBTS>2.3.CO;2
    [Google Scholar]
  54. Madof, A. S., Christie‐Blick, N., & Anders, M. H. (2009). Stratigraphic controls on a salt‐withdrawal intraslope minibasin, north‐central Green Canyon, Gulf of Mexico: Implications for misinterpreting sea level change. AAPG Bulletin, 93(4), 535–561. https://doi.org/10.1306/12220808082
    [Google Scholar]
  55. Madof, A. S., Christie‐Blick, N., Anders, M. H., & Febo, L. A. (2017). Unreciprocated sedimentation along a mud‐dominated continental margin, Gulf of Mexico, USA: Implications for sequence stratigraphy in muddy settings devoid of depositional sequences. Marine and Petroleum Geology, 80, 492–516. https://doi.org/10.1016/j.marpetgeo.2016.12.022
    [Google Scholar]
  56. Mallarino, G., Beaubouef, R. T., Droxler, A. W., Abreu, V., & Labeyrie, L. (2006). Sea level influence on the nature and timing of a minibasin sedimentary fill (northwestern slope of the Gulf of Mexico). AAPG Bulletin, 90(7), 1089–1119. https://doi.org/10.1306/02210605058
    [Google Scholar]
  57. Maslin, M., Mikkelsen, N., Vilela, C., & Haq, B. (1998). Sea‐level–and gas‐hydrate–controlled catastrophic sediment failures of the Amazon Fan. Geology, 26, 1107–1110. https://doi.org/10.1130/0091-7613(1998)026<1107:SLAGHC>2.3.CO;2
    [Google Scholar]
  58. Masson, D., Harbitz, C., Wynn, R., Pedersen, G., & Løvholt, F. (2006). Submarine landslides: Processes, triggers and hazard prediction. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1845), 2009–2039. https://doi.org/10.1098/rsta.2006.1810
    [Google Scholar]
  59. Masson, D., Wynn, R., & Talling, P. (2010). Large landslides on passive continental margins: Processes, hypotheses and outstanding questions. In D. C.Mosher, R. C.Shipp, L.Moscardelli, J. D.Chaytor, C. D. P.Baxter, H. J.Lee & R.Urgeles (Eds.), Submarine mass movements and their consequences. Advances in natural and technological hazards research (vol. 28, pp. 153–165). Dordrecht: Springer. https://doi.org/10.1007/978-90-481-3071-9_13
    [Google Scholar]
  60. McHugh, C. M., Damuth, J. E., & Mountain, G. S. (2002). Cenozoic mass‐transport facies and their correlation with relative sea‐level change, New Jersey continental margin. Marine Geology, 184(3–4), 295–334. https://doi.org/10.1016/S0025-3227(01)00240-7
    [Google Scholar]
  61. Mienert, J., Vanneste, M., Bünz, S., Andreassen, K., Haflidason, H., & Sejrup, H. P. (2005). Ocean warming and gas hydrate stability on the mid‐Norwegian margin at the Storegga Slide. Marine and Petroleum Geology, 22, 233–244.
    [Google Scholar]
  62. Milkov, A. V., & Sassen, R. (2001). Estimate of gas hydrate resource, northwestern Gulf of Mexico continental slope. Marine Geology, 179, 71–83. https://doi.org/10.1016/S0025-3227(01)00192-X
    [Google Scholar]
  63. Molnar, P. (2004). Late Cenozoic increase in accumulation rates of terrestrial sediment: How might climate change have affected erosion rates?Annual Review of Earth and Planetary Sciences, 32(1), 67–89. https://doi.org/10.1146/annurev.earth.32.091003.143456
    [Google Scholar]
  64. Moscardelli, L., & Wood, L. (2008). New classification system for mass transport complexes in offshore Trinidad. Basin Research, 20(1), 73–98. https://doi.org/10.1111/j.1365-2117.2007.00340.x
    [Google Scholar]
  65. Moscardelli, L., Wood, L., & Mann, P. (2006). Mass‐transport complexes and associated processes in the offshore area of Trinidad and Venezuela. AAPG Bulletin, 90(7), 1059–1088. https://doi.org/10.1306/02210605052
    [Google Scholar]
  66. Nardin, T. R., Hein, F., Gorsline, D. S., & Edwards, B. (1979). A review of mass movement processes sediment and acoustic characteristics, and contrasts in slope and base‐of‐slope systems versus canyon‐fan‐basin floor systems.
    [Google Scholar]
  67. Nisbet, E. G., & Piper, D. J. (1998). Giant submarine landslides. Nature, 392, 329–330. https://doi.org/10.1038/32765
    [Google Scholar]
  68. O'loughlin, K. F., Lander, J. F. (2003). Caribbean tsunamis: A 500‐year history from 1498‐1998 (vol. 20). Berlin, Germany: Springer Science & Business Media. https://doi.org/10.1007/978-94-017-0321-5
    [Google Scholar]
  69. Omosanya, K. O., & Alves, T. M. (2013). A 3‐dimensional seismic method to assess the provenance of Mass‐Transport Deposits (MTDs) on salt‐rich continental slopes (Espírito Santo Basin, SE Brazil). Marine and Petroleum Geology, 44, 223–239. https://doi.org/10.1016/j.marpetgeo.2013.02.006
    [Google Scholar]
  70. Ortiz‐Karpf, A., Hodgson, D. M., Jackson, C. A. L., & McCaffrey, W. D. (2016). Mass‐transport complexes as markers of deep‐water fold‐and‐thrust belt evolution: insights from the southern Magdalena fan, offshore Colombia. Basin Research, 30, 65–88. https://doi.org/10.1111/bre.12208.
    [Google Scholar]
  71. Owen, M., Day, S., & Maslin, M. (2007). Late Pleistocene submarine mass movements: Occurrence and causes. Quaternary Science Reviews, 26, 958–978. https://doi.org/10.1016/j.quascirev.2006.12.011
    [Google Scholar]
  72. Perov, G., & Bhattacharya, J. P. (2011). Pleistocene shelf‐margin delta: Intradeltaic deformation and sediment bypass, northern Gulf of Mexico. AAPG Bulletin, 95, 1617–1641. https://doi.org/10.1306/01271109141
    [Google Scholar]
  73. Pindell, J., & Dewey, J. F. (1982). Permo‐Triassic reconstruction of western Pangea and the evolution of the Gulf of Mexico/Caribbean region. Tectonics, 1, 179–211.
    [Google Scholar]
  74. Pope, E., Talling, P., Urlaub, M., Hunt, J., Clare, M., & Challenor, P. (2015). Are large submarine landslides temporally random or do uncertainties in available age constraints make it impossible to tell?Marine Geology, 369, 19–33. https://doi.org/10.1016/j.margeo.2015.07.002
    [Google Scholar]
  75. Posamentier, H., Jervey, M., & Vail, P. (1988). Eustatic controls on clastic deposition I—conceptual framework.
    [Google Scholar]
  76. Posamentier, H. W., & Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. Journal of Sedimentary Research, 73, 367–388. https://doi.org/10.1306/111302730367
    [Google Scholar]
  77. Posamentier, H., & Walker, R. (2006). Deep‐water turbidites and submarine fans. Facies Models Revisited, 84, 399–520.
    [Google Scholar]
  78. Prather, B. (2000). Calibration and visualization of depositional process models for above‐grade slopes: A case study from the Gulf of Mexico. Marine and Petroleum Geology, 17, 619–638. https://doi.org/10.1016/S0264-8172(00)00015-5
    [Google Scholar]
  79. Prather, B. E., Booth, J. R., Steffens, G. S., & Craig, P. A. (1998). Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep‐water Gulf of Mexico. AAPG Bulletin, 82, 701–728. https://doi.org/10.1306/1D9BC5D9-172D-11D7-8645000102C1865D
    [Google Scholar]
  80. Prather, B. E., Pirmez, C., Winker, C. D., Deptuck, M., & Mohrig, D. (2012). Stratigraphy of linked intraslope basins: Brazos‐Trinity system western Gulf of Mexico. Application of the principles of seismic geomorphology to continental‐slope and base‐of‐slope systems: Case studies from seafloor and near‐seafloor analogues. SEPM, Special Publication, 99, 83–109.
    [Google Scholar]
  81. Rittenour, T. M., Blum, M. D., & Goble, R. J. (2007). Fluvial evolution of the lower Mississippi River valley during the last 100 k.y. glacial cycle: Response to glaciation and sea‐level change. Geological Society of America Bulletin, 119(5–6), 586–608. https://doi.org/10.1130/B25934.1
    [Google Scholar]
  82. Roesink, J. G., Weimer, P., & Bouroullec, R. (2004). Sequence stratigraphy of Miocene to Pleistocene sediments of east‐central Mississippi canyon, northern Gulf of Mexico.
    [Google Scholar]
  83. Rowan, M. G., Lawton, T. F., Giles, K. A., & Ratliff, R. A. (2003). Near‐salt deformation in La Popa basin, Mexico, and the northern Gulf of Mexico: A general model for passive diapirism. AAPG Bulletin, 87(5), 733–756. https://doi.org/10.1306/01150302012
    [Google Scholar]
  84. Rowan, M. G., & Weimer, P. (1998). Salt‐sediment interaction, northern Green Canyon and Ewing bank (offshore Louisiana), northern Gulf of Mexico. AAPG Bulletin, 82, 1055–1082.
    [Google Scholar]
  85. Salazar, J. A., Knapp, J. H., Knapp, C. C., & Pyles, D. R. (2014). Salt tectonics and Pliocene stratigraphic framework at MC‐118, Gulf of Mexico: An integrated approach with application to deep‐water confined structures in salt basins. Marine and Petroleum Geology, 50, 51–67. https://doi.org/10.1016/j.marpetgeo.2013.11.003
    [Google Scholar]
  86. Salvador, A. (1987). Late Triassic‐Jurassic paleogeography and origin of Gulf of Mexico basin. AAPG Bulletin, 71, 419–451. https://doi.org/10.1306/94886EC5-1704-11D7-8645000102C1865D
    [Google Scholar]
  87. Sawyer, D. E., Flemings, P. B., Dugan, B., & Germaine, J. T. (2009). Retrogressive failures recorded in mass transport deposits in the Ursa Basin, Northern Gulf of Mexico. Journal of Geophysical Research, 114(B10), https://doi.org/10.1029/2008JB006159
    [Google Scholar]
  88. Sawyer, D. E., Flemings, P. B., Shipp, R. C., & Winker, C. D. (2007). Seismic geomorphology, lithology, and evolution of the late Pleistocene Mars‐Ursa turbidite region, Mississippi Canyon area, northern Gulf of Mexico. AAPG Bulletin, 91(2), 215–234. https://doi.org/10.1306/08290605190
    [Google Scholar]
  89. Shipp, R. C. (2004). Physical characteristics and impact of mass transport complexes on deepwater jetted conductors and suction anchor piles.
    [Google Scholar]
  90. Siesser, W. G. (1998). Calcareous Nannofossil Genus Scyphosphaera: Structure, taxonomy, biostratigraphy, and phylogeny. Micropaleontology, 44(4), 351–384. https://doi.org/10.2307/1486040
    [Google Scholar]
  91. Sincavage, R., Weimer, P., & Bouroullec, R. (2004). Sequence stratigraphy of upper‐miocene to pleistocene sediments of southwestern Mississippi Canyon and Northwestern Atwater Valley, Northern Gulf of Mexico.
    [Google Scholar]
  92. Smith, D., Harrison, S., & Jordan, J. T. (2013). Sea level rise and submarine mass failures on open continental margins. Quaternary Science Reviews, 82, 93–103. https://doi.org/10.1016/j.quascirev.2013.10.012
    [Google Scholar]
  93. Strout, J. M., & Tjelta, T. I. (2005). In situ pore pressures: What is their significance and how can they be reliably measured?Marine and Petroleum Geology, 22, 275–285.
    [Google Scholar]
  94. Sydow, J., Finneran, J., Bowman, A. P., Roberts, H., Rosen, N., Fillon, R., & Anderson, J. (2003). Stacked shelf‐edge delta reservoirs of the Columbus Basin, Trinidad, West Indies. In H. H.Roberts, N. C.Rosen, R. H.Fillon & J. B.Anderson (Eds.), Shelf Margin Deltas and Linked Down Slope Petroleum Systems–Global Significance and Future Exploration Potential (vol. 23, pp. 441–465). Tuisa, OKLA: SEPM Society for Sedimentary Geology. https://doi.org/10.5724/gcs.03.23
    [Google Scholar]
  95. Sylvester, Z., Cantelli, A., & Pirmez, C. (2015). Stratigraphic evolution of intraslope minibasins: Insights from surface‐based model. AAPG Bulletin, 99, 1099–1129. https://doi.org/10.1306/01081514082
    [Google Scholar]
  96. Talling, P. J., Amy, L. A., & Wynn, R. B. (2007). New insight into the evolution of large‐volume turbidity currents: comparison of turbidite shape and previous modelling results. Sedimentology, 54(4), 737–769. https://doi.org/10.1111/j.1365-3091.2007.00858.x
    [Google Scholar]
  97. Talling, P., Clare, M., Urlaub, M., Pope, E. D., Hunt, J., & Watt, S. (2014). Large submarine landslides on continental slopes: Geohazards, methane release, and climate change. Oceanography, 27, 32–45. https://doi.org/10.5670/oceanog.2014.38
    [Google Scholar]
  98. Tripsanas, E. K., Bryant, W. R., & Phaneuf, B. A. (2004). Slope‐instability processes caused by salt movements in a complex deep‐water environment, Bryant Canyon area, northwest Gulf of Mexico. AAPG Bulletin, 88(6), 801–823. https://doi.org/10.1306/01260403106
    [Google Scholar]
  99. Twichell, D. C., Chaytor, J. D., Uri, S., & Buczkowski, B. (2009). Morphology of late Quaternary submarine landslides along the US Atlantic continental margin. Marine Geology, 264, 4–15. https://doi.org/10.1016/j.margeo.2009.01.009
    [Google Scholar]
  100. Urlaub, M., Talling, P. J., & Masson, D. G. (2013). Timing and frequency of large submarine landslides: Implications for understanding triggers and future geohazard. Quaternary Science Reviews, 72, 63–82. https://doi.org/10.1016/j.quascirev.2013.04.020
    [Google Scholar]
  101. Vail, P. R., Mitchum, R.Jr, & Thompson, S.III. (1977). Seismic stratigraphy and global changes of sea level: Part 4. Global cycles of relative changes of sea level: Section 2. Application of seismic reflection configuration to stratigraphic interpretation.
    [Google Scholar]
  102. Waterman, A., Weber, R., Brace, B., Edmunds, J., Fillon, R., George, R., … Reilly, T. (2015). Biostratigraphic chart—Gulf Basin. USA: Quaternary and Neogene.
    [Google Scholar]
  103. Weaver, P. P., Wynn, R. B., Kenyon, N. H., & Evans, J. (2000). Continental margin sedimentation, with special reference to the north‐east Atlantic margin. Sedimentology, 47, 239–256. https://doi.org/10.1046/j.1365-3091.2000.0470s1239.x
    [Google Scholar]
  104. Weimer, P., & Shipp, C. (2004). Mass transport complex: Musing on past uses and suggestions for future directions. Offshore Technology Conference.
    [Google Scholar]
  105. Winker, C. D., & Booth, J. R. (2000). Sedimentary dynamics of the salt‐dominated continental slope, Gulf of Mexico: Integration of observations from the seafloor, near‐surface, and deep subsurface. GCSSEPM Foundation 20th Annual Research Conference, Deep‐Water Reservoirs of the World, p. 1059‐1086.
    [Google Scholar]
  106. Witrock, R., Friedmann, A., Galluzzo, J., Nixon, L., Post, P., & Ross, K. (2003). Biostratigraphic chart of the gulf of Mexico offshore region, Jurassic to Quaternary, US Department of the interior, Minerals Management Service, New Orleans.
    [Google Scholar]
  107. Wu, N., Jackson, C. A., Johnson, H., & Hodgson, D. M. (2019). Lithological, petrophysical and seal properties of mass‐transport complexes (MTCs), northern Gulf of Mexico. EarthArXiv. February, v. 19.
    [Google Scholar]
  108. Yeakley, J. A., Shakoor, A., & Johnson, W. (2019). Influence of salt tectonics on fault displacements and submarine slope failures from Algeria to Sardinia. Environmental and Engineering Geoscience, 25(4), 318–330. https://doi.org/10.2113/EEG-2248
    [Google Scholar]
  109. Young, J. R. (1998). Neogene: Calcareous nannofossil biostratigraphy, pp. 225–265.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12429
Loading
/content/journals/10.1111/bre.12429
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Gulf of Mexico; MTCs; salt mini‐basins evolution

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error