1887
Volume 32, Issue 6
  • E-ISSN: 1365-2117

Abstract

[

Left: Onshore palaeo‐digital elevation model (palaeoDEM) for the Cenomanian North American continent. Key palaeogeographic features are labelled, including the Sevier orogenic highlands, Laramidian landmass, Western Interior Seaway, Appalachian landmass, Hudson Seaway (HS) and Labrador Seaway (LS). Modern North American coastlines and country borders (solid black lines) have been palaeo‐rotated onto palaeoDEMs. Right: Spatial distributions of suspended sediment discharges () for the Cenomanian North American continent. values overlay palaeoDEM hillshades for comparison with palaeotopography.

, Abstract

Depositional stratigraphy represents the only physical archive of palaeo‐sediment routing and this limits analysis of ancient source‐to‐sink systems in both space and time. Here, we use palaeo‐digital elevation models (palaeoDEMs; based on high‐resolution palaeogeographic reconstructions), HadCM3L general circulation model climate data and the BQART suspended sediment discharge model to demonstrate a predictive, forward approach to palaeo‐sediment routing system analysis. To exemplify our approach, we use palaeoDEMs and HadCM3L data to predict the configurations, geometries and climates of large continental catchments in the Cenomanian and Turonian North American continent. Then, we use BQART to estimate suspended sediment discharges and catchment‐averaged erosion rates and we map their spatial distributions. We validate our estimates with published geologic constraints from the Cenomanian Dunvegan Formation, Alberta, Canada, and the Turonian Ferron Sandstone, Utah, USA, and find that estimates are consistent or within a factor of two to three. We then evaluate the univariate and multivariate sensitivity of our estimates to a range of uncertainty margins on palaeogeographic and palaeoclimatic boundary conditions; large uncertainty margins (≤50%/±5°C) still recover estimates of suspended sediment discharge within an order of magnitude of published constraints. PalaeoDEMs are therefore suitable as a first‐order investigative tool in palaeo‐sediment routing system analysis and are particularly useful where stratigraphic records are incomplete. We highlight the potential of this approach to predict the global spatio‐temporal response of suspended sediment discharges and catchment‐averaged erosion rates to long‐period tectonic and climatic forcing in the geologic past.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12442
2020-11-22
2024-04-26
Loading full text...

Full text loading...

References

  1. Adams, R. L., & Carr, J. P. (2010). Regional depositional systems of the Woodbine, Eagle Ford, and Tuscaloosa of the U.S. Gulf Coast. Gulf Coast Association of Geological Societies Transactions, 60, 3–27.
    [Google Scholar]
  2. Allen, P. A. (2008a). From landscapes into geological history. Nature, 451, 274–276. https://doi.org/10.1038/nature06586
    [Google Scholar]
  3. Allen, P. A. (2008b). Time scales of tectonic landscapes and their sediment routing systems. Geological Society, London, Special Publications, 296(1), 7–28. https://doi.org/10.1144/sp296.2
    [Google Scholar]
  4. Allen, P. A., Armitage, J. J., Carter, A., Duller, R. A., Michael, N. A., Sinclair, H. D., … Whittaker, A. C. (2013). The Qs problem: Sediment volumetric balance of proximal foreland basin systems. Sedimentology, 60(1), 102–130. https://doi.org/10.1111/sed.12015
    [Google Scholar]
  5. Armitage, J. J., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2011). Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience, 4(4), 231–235. https://doi.org/10.1038/ngeo1087
    [Google Scholar]
  6. Armstrong, H. A., Wagner, T., Herringshaw, L. G., Farnsworth, A. J., Lunt, D. J., Harland, M., … Atar, E. F. L. (2016). Hadley circulation and precipitation changes controlling black shale deposition in the Late Jurassic Boreal Seaway. Paleoceanography, 31(8), 1041–1053. https://doi.org/10.1002/2015PA002911
    [Google Scholar]
  7. Armstrong, R. L. (1968). Sevier orogenic belt in Nevada and Utah. GSA Bulletin, 79(4), 429–458. https://doi.org/10.1130/0016‐7606(1968)79[429:SOBINA]2.0.CO;2
    [Google Scholar]
  8. Barron, E. J. (1983). A warm, equable Cretaceous: The nature of the problem. Earth‐Science Reviews, 19(4), 305–338. https://doi.org/10.1016/0012‐8252(83)90001‐6
    [Google Scholar]
  9. Bartschi, N. C., Saylor, J. E., Lapen, T. J., Blum, M. D., Pettit, B. S., & Andrea, R. A. (2018). Tectonic controls on Late Cretaceous sediment provenance and stratigraphic architecture in the Book Cliffs, Utah.GSA Bulletin, 130(11–12), 1763–1781. https://doi.org/10.1130/B31927.1
    [Google Scholar]
  10. Benyon, C., Leier, A., Leckie, D. A., Webb, A., Hubbard, S. M., & Gehrels, G. (2014). Provenance of the Cretaceous Athabasca Oil Sands, Canada: Implications for continental‐scale sediment transport. Journal of Sedimentary Research, 84(2), 136–143. https://doi.org/10.2110/jsr.2014.16
    [Google Scholar]
  11. Bernard, C. Y., Dürr, H. H., Heinze, C., Segschneider, J., & Maier‐Reimer, E. (2011). Contribution of riverine nutrients to the silicon biogeochemistry of the global ocean – A model study. Biogeosciences, 8(3), 551–564. https://doi.org/10.5194/bg‐8‐551‐2011
    [Google Scholar]
  12. Beusen, A. H. W., Bouwman, A. F., Dürr, H. H., Dekkers, A. L. M., & Hartmann, J. (2009). Global patterns of dissolved silica export to the coastal zone: Results from a spatially explicit global model. Global Biogeochemical Cycles, 23(4), GB0A02. https://doi.org/10.1029/2008GB003281
    [Google Scholar]
  13. Bhattacharya, J. P., Copeland, P., Lawton, T. F., & Holbrook, J. (2016). Estimation of source area, river paleo‐discharge, paleoslope, and sediment budgets of linked deep‐time depositional systems and implications for hydrocarbon potential. Earth‐Science Reviews, 153, 77–110. https://doi.org/10.1016/j.earscirev.2015.10.013
    [Google Scholar]
  14. Bhattacharya, J., & Tye, B. (2004). Searching for modern Ferron analogs and application to subsurface interpretation. In T. C.ChidseyJr, R. D.Adams, & T. H.Morris (Eds.), Regional to wellbore analog for fluvial‐deltaic reservoir modeling: The ferron sandstone of Utah (pp. 39–57). AAPG Studies in Geology, 50, 39–57.
    [Google Scholar]
  15. Bhattacharyya, P., Bhattacharya, J. P., & Khan, S. D. (2015). Paleo‐channel reconstruction and grain size variability in fluvial deposits, Ferron Sandstone, Notom Delta, Hanksville, Utah. Sedimentary Geology, 325, 17–25. https://doi.org/10.1016/j.sedgeo.2015.05.001
    [Google Scholar]
  16. Blair, N. E., Leithold, E. L., & Aller, R. C. (2004). From bedrock to burial: The evolution of particulate organic carbon across coupled watershed‐continental margin systems. Marine Chemistry, 92(1), 141–156. https://doi.org/10.1016/j.marchem.2004.06.023
    [Google Scholar]
  17. Blum, M. D., Milliken, K. T., Pecha, M. A., Snedden, J. W., Frederick, B. C., & Galloway, W. E. (2017). Detrital‐zircon records of Cenomanian, Paleocene, and Oligocene Gulf of Mexico drainage integration and sediment routing: Implications for scales of basin‐floor fans. Geosphere, 13(6), 2169–2205. https://doi.org/10.1130/GES01410.1
    [Google Scholar]
  18. Blum, M., & Pecha, M. (2014). Mid‐Cretaceous to Paleocene North American drainage reorganization from detrital zircons. Geology, 42, 607–610. https://doi.org/10.1130/G35513.1
    [Google Scholar]
  19. Bonne, K. P. M. (2014). Reconstruction of the evolution of the Niger River and implications for sediment supply to the equatorial Atlantic margin of Africa during the Cretaceous and the Cenozoic. Geological Society, London, Special Publications, 386(1), 327–349. https://doi.org/10.1144/sp386.20
    [Google Scholar]
  20. Brenner, R. L., Ludvigson, G. A., Witzke, B. L., Phillips, P. L., White, T. S., Ufnar, D. F., … Shirk, B. R. (2003). Aggradation of gravels in tidally influenced fluvial systems: Upper Albian (Lower Cretaceous) on the cratonic margin of the North American Western Interior foreland basin. Cretaceous Research, 24(4), 439–448. https://doi.org/10.1016/s0195‐6671(03)00054‐5
    [Google Scholar]
  21. Carvajal, C., & Steel, R. (2012). Source‐to‐sink sediment volumes within a tectono‐stratigraphic model for a Laramide shelf‐to‐deep‐water basin: Methods and results. In C.Busby & A.Azor (Eds.), Tectonics of sedimentary basins: Recent advances (pp. 131–151). Oxford, UK: Blackwell Publishing Ltd.
    [Google Scholar]
  22. Cederbom, C. E., van der Beek, P., Schlunegger, F., Sinclair, H. D., & Oncken, O. (2011). Rapid extensive erosion of the North Alpine foreland basin at 5–4 Ma. Basin Research, 23(5), 528–550. https://doi.org/10.1111/j.1365‐2117.2011.00501.x
    [Google Scholar]
  23. Chamberlain, C. P., & Poage, M. A. (2000). Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals. Geology, 28, 115–118. https://doi.org/10.1130/0091‐7613(2000)28<115:RTPOMB>2.0.CO;2
    [Google Scholar]
  24. Chase, C. G., Gregory‐Wodzicki, K. M., Parrish, J. T., & DeCelles, P. G. (1998). Topographic history of the Western Cordillera of North America and controls on climate. In T. J.Crowley & K.Burke (Eds.), Tectonic boundary conditions for climate reconstructions (vol. 39, pp. 73–99). Oxford Monographs on Geology and Geophysics. New York, NY: Oxford University Press.
    [Google Scholar]
  25. Chiarenza, A. A., Mannion, P. D., Lunt, D. J., Farnsworth, A., Jones, L. A., Kelland, S.‐J., & Allison, P. A. (2019). Ecological niche modelling does not support climatically‐driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction. Nature Communications, 10(1), 1091. https://doi.org/10.1038/s41467‐019‐08997‐2
    [Google Scholar]
  26. Chidsey, T. C., Adams, R. D., & Morris, T. H. (2004). Regional to wellbore analog for fluvial‐deltaic reservoir modeling: The ferron sandstone of Utah (vol. 50). Oklahoma, OK: The American Association of Petroleum Geologists.
    [Google Scholar]
  27. Chumakov, N. M., Zharkov, M. A., Herman, A. B., Doludenko, M. P., Kalandadze, N. N., Lebedev, E. A., … Rautian, A. S. (1995). Climate belts of the mid‐Cretaceous time. Stratigraphy and Geological Correlation, 3, 42–63.
    [Google Scholar]
  28. Cohen, S., Kettner, A. J., Syvitski, J. P. M., & Fekete, B. M. (2013). WBMsed, a distributed global‐scale riverine sediment flux model: Model description and validation. Computers & Geosciences, 53(Suppl. C), 80–93. https://doi.org/10.1016/j.cageo.2011.08.011
    [Google Scholar]
  29. Cotter, E. (1975). Deltaic deposits in the Upper Cretaceous Ferron Sandstone, Utah. In M. L.Broussard (Ed.), Deltas: Models for exploration (pp. 471–484). Houston, TX: Houston Geological Society.
    [Google Scholar]
  30. Craggs, H. J., Valdes, P. J., & Widdowson, M. (2012). Climate model predictions for the latest Cretaceous: An evaluation using climatically sensitive sediments as proxy indicators. Palaeogeography, Palaeoclimatology, Palaeoecology, 315–316(Suppl. C), 12–23. doi:https://doi.org/10.1016/j.palaeo.2011.11.004.
    [Google Scholar]
  31. Cross, T. A. (1986). Tectonic controls of foreland basin subsidence and Laramide style deformation, western United States. In P. A.Allen & P.Homewood (Eds.), Foreland basins (vol. 8, pp. 15–39). Hoboken, NJ: Wiley‐Blackwell.
    [Google Scholar]
  32. Crowley, T. J., Hyde, W. T., & Short, D. A. (1989). Seasonal cycle variations on the supercontinent of Pangaea. Geology, 17(5), 457–460. https://doi.org/10.1130/0091‐7613(1989)017<0457:SCVOTS>2.3.CO;2
    [Google Scholar]
  33. Crowley, T. J., Mengel, J. G., & Short, D. A. (1987). Gondwanaland's seasonal cycle. Nature, 329, 803–807. https://doi.org/10.1038/329803a0
    [Google Scholar]
  34. DeCelles, P. G. (1994). Late Cretaceous‐Paleocene synorogenic sedimentation and kinematic history of the Sevier thrust belt, northeast Utah and southwest Wyoming. GSA Bulletin, 106, 32–56. https://doi.org/10.1130/0016‐7606(1994)106<0032:LCPSSA>2.3.CO;2
    [Google Scholar]
  35. DeCelles, P. G. (2004). Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western USA. American Journal of Science, 304, 105–168. https://doi.org/10.2475/ajs.304.2.105
    [Google Scholar]
  36. DeCelles, P. G., & Coogan, J. C. (2006). Regional structure and kinematic history of the Sevier fold‐and‐thrust belt, central Utah. GSA Bulletin, 118(7/8), 841–864. https://doi.org/10.1130/B25759.1
    [Google Scholar]
  37. DeConto, R. M., Hay, W. W., Thompson, S. L., & Bergengren, J. (1999). Late Cretaceous climate and vegetation interactions: Cold continental interior paradox. In E.Barrera & C. C.Johnson (Eds.), Evolution of the Cretaceous ocean‐climate system (vol. 332, pp. 391–406). Boulder, CO: Geological Society of America.
    [Google Scholar]
  38. Duller, R. A., Whittaker, A. C., Fedele, J. J., Whitchurch, A. L., Springett, J., Smithells, R., … Allen, P. A. (2010). From grain size to tectonics. Journal of Geophysical Research: Earth Surface, 115(F3), F03022. https://doi.org/10.1029/2009JF001495
    [Google Scholar]
  39. Dürr, H. H., Meybeck, M., Hartmann, J., Laruelle, G. G., & Roubeix, V. (2011). Global spatial distribution of natural riverine silica inputs to the coastal zone. Biogeosciences, 8(3), 597–620. https://doi.org/10.5194/bg‐8‐597‐2011
    [Google Scholar]
  40. Eide, C. H., Müller, R., & Helland‐Hansen, W. (2018). Using climate to relate water discharge and area in modern and ancient catchments. Sedimentology, 65(4), 1378–1389. https://doi.org/10.1111/sed.12426
    [Google Scholar]
  41. Farnsworth, A., Lunt, D. J., O'Brien, C. L., Foster, G. L., Inglis, G. N., Markwick, P., … Robinson, S. A. (2019). Climate sensitivity on geological timescales controlled by non‐linear feedbacks and ocean circulation. Geophysical Research Letters, 46(16), 9880–9889. https://doi.org/10.1029/2019GL083574
    [Google Scholar]
  42. Fedele, J. J., & Paola, C. (2007). Similarity solutions for fluvial sediment fining by selective deposition. Journal of Geophysical Research: Earth Surface, 112(F2), F02038. https://doi.org/10.1029/2005JF000409
    [Google Scholar]
  43. Finzel, E. S. (2014). Detrital zircons from Cretaceous midcontinent strata reveal an Appalachian Mountains‐Cordilleran foreland basin connection. Lithosphere, 6(5), 378–382. https://doi.org/10.1130/L400.1
    [Google Scholar]
  44. Foster, G. L., Royer, D. L., & Lunt, D. J. (2017). Future climate forcing potentially without precedent in the last 420 million years. Nature Communications, 8, 14845. https://doi.org/10.1038/ncomms14845
    [Google Scholar]
  45. Galloway, W. E., Whiteaker, T. L., & Ganey‐Curry, P. (2011). History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin. Geosphere, 7(4), 938–973. https://doi.org/10.1130/ges00647.1
    [Google Scholar]
  46. Garvin, M. G. (2008). Late quaternary geochronologic, stratigraphic, and sedimentologic framework of the Trinity River incised valley: east Texas coast. LSU Master's Theses, 1122.
  47. Gibbard, P. L. (1988). The history of the great northwest European rivers during the past three million years. Philosophical Transactions of the Royal Society B: Biological Sciences, 318(1191), 559–602. https://doi.org/10.1098/rstb.1988.0024
    [Google Scholar]
  48. Goddéris, Y., Donnadieu, Y., Carretier, S., Aretz, M., Dera, G., Macouin, M., & Regard, V. (2017). Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering. Nature Geoscience, 10, 382. https://doi.org/10.1038/ngeo2931
    [Google Scholar]
  49. Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., … Wood, R. A. (2000). The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics, 16(2), 147–168. https://doi.org/10.1007/s003820050010
    [Google Scholar]
  50. Hallam, A. (1985). A review of Mesozoic climates. Journal of the Geological Society, 142(3), 433–445. https://doi.org/10.1144/gsjgs.142.3.0433
    [Google Scholar]
  51. Hallet, B., Hunter, L., & Bogen, J. (1996). Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications. Global and Planetary Change, 12(1), 213–235. https://doi.org/10.1016/0921‐8181(95)00021‐6
    [Google Scholar]
  52. Hampson, G. J., Duller, R. A., Petter, A. L., Robinson, R. A. J., & Allen, P. A. (2014). Mass‐balance constraints on stratigraphic interpretation of linked alluvial‐coastal‐shelfal deposits from source to sink: Example from Cretaceous Western Interior Basin, Utah and Colorado, USA. Journal of Sedimentary Research, 84(11), 935–960. https://doi.org/10.2110/jsr.2014.78
    [Google Scholar]
  53. Haq, B. U., Hardenbol, J. A. N., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156–1167. https://doi.org/10.1126/science.235.4793.1156
    [Google Scholar]
  54. Hay, W. W. (2017). Toward understanding Cretaceous climate—An updated review. Science China Earth Sciences, 60(1), 5–19. https://doi.org/10.1007/s11430‐016‐0095‐9
    [Google Scholar]
  55. Hay, W. W., DeConto, R. M., Wold, C. N., Wilson, K. M., Voigt, S., Schulz, M., … Söding, E. (1999). Alternative global Cretaceous paleogeography. In E.Barrera & C. C.Johnson (Eds.), Evolution of the Cretaceous ocean‐climate system (pp. 1–48). Boulder, CO: Geological Society of America.
    [Google Scholar]
  56. Hay, W., Eicher, D., & Diner, R. (1993). Physical oceanography and water masses of the Cretaceous Western Interior Seaway. In W. E. G.Caldwell & E. G.Kauffman (Eds.), Evolution of the western interior basin (pp. 297–318). Newfoundland: Geological Association of Canada.
    [Google Scholar]
  57. Hay, W. W., & Floegel, S. (2012). New thoughts about the Cretaceous climate and oceans. Earth‐Science Reviews, 115(4), 262–272. https://doi.org/10.1016/j.earscirev.2012.09.008
    [Google Scholar]
  58. Helland‐Hansen, W., Sømme, T., Martinsen, O. J., Lunt, I., & Thurmond, J. (2016). Deciphering Earth's natural hourglasses: Perspectives on source‐to‐sink analysis. Journal of Sedimentary Research, 86, 1008–1033. https://doi.org/10.2110/jsr.2016.56
    [Google Scholar]
  59. Hidy, A. J., Gosse, J. C., Blum, M. D., & Gibling, M. R. (2014). Glacial–interglacial variation in denudation rates from interior Texas, USA, established with cosmogenic nuclides. Earth and Planetary Science Letters, 390, 209–221. https://doi.org/10.1016/j.epsl.2014.01.011
    [Google Scholar]
  60. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978. https://doi.org/10.1002/joc.1276
    [Google Scholar]
  61. Holbrook, J., & Wanas, H. (2014). A fulcrum approach to assessing source‐to‐sink mass balance using channel paleohydrologic paramaters derivable from common fluvial data sets with an example from the Cretaceous of Egypt. Journal of Sedimentary Research, 84(5), 349–372. https://doi.org/10.2110/jsr.2014.29
    [Google Scholar]
  62. Horton, B., Parra, M., Saylor, J., Nie, J., Mora, A., Torres, V., … Strecker, M. (2010a). Resolving uplift of the Northern Andes using detrital zircon age signatures. GSA Today, 20, 4–9. https://doi.org/10.1130/GSATG76A.1
    [Google Scholar]
  63. Horton, B., Saylor, J., Nie, J., Mora, A., Parra, M., Reyes‐Harker, A., & Stockli, D. (2010b). Linking sedimentation in the northern Andes to basement configuration, Mesozoic extension, and Cenozoic shortening: Evidence from detrital zircon U‐Pb ages, Eastern Cordillera, Colombia. GSA Bulletin, 122, 1423–1442. https://doi.org/10.1130/B30118.1
    [Google Scholar]
  64. Hunter, S. J., Haywood, A. M., Valdes, P. J., Francis, J. E., & Pound, M. J. (2013). Modelling equable climates of the Late Cretaceous: Can new boundary conditions resolve data–model discrepancies?Palaeogeography, Palaeoclimatology, Palaeoecology, 392, 41–51. https://doi.org/10.1016/j.palaeo.2013.08.009
    [Google Scholar]
  65. Hunter, S. J., Valdes, P. J., Haywood, A. M., & Markwick, P. J. (2008). Modelling Maastrichtian climate: Investigating the role of geography, atmospheric CO2 and vegetation. Climate of the Past Discussions, 4, 981–1019. https://doi.org/10.5194/cpd‐4‐981‐2008
    [Google Scholar]
  66. Jensen, M. A., & Pedersen, G. K. (2010). Architecture of vertically stacked fluvial deposits, Atane Formation, Cretaceous, Nuussuaq, central West Greenland. Sedimentology, 57, 1280–1314. https://doi.org/10.1111/j.1365‐3091.2010.01146.x
    [Google Scholar]
  67. Jordan, T. E. (1981). Thrust loads and foreland basin evolution, Cretaceous, western United States. AAPG Bulletin, 65(12), 2506–2520.
    [Google Scholar]
  68. Kauffman, E. G. (1977). Geological and biological overview: Western Interior Basin. In E. G.Kauffman (Ed.), Cretaceous facies, faunas, and paleoenvironments across the Western Interior Basin (pp. 75–99). Denver, CO: Rocky Mountain Association of Geologists.
    [Google Scholar]
  69. Kauffman, E. G., & Caldwell, W. (1993). The Western Interior Basin in space and time. In E. G.Kauffman & W.Caldwell (Eds.), Evolution of the western interior basin. Geological Association of Canada, Special Paper, 39, 1–30.
    [Google Scholar]
  70. Kent, D. V., & Muttoni, G. (2013). Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt. Climate of the Past, 9(2), 525–546. https://doi.org/10.5194/cp‐9‐525‐2013
    [Google Scholar]
  71. Kimmerle, S., & Bhattacharya, J. P. (2018). Facies, backwater limits, and paleohydraulic analysis of rivers in a forced‐regressive, compound incised valley, Cretaceous Ferron Sandstone, Utah, U.S.A. Journal of Sedimentary Research, 88(2), 177–200. doi:https://doi.org/10.2110/jsr.2018.5.
    [Google Scholar]
  72. Krause, F., Deutsch, K. B., Joiner, S. D., Barclay, J., Hall, R. L., & Hills, L. V. (1994). Cretaceous Cardium Formation of the Western Canada sedimentary basin. In G. D.Mossop & I.Shetson (Eds.), Geological atlas of the Western Canada sedimentary basin (pp. 485–511). Calgary: Canadian Society of Petroleum Geologists and Alberta Research Council.
    [Google Scholar]
  73. Kutzbach, J., Prell, W., & Ruddiman, W. (1993). Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. The Journal of Geology, 101(2), 177–190. https://doi.org/10.1086/648215
    [Google Scholar]
  74. Leithold, E. L., Blair, N. E., & Wegmann, K. W. (2016). Source‐to‐sink sedimentary systems and global carbon burial: A river runs through it. Earth‐Science Reviews, 153, 30–42. https://doi.org/10.1016/j.earscirev.2015.10.011
    [Google Scholar]
  75. Lericolais, G., Auffret, J. P., & Bourillet, J. F. (2003). The Quaternary channel river: Seismic stratigraphy of its palaeo‐valleys and deeps. Journal of Quaternary Science, 18, 245–260. https://doi.org/10.1002/jqs.759
    [Google Scholar]
  76. Li, Y., Bhattacharya, J. P., Ahmed, S., & Garza, D. (2018). Re‐evaluating the paleogeography of the river‐dominated and wave‐influenced Ferron Notom Delta, Southern Central Utah: An integration of detailed facies‐architecture and paleocurrent analysis. Journal of Sedimentary Research, 88(2), 214–240. https://doi.org/10.2110/jsr.2018.9
    [Google Scholar]
  77. Lin, W., & Bhattacharya, J. P. (2017). Estimation of source‐to‐sink mass balance by a fulcrum approach using channel paleohydrologic parameters of the Cretaceous Dunvegan Formation, Canada. Journal of Sedimentary Research, 87(1), 97–116. https://doi.org/10.2110/jsr.2017.1
    [Google Scholar]
  78. Liu, S., & Nummedal, D. (2004). Late Cretaceous subsidence in Wyoming: Quantifying the dynamic component. Geology, 32(5), 397–400. https://doi.org/10.1130/G20318.1
    [Google Scholar]
  79. Liu, S., Nummedal, D., & Gurnis, M. (2014). Dynamic versus flexural controls of Late Cretaceous Western Interior Basin, USA. Earth and Planetary Science Letters, 389, 221–229. https://doi.org/10.1016/j.epsl.2014.01.006
    [Google Scholar]
  80. Liu, S., Nummedal, D., & Liu, L. (2011). Migration of dynamic subsidence across the Late Cretaceous United States Western interior basin in response to Farallon plate subduction. Geology, 39(6), 555–558. https://doi.org/10.1130/G31692.1
    [Google Scholar]
  81. Lunt, D. J., Farnsworth, A., Loptson, C., Foster, G. L., Markwick, P., O&apos;Brien, C. L., … Wrobel, N. (2016). Palaeogeographic controls on climate and proxy interpretation. Climate of the Past, 12, 1181–1198. https://doi.org/10.5194/cpd‐11‐5683‐2015
    [Google Scholar]
  82. Lunt, D. J., Ross, I., Hopley, P. J., & Valdes, P. J. (2007). Modelling Late Oligocene C4 grasses and climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 251(2), 239–253. https://doi.org/10.1016/j.palaeo.2007.04.004
    [Google Scholar]
  83. Macdonald, F. A., Swanson‐Hysell, N. L., Park, Y., Lisiecki, L., & Jagoutz, O. (2019). Arc‐continent collisions in the tropics set Earth’s climate state. Science, 364(6436), 181. https://doi.org/10.1126/science.aav5300
    [Google Scholar]
  84. Manger, G. E. (1963). Porosity and bulk density of sedimentary rocks. Bulletin, 1144‐E.
    [Google Scholar]
  85. Markwick, P. J. (2018). Palaeogeography in exploration. Geological Magazine, 156, 366–407. https://doi.org/10.1017/S0016756818000468
    [Google Scholar]
  86. Markwick, P. J., & Valdes, P. J. (2004). Palaeo‐digital elevation models for use as boundary conditions in coupled ocean–atmosphere GCM experiments: A Maastrichtian (late Cretaceous) example. Palaeogeography, Palaeoclimatology, Palaeoecology, 213(1–2), 37–63. https://doi.org/10.1016/j.palaeo.2004.06.015
    [Google Scholar]
  87. Miall, A. D., Catuneanu, O., Vakarelov, B. K., & Post, R. (2008). The Western Interior Basin. In A. D.Miall (Ed.), Sedimentary basins of the world (vol. 5, pp. 329–362). Amsterdam, the Netherlands: Elsevier.
    [Google Scholar]
  88. Michael, N. A., Whittaker, A. C., Carter, A., & Allen, P. A. (2014). Volumetric budget and grain‐size fractionation of a geological sediment routing system: Eocene Escanilla Formation, south‐central Pyrenees. GSA Bulletin, 126(3–4), 585–599. https://doi.org/10.1130/B30954.1
    [Google Scholar]
  89. Miller, K. G., Barrera, E., Olsson, R. K., Sugarman, P. J., & Savin, S. M. (1999). Does ice drive early Maastrichtian eustasy?Geology, 27(9), 783–786. https://doi.org/10.1130/0091‐7613(1999)027<0783:DIDEME>2.3.CO;2
    [Google Scholar]
  90. Miller, K. G., Sugarman, P. J., Browning, J. V., Kominz, M. A., Hernández, J. C., Olsson, R. K., … Van Sickel, W. (2003). Late Cretaceous chronology of large, rapid sea‐level changes: Glacioeustasy during the greenhouse world. Geology, 31(7), 585–588. https://doi.org/10.1130/0091‐7613(2003)031<0585:LCCOLR>2.0.CO;2
    [Google Scholar]
  91. Milliman, J. D., & Farnsworth, K. L. (2013). River discharge to the coastal ocean: A global synthesis. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  92. Molnar, P., & England, P. (1990). Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg?Nature, 346, 29–34. https://doi.org/10.1038/346029a0
    [Google Scholar]
  93. Otto‐Bliesner, B. L., & Houghton, D. D. (1986). Sensitivity of the seasonal climate of a general circulation model to ocean surface conditions and solar forcing. Journal of Geophysical Research, 91, 6682–6694. https://doi.org/10.1029/JD091iD06p06682
    [Google Scholar]
  94. Owen, A., Jupp, P., Nichols, G., Hartley, A., Weissmann, G., & Sadykova, D. (2015). Statistical estimation of the position of an apex: Application to the geological record. Journal of Sedimentary Research, 85, 142–152. https://doi.org/10.2110/jsr.2015.16
    [Google Scholar]
  95. Painter, C. S., Carrapa, B., DeCelles, P. G., Gehrels, G. E., & Thomson, S. N. (2014). Exhumation of the North American Cordillera revealed by multi‐dating of Upper Jurassic‐Upper Cretaceous foreland basin deposits. GSA Bulletin, 126(11/12), 1439–1464. https://doi.org/10.1130/B30999.1
    [Google Scholar]
  96. Pang, M., & Nummedal, D. (1995). Flexural subsidence and basement tectonics of the Cretaceous Western Interior basin, United States. Geology, 23(2), 173–176. https://doi.org/10.1130/0091‐7613(1995)023<0173:FSABTO>2.3.CO;2
    [Google Scholar]
  97. Paul, J. D., Roberts, G. G., & White, N. (2014). The African landscape through space and time. Tectonics, 33(6), 898–935. https://doi.org/10.1002/2013TC003479
    [Google Scholar]
  98. Pedersen, G. K., & Pulvertaft, T. C. R. (1992). The nonmarine Cretaceous of the West Greenland Basin, onshore West Greenland. Cretaceous Research, 13(3), 263–272. https://doi.org/10.1016/0195‐6671(92)90002‐8
    [Google Scholar]
  99. Pelletier, J. D. (2012). A spatially distributed model for the long‐term suspended sediment discharge and delivery ratio of drainage basins. Journal of Geophysical Research: Earth Surface, 117(F2), 1–15. https://doi.org/10.1029/2011JF002129
    [Google Scholar]
  100. Petter, A. L., Steel, R. J., Mohrig, D., Kim, W., & Carvajal, C. (2013). Estimation of the paleoflux of terrestrial‐derived solids across ancient basin margins using the stratigraphic record. GSA Bulletin, 125, 578–593. https://doi.org/10.1130/B30603.1
    [Google Scholar]
  101. Pettit, B. S., Blum, M., Pecha, M., McLean, N., Bartschi, N. C., & Saylor, J. E. (2019). Detrital‐zircon U‐Pb paleodrainage reconstruction and geochronology of the Campanian Blackhawk‐Castlegate succession, Wasatch Plateau and Book Cliffs, Utah, U.S.A. Journal of Sedimentary Research, 89(4), 273–292. doi:https://doi.org/10.2110/jsr.2019.18.
    [Google Scholar]
  102. Plint, A. G. (2002). Paleovalley systems in the Upper Cretaceous Dunvegan Formation, Alberta and British Columbia. Bulletin of Canadian Petroleum Geology, 50(2), 277–296. https://doi.org/10.2113/50.2.277
    [Google Scholar]
  103. Plint, A. G., & Wadsworth, J. A. (2003). Sedimentology and palaeogeomorphology of four large valley systems incising delta plains, western Canada Foreland Basin: Implications for mid‐Cretaceous sea‐level changes. Sedimentology, 50(6), 1147–1186. https://doi.org/10.1111/j.1365‐3091.2003.00599.x
    [Google Scholar]
  104. Plint, A. G., & Wadsworth, J. A. (2006). Delta‐plain paleodrainage patterns reflect small‐scale fault movement and subtle forebulge uplift: Upper Cretaceous Dunvegan Formation, Western Canada Foreland Basin. In R. W.Dalrymple, D. A.Leckie, & R. W.Tillman (Eds.), Incised valleys in time and space, vol. 85. Oklahoma, OK: SEPM Society for Sedimentary Geology.
    [Google Scholar]
  105. Pope, V. D., Gallani, M. L., Rowntree, P. R., & Stratton, R. A. (2000). The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Climate Dynamics, 16(2), 123–146. https://doi.org/10.1007/s003820050009
    [Google Scholar]
  106. Primm, J. W., Johnson, C. L., & Stearns, M. (2018). Basin‐axial progradation of a sediment supply driven distributive fluvial system in the Late Cretaceous southern Utah foreland. Basin Research, 30(2), 249–278. https://doi.org/10.1111/bre.12252
    [Google Scholar]
  107. Roberts, L. N. R., & Kirschbaum, M. A. (1995). Paleogeography and the Late Cretaceous of the Western Interior of middle North America: Coal distribution and sediment accumulation. U.S. Geological Survey Professional Paper, 1561, 1–65. https://doi.org/10.3133/pp1561
    [Google Scholar]
  108. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. P. (2016). Environmental signal propagation in sedimentary systems across timescales. Earth‐Science Reviews, 153, 7–29. https://doi.org/10.1016/j.earscirev.2015.07.012
    [Google Scholar]
  109. Romans, B. W., & Graham, S. A. (2013). A deep‐time perspective of land‐ocean linkages in the sedimentary record. Annual Review of Marine Science, 5, 69–94. https://doi.org/10.1146/annurev‐marine‐121211‐172426
    [Google Scholar]
  110. Rowley, D. B., & Currie, B. S. (2006). Palaeo‐altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439, 677–681. https://doi.org/10.1038/nature04506
    [Google Scholar]
  111. Rowley, D. B., & Garzione, C. N. (2007). Stable isotope‐based paleoaltimetry. Annual Review of Earth and Planetary Sciences, 35(1), 463–508. https://doi.org/10.1146/annurev.earth.35.031306.140155
    [Google Scholar]
  112. Rowley, D. B., Pierrehumbert, R. T., & Currie, B. S. (2001). A new approach to stable isotope‐based paleoaltimetry: Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. Earth and Planetary Science Letters, 188(1), 253–268. https://doi.org/10.1016/S0012‐821X(01)00324‐7
    [Google Scholar]
  113. Sadler, P. M. (1981). Sediment accumulation rates and the completeness of stratigraphic sections. The Journal of Geology, 89, 569–584. https://doi.org/10.1086/628623
    [Google Scholar]
  114. Savin, S. M., Douglas, R. G., & Stehli, F. G. (1975). Tertiary marine paleotemperatures. GSA Bulletin, 86(11), 1499–1510. https://doi.org/10.1130/0016‐7606(1975)86<1499:TMP>2.0.CO;2
    [Google Scholar]
  115. Schlunegger, F., & Hinderer, M. (2003). Pleistocene/Holocene climate change, re‐establishment of fluvial drainage network and increase in relief in the Swiss Alps. Terra Nova, 15(2), 88–95. https://doi.org/10.1046/j.1365‐3121.2003.00469.x
    [Google Scholar]
  116. Shackleton, N. J., & Kennett, J. P. (1975). Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281. Initial Reports of the Deep Sea Drilling Project, 29, 743–755. https://doi.org/10.2973/dsdp.proc.29.1975
    [Google Scholar]
  117. Sharma, S., Bhattacharya, J. P., & Richards, B. (2017). Source‐to‐sink sediment budget analysis of the Cretaceous Ferron Sandstone, Utah, U.S.A., using the fulcrum approach. Journal of Sedimentary Research, 87(6), 594–608. https://doi.org/10.2110/jsr.2017.23
    [Google Scholar]
  118. Skelton, P. W., Spicer, R. A., Kelley, S. P., & Gilmour, I. (2003). The Cretaceous world. Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  119. Sømme, T. O., Helland‐Hansen, W., Martinsen, O. J., & Thurmond, J. B. (2009). Relationships between morphological and sedimentological parameters in source‐to‐sink systems: A basis for predicting semi‐quantitative characteristics in subsurface systems. Basin Research, 21(4), 361–387. https://doi.org/10.1111/j.1365‐2117.2009.00397.x
    [Google Scholar]
  120. Sømme, T. O., Martinsen, O. J., & Lunt, I. (2013). Linking offshore stratigraphy to onshore paleotopography: The Late Jurassic‐Paleocene evolution of the south Norwegian margin. GSA Bulletin, 125(7–8), 1164–1186. https://doi.org/10.1130/B30747.1
    [Google Scholar]
  121. Sømme, T. O., Piper, D. J. W., Deptuck, M. E., & Helland‐Hansen, W. (2011). Linking onshore–offshore sediment dispersal in the Golo source‐to‐sink system (Corsica, France) during the late Quaternary. Journal of Sedimentary Research, 81(2), 118–137. https://doi.org/10.2110/jsr.2011.11
    [Google Scholar]
  122. Spencer, C. J., Prave, A. R., Cawood, P. A., & Roberts, N. M. W. (2014). Detrital zircon geochronology of the Grenville/Llano foreland and basal Sauk Sequence in west Texas, USA. GSA Bulletin, 126(7–8), 1117–1128. https://doi.org/10.1130/B30884.1
    [Google Scholar]
  123. Stephenson, S. N., Roberts, G. G., Hoggard, M. J., & Whittaker, A. C. (2014). A Cenozoic uplift history of Mexico and its surroundings from longitudinal river profiles. Geochemistry, Geophysics, Geosystems, 15(12), 4734–4758. https://doi.org/10.1002/2014GC005425
    [Google Scholar]
  124. Stoll, H. M., & Schrag, D. P. (2000). High‐resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: Glacial episodes in a greenhouse planet?GSA Bulletin, 112(2), 308–319. https://doi.org/10.1130/0016‐7606(2000)112<308:HSIRFT>2.0.CO;2
    [Google Scholar]
  125. Syvitski, J. P., & Kettner, A. (2011). Sediment flux and the Anthropocene. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1938), 957–975. https://doi.org/10.1098/rsta.2010.0329
    [Google Scholar]
  126. Syvitski, J. P. M., & Milliman, J. D. (2007). Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. The Journal of Geology, 115(1), 1–19. https://doi.org/10.1086/509246
    [Google Scholar]
  127. Syvitski, J. P. M., & Saito, Y. (2007). Morphodynamics of deltas under the influence of humans. Global and Planetary Change, 57(3–4), 261–282. https://doi.org/10.1016/j.gloplacha.2006.12.001
    [Google Scholar]
  128. Syvitski, J. P., Vörösmarty, C. J., Kettner, A. J., & Green, P. (2005). Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science, 308(5720), 376–380. https://doi.org/10.1126/science.1109454
    [Google Scholar]
  129. Szwarc, T. S., Johnson, C. L., Stright, L. E., & McFarlane, C. M. (2015). Interactions between axial and transverse drainage systems in the Late Cretaceous Cordilleran foreland basin: Evidence from detrital zircons in the Straight Cliffs Formation, southern Utah, USA. GSA Bulletin, 127(3–4), 372–392. https://doi.org/10.1130/B31039.1
    [Google Scholar]
  130. Tabor, C. R., Poulsen, C. J., Lunt, D. J., Rosenbloom, N. A., Otto‐Bliesner, B. L., Markwick, P. J., … Feng, R. (2016). The cause of Late Cretaceous cooling: A multimodel‐proxy comparison. Geology, 44(11), 963–966. https://doi.org/10.1130/g38363.1
    [Google Scholar]
  131. Tindall, J., Flecker, R., Valdes, P., Schmidt, D. N., Markwick, P., & Harris, J. (2010). Modelling the oxygen isotope distribution of ancient seawater using a coupled ocean–atmosphere GCM: Implications for reconstructing early Eocene climate. Earth and Planetary Science Letters, 292(3–4), 265–273. https://doi.org/10.1016/j.epsl.2009.12.049
    [Google Scholar]
  132. Tinker, J., de Wit, M., & Brown, R. (2008). Mesozoic exhumation of the southern Cape, South Africa, quantified using apatite fission track thermochronology. Tectonophysics, 455(1–4), 77–93. https://doi.org/10.1016/j.tecto.2007.10.009
    [Google Scholar]
  133. Torsvik, T. H., Müller, R. D., Van der Voo, R., Steinberger, B., & Gaina, C. (2008). Global plate motion frames: Toward a unified model. Reviews of Geophysics, 46(3), RG3004. https://doi.org/10.1029/2007RG000227
    [Google Scholar]
  134. Turowski, J. M., Rickenmann, D., & Dadson, S. J. (2010). The partitioning of the total sediment load of a river into suspended load and bedload: A review of empirical data. Sedimentology, 57(4), 1126–1146. https://doi.org/10.1111/j.1365‐3091.2009.01140.x
    [Google Scholar]
  135. Valdes, P. J., Armstrong, E., Badger, M. P. S., Bradshaw, C. D., Bragg, F., Crucifix, M., … Williams, J. H. T. (2017). The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0. Geoscientific Model Development, 10(10), 3715–3743. https://doi.org/10.5194/gmd‐10‐3715‐2017
    [Google Scholar]
  136. Vernon, A. J., van der Beek, P. A., Sinclair, H. D., & Rahn, M. K. (2008). Increase in late Neogene denudation of the European Alps confirmed by analysis of a fission‐track thermochronology database. Earth and Planetary Science Letters, 270(3–4), 316–329. https://doi.org/10.1016/j.epsl.2008.03.053
    [Google Scholar]
  137. Walford, H., White, N., & Sydow, J. (2005). Solid sediment load history of the Zambezi Delta. Earth and Planetary Science Letters, 238(1–2), 49–63. https://doi.org/10.1016/j.epsl.2005.07.014
    [Google Scholar]
  138. Wang, Y., Huang, C.‐M., Sun, B., Quan, C., Wu, J., & Lin, Z. (2014). Paleo‐CO2 variation trends and the Cretaceous greenhouse climate. Earth‐Science Reviews, 129, 136–147. https://doi.org/10.1016/j.earscirev.2013.11.001
    [Google Scholar]
  139. Watkins, S. E., Whittaker, A. C., Bell, R. E., McNeill, L. C., Gawthorpe, R. L., Brooke, S. A. S., & Nixon, C. W. (2018). Are landscapes buffered to high‐frequency climate change? A comparison of sediment fluxes and depositional volumes in the Corinth Rift, central Greece, over the past 130 k.y. GSA Bulletin, 131, 372–388. https://doi.org/10.1130/B31953.1
    [Google Scholar]
  140. Whipple, K. X. (2009). The influence of climate on the tectonic evolution of mountain belts. Nature Geoscience, 2(2), 97–104. https://doi.org/10.1038/ngeo413
    [Google Scholar]
  141. Whipple, K., & Meade, B. (2006). Orogen response to changes in climatic and tectonic forcing. Earth and Planetary Science Letters, 243(1–2), 218–228. https://doi.org/10.1016/j.epsl.2005.12.022
    [Google Scholar]
  142. White, T., González, L., Ludvigson, G., & Poulsen, C. (2001). Middle Cretaceous greenhouse hydrologic cycle of North America. Geology, 29(4), 363–366. https://doi.org/10.1130/0091‐7613(2001)029<0363:MCGHCO>2.0.CO;2
    [Google Scholar]
  143. Whittaker, A. C. (2012). How do landscapes record tectonics and climate?Lithosphere, 4(2), 160–164. https://doi.org/10.1130/rf.l003.1
    [Google Scholar]
  144. Whittaker, A. C., Attal, M., & Allen, P. A. (2010). Characterising the origin, nature and fate of sediment exported from catchments perturbed by active tectonics. Basin Research, 22(6), 809–828. https://doi.org/10.1111/j.1365‐2117.2009.00447.x
    [Google Scholar]
  145. Whittaker, A. C., Duller, R. A., Springett, J., Smithells, R. A., Whitchurch, A. L., & Allen, P. A. (2011). Decoding downstream trends in stratigraphic grain size as a function of tectonic subsidence and sediment supply. GSA Bulletin, 123(7–8), 1363–1382. https://doi.org/10.1130/B30351.1
    [Google Scholar]
  146. Willett, S. D. (1999). Orogeny and orography: The effects of erosion on the structure of mountain belts. Journal of Geophysical Research: Solid Earth, 104(B12), 28957–28981. https://doi.org/10.1029/1999jb900248
    [Google Scholar]
  147. Wilson, J. T. (1966). Did the Atlantic close and then re‐open?Nature, 211, 676–681. https://doi.org/10.1038/211676a0
    [Google Scholar]
  148. Witzke, B. J., & Ludvigson, G. A. (1994). The Dakota Formation in Iowa and the type area. In G. W.Shurr, G. A.Ludvigson, & R. H.Hammond (Eds.), Perspectives on the Eastern Margin of the Cretaceous Western Interior Basin (vol. 287). Boulder, CO: The Geological Society of America.
    [Google Scholar]
  149. Witzke, B. J., Ludvigson, G. A., Poppe, J. R., & Ravn, R. L. (1983). Cretaceous paleogeography along the eastern margin of the Western Interior Seaway, Iowa, southern Minnesota, and eastern Nebraska and South Dakota. In Mesozoic paleogeography of the West‐Central United States: Rocky mountain symposium (vol. 2, 225–252). Denver, CO: Rocky Mountain Section: SEPM.
    [Google Scholar]
  150. Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., … Sheehan, D. (2006). Tectonics from topography: Procedures, promise, and pitfalls. In S. D.Willett, N.Hovius, M. T.Brandon, & D. M.Fisher (Eds.), Tectonics, climate, and landscape evolution. Boulder, CO: Geological Society of America.
    [Google Scholar]
  151. Zachos, J. C., Dickens, G. R., & Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon‐cycle dynamics. Nature, 451, 279–283. https://doi.org/10.1038/nature06588
    [Google Scholar]
  152. Zhang, J., Covault, J., Pyrcz, M., Sharman, G., Carvajal, C., & Milliken, K. (2018). Quantifying sediment supply to continental margins: Application to the Paleogene Wilcox Group, Gulf of Mexico. AAPG Bulletin, 102(9), 1685–1702. https://doi.org/10.1306/01081817308
    [Google Scholar]
  153. Ziegler, A. M., Rowley, D. B., Lottes, A. L., Sahagian, D. L., Hulver, M. L., & Gierlowski, T. C. (1985). Paleogeographic interpretation: With an example from the mid‐Cretaceous. Annual Review of Earth and Planetary Sciences, 13(1), 385–428. https://doi.org/10.1146/annurev.ea.13.050185.002125
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12442
Loading
/content/journals/10.1111/bre.12442
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error