1887
Volume 32, Issue 6
  • E-ISSN: 1365-2117

Abstract

[

Clastic sedimentary rocks are best dated by isotopic analysis of closely interbedded volcanic rocks (PLAN A). Fossils can also provide age assement of sufficient precision (PLAN B) but when volcanic rocks are not present or fossils are not diagnostic, PLAN C may be ncessary. This contribution discusses some details of using geochronology of detrital grains to determine the depositional age of clastic rocks.

, Abstract

Placing geologic events in a temporal framework is essential to telling the story of Earth history. However, clastic sedimentary rocks can be difficult to date in an absolute reference because they are made up of grains that are older than the rock in which they are now found, and some clastic rocks do not contain fossils that allow precise reference to the Geologic Timescale. For such rocks, the isotopic dating of detrital minerals can be used to estimate the time of deposition; the clastic rock must be younger than the youngest grain analysed. However, many researchers eschew this simple and straightforward approach in favour of schemes that estimate the maximum allowable depositional age as the weighted mean of the age of several grains, chosen by a variety of selection criteria. This is a mistake; in the absence of a geochemical resemblance apart from the similarity of their age, detrital grains should not be assumed to have originated in the same system and therefore any averaging or other manipulation of such data is statistically invalid and produces results without geologic significance. In the absence of interbedded volcanic rocks or index fossils, dating of detrital minerals can be an important aid in understanding the time of deposition of clastic rocks, but the best estimate will come from taking note of the youngest single grain and not by inappropriately averaging data.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12441
2020-11-22
2024-04-26
Loading full text...

Full text loading...

References

  1. Andersen, T. (2005). Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation. Chemical Geology, 216, 249–270. https://doi.org/10.1016/j.chemgeo.2004.11.013
    [Google Scholar]
  2. Barbeau, D. L., Olivero, E. B., Swanson‐Hysell, N. L., Zahid, K. M., Murray, K. E., & Gehrel, G. E. (2009). Detrital‐zircon geochronology of the eastern Magallanes Foreland basin: Implications for Eocene kinematics of the northern scotia arc and drake passage. Earth and Planetary Science Letters, 284, 489–503. https://doi.org/10.1016/j.epsl.2009.05.014
    [Google Scholar]
  3. Bernet, M., van der Beek, P., Pik, R., Huyghe, P., Mugnier, J.‐L., Labrin, E., & Szulc, A. (2006). Miocene to recent exhumation of the central Himalaya determined from combined detrital zircon fission‐track and U/Pb analysis of Siwalik sediments, western Nepal. Basin Research, 18(4), 393–412. https://doi.org/10.1111/j.1365‐2117.2006.00303.x
    [Google Scholar]
  4. Blum, M., & Pecha, M. (2014). Mid‐Cretaceous to Paleocene North American drainage reorganization from detrital zircons. Geology, 42(7), 607–607. https://doi.org/10.1130/G35513.1
    [Google Scholar]
  5. Cao, H.‐W., Zhang, Y.‐H., Tang, L., Hollis, S. P., Zhang, S.‐T., Pei, Q.‐M., … Zhu, X.‐S. (2019). Geochemistry, zircon U–Pb geochronology and Hf isotopes of Jurassic‐Cretaceous granites in the Tengchong terrane. SW China: Implications for the Mesozoic tectono‐magmatic evolution of the Eastern Tethyan Tectonic Domain. International Geology Review, 61(3), 257–279. https://doi.org/10.1080/00206814.2017.1422445
    [Google Scholar]
  6. Carrapa, B., DeCelles, P. G., Reiners, P. W., Gehrels, G. E., & Sudo, M. (2009). Apatite triple dating and white mica 40Ar/39Ar thermochronology of syntectonic detritus in the Central Andes: A multiphase tectonothermal history. Geology, 37(5), 407–410. https://doi.org/10.1130/G25698A.1
    [Google Scholar]
  7. Cartwright, N., & Hardie, J. (2012). Evidence‐based policy: A practical guide to doing it better. Oxford: Oxford University Press.
    [Google Scholar]
  8. Cather, S. M., Heizler, M. T., & Williamson, T. E. (2019). Laramide fluvial evolution of the San Juan Basin, New Mexico and Colorado: Paleocurrent and detrital‐sanidine age constraints from the Paleocene Nacimiento and Animas formations. Geosphere, 15(5), 1641–1664. https://doi.org/10.1130/GES02072.1
    [Google Scholar]
  9. Cherniak, D. J., & Watson, E. B. (2001). Pb diffusion in zircon. Chemical Geology, 172, 5–24. https://doi.org/10.1016/S0009‐2541(00)00233‐3
    [Google Scholar]
  10. Coleman, D. S., Gray, W., & Glazner, A. F. (2004). Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology, 32, 433. https://doi.org/10.1130/G20220.1
    [Google Scholar]
  11. Copeland, P., Bertrand, G., France‐Lanord, C., & Sundell, K. (2015). 40Ar/39Ar ages of muscovites from modern Himalayan rivers: Himalayan evolution and the relative contribution of tectonics and climate. Geosphere, 11(6), 1–23. https://doi.org/10.1130/GES01154.1
    [Google Scholar]
  12. Copeland, P., & Harrison, T. M. (1990). Episodic rapid uplift in the Himalaya revealed by 40Ar/39Ar analysis of detrital K‐feldspar and muscovite, Bengal Fan. Geology, 18, 354–357. https://doi.org/10.1130/0091‐7613(1990)018<0354:ERUITH>2.3.CO;2
    [Google Scholar]
  13. Corfu, F. (2013). A century of U‐Pb geochronology: The long quest towards concordance. Geological Society of America Bulletin, 125(1/2), 33–47. https://doi.org/10.1130/B30698.1
    [Google Scholar]
  14. Corrigan, J. D., & Crowley, K. D. (1990). Fission‐track analysis of detrital apatites from Sites 717 and 718, Leg 116, central Indian Ocean. Proceedings of the Ocean Drilling Program, Scientific Results, 116, 75–92.
    [Google Scholar]
  15. Coutts, D. S., Mathews, W. A., & Hubbard, S. M. (2016). Assessment of widely used methods to derive depositional ages from detrital zircon populations. Geoscience Frontiers, 10(4), 1421–1435. https://doi.org/10.1016/j.gsf.2018.11.002
    [Google Scholar]
  16. De los Santos, M. G., Lawton, T. F., Copeland, P., Licht, A., Hall, S. A., & Quade, J. (2018). Age and depositional environment of the Lobo Formation, southwest New Mexico: Implications for the Laramide orogeny in the southern Rockies. Basin Research, 30(Suppl. 1), 401–423. https://doi.org/10.1111/bre.12226
    [Google Scholar]
  17. Dickinson, W. R., & Gehrels, G. E. (2009). Use of U‐Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288(1–2), 115–125. https://doi.org/10.1016/j.epsl.2009.09.013
    [Google Scholar]
  18. Flowers, R. M., Wernicke, B. P., & Farley, K. A. (2008). Unroofing, incision, and uplift history of the southwestern Colorado Plateau from apatite (U‐Th)/He thermochronometry. Geological Society of America Bulletin, 120(5‐6), 571–587. https://doi.org/10.1130/B26231.1
    [Google Scholar]
  19. Freedman, D., Pisani, R., & Purves, R. (2007). Statistics (4th ed.). New York, NY: W. W. Norton & Company, 720 pp.
    [Google Scholar]
  20. Froude, D. O., Ireland, T. R., Kinny, P. D., Williams, I. S., Compston, W., Williams, I. R., & Meyers, J. S. (1983). Ion microprobe identification of 4100–4200 Myr‐old terrestrial zircons. Nature, 304, 616–618. https://doi.org/10.1038/304616a0
    [Google Scholar]
  21. Gradstein, F. M., Ogg, J. G., & Smith, A. G. (2004). A geologic timescale 2004 (3rd ed.). Cambridge: Cambridge University Press.
    [Google Scholar]
  22. Gray, G. G., Pottorf, R. J., Yurewicz, D. A., Mahon, K. I., Pevear, D. R., & Chuchla, R. J. (2001). Thermal and chronological record of syn‐ to post‐Laramide burial and exhumation, Sierra Madre Oriental, Mexico. In C.Bartolini, R. T.Buffler, & A.Cantú‐Chapa (Eds.), The western Gulf of Mexico Basin: Tectonics, sedimentary basins, and petroleum systems (Vol. 75, pp. 159–181). Tulsa, OK: American Association of Petroleum Geologists.
    [Google Scholar]
  23. Guenthner, W. R., Reiners, P. W., Ketcham, R. A., Nasdala, L., & Giester, G. (2013). Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U‐Th)/He thermochronology. American Journal of Science, 313, 145–198. https://doi.org/10.2475/03.2013.01
    [Google Scholar]
  24. Harrison, T. M., & Lovera, O. M. (2014). The multi‐diffusion domain model: past, present and future. Geological Society, London, Special Publications, 378(1), 91–106. https://doi.org/10.1144/SP378.9
    [Google Scholar]
  25. Heizler, M. T., Karlstrom, K. E., Aslan, A., Zimmer, M., Ross, J., Crow, R., & Crossey, L. J. (2019). Detrital sanidine geochronology: linking volcanic sources to sedimentary sinks with high age precision, compositional fingerprints and improved maximum deposition ages. GSA Abstracts with Programs 2019, Paper 139‐4.
  26. Hereford, R., Beard, L. S., Dickinson, W. R., Karlstrom, K. E., Heizler, M. T., Crossey, L. J., … Pecha, M. (2016). Reevaluation of the Crooked Ridge River – Early Pleistocene (ca. 2 Ma) age and origin of the White Mesa alluvium, northeastern Arizona. Geosphere, 12, 768–789. https://doi.org/10.1130/GES01124.1
    [Google Scholar]
  27. Jackson, W. T.Jr, Robinson, D. M., Weislogel, A. L., Shang, F., & Jian, X. (2018). Mesozoic development of nonmarine basins in the northern Yidun terrane: Deposition and deformation in the eastern Tibetan Plateau prior to the India‐Asia collision. Tectonics, 37, 2466–2485. https://doi.org/10.1029/2018TC004995
    [Google Scholar]
  28. Juárez‐Arriaga, E., Lawton, T. F., Stockli, D. F., Solari, L., & Martens, U. (2019). Late Cretaceous‐Paleocene stratigraphic and structural evolution of the central Mexican fold and thrust belt, from detrital zircon (U‐Th)/(He‐Pb) ages. Journal of South American Earth Sciences, 95, 102264. https://doi.org/10.1016/j.jsames.2019.102264
    [Google Scholar]
  29. Junkin, W. D., & Gans, P. B. (2019). Stratigraphy and geochronology of the Nacientes del Teno and Rio Damas Formations: Insights into Middle to Late Jurassic Andean volcanism. Geosphere, 15(2), 450–478. https://doi.org/10.1130/GES01698.1
    [Google Scholar]
  30. Kay, S. M., Burns, W. M., Copeland, P., & Mancilla, O. (2006). Late Cretaceous to Recent Magmatism over the Neuquén Basin: Evidence for transient shallowing of the subduction zone under the Neuquén Andes (36°S to 38°S latitude). In S. M.Kay & V. A.Ramos (Eds.), Late cretaceous to recent magmatism and tectonism of the southern Andean margin at the latitude of the Neuquen basin (36–39°S) (pp. 19–60). GSA. Special Paper 407. Boulder, CO: Geological Society of American
    [Google Scholar]
  31. Kramers, J., Frei, R., Newville, M., Kober, B., & Villa, I. (2009). On the valency state of radiogenic lead in zircon and its consequences. Chemical Geology, 261, 4–11. https://doi.org/10.1016/j.chemgeo.2008.09.010
    [Google Scholar]
  32. Ludwig, K. R. (2003). User’s manual for isoplot 3.00 (Vol. 4). Berkely, CA: Berkeley Geochronology Center Special Publication.
    [Google Scholar]
  33. Ludwig, K. R. (2008). Isoplot/Ex 3.70. A geochronological toolkit for Microsoft excel. Berkeley Geochronological Center, Berkeley, Special publication No. 4, 76 pp.
  34. Ludwig, K. R., & Mundil, R. (2002). Extracting reliable U–Pb ages and errors from complexpopulations of zircons from Phanerozoic tuffs. Journal Conference Abstract 12th Goldschmidt Conference.
  35. McDougall, I., & Harrison, T. M. (1999). Geochronology and thermochronology by the 40Ar/39Ar method (2nd ed., 269 pp.). Oxford: Oxford University Press.
    [Google Scholar]
  36. McIntosh, W. C., & Ferguson, C. A. (1998). Sanidine, single crystal, laser‐fusion 40Ar/39Ar geochronology database for the superstition volcanic field Central Arizona, Arizona geological survey open‐file report 98‐27, 73 pp.
  37. Ojha, T. P., Butler, R. F., Quade, J., DeCelles, P. G., Richards, D., & Upreti, B. N. (2000). Magnetic polarity stratigraphy of the Neogene Siwalik Group at Khutia Khola, far western Nepal. Geological Society of America Bulletin, 112, 424–434. https://doi.org/10.1130/0016‐7606(2000)112<424:MPSOTN>2.0.CO;2
    [Google Scholar]
  38. Pujols, E. J., López, J. L., Stockli, D. F., Rossi, V. M., & Steel, R. J. (2018). New insights into the stratigraphic and structural evolution of the middle Jurassic S. Neuquén Basin from Detrital Zircon (U‐Th)/(He‐Pb) and Apatite (U‐Th)/He ages. Basin Research, 30(6), 1280–1297. https://doi.org/10.1111/bre.12304
    [Google Scholar]
  39. Pupin, P. (1980). Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73, 207–220. https://doi.org/10.1007/bf00381441
    [Google Scholar]
  40. Rahl, J. M., Reiners, P. W., Campbell, I. H., Nicolescou, S., & Allen, C. M. (2003). Combined single‐grain (U‐Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone, Utah. Geology, 31(9), 761–764. https://doi.org/10.1130/G19653.1
    [Google Scholar]
  41. Reiners, P. W., Carlson, R. W., Renne, P. R., Cooper, K. M., Granger, D. E., McLean, N. M., & Shoene, B. (2018). Geochronology and thermochronology. New York, NY: John Wiley and Sons, 464 pp.
    [Google Scholar]
  42. Romer, R. L. (2003). Alpha‐recoil in U‐Pb geochronology: Effective sample size matters. Contributions to Mineralogy and Petrology, 145, 481–491. https://doi.org/10.1007/s00410‐003‐0463‐0
    [Google Scholar]
  43. Romer, R. L., & Kroner, U. (2012). Reply to the discussion by J.W.F. Waldron and C.E. White on “Geochemical signature of Ordovician Mn‐rich sedimentary rocks on the Avalonian shelf”. Canadian Journal of Earth Sciences, 49(6), 772–774. https://doi.org/10.1139/e2012‐004
    [Google Scholar]
  44. Rösel, D., Zack, T., & Möller, A. (2019). Interpretation and significance of combined trace element and U–Pb isotopic data of detrital rutile: A case study from late Ordovician sedimentary rocks of Saxo‐Thuringia, Germany. International Journal of Earth Sciences, 108, 1–25. https://doi.org/10.1007/s00531‐018‐1643‐5
    [Google Scholar]
  45. Ross, J. B., Ludvigson, G. A., Möller, A., Gonzales, L. A., & Walker, J. D. (2017). Stable isotope paleohydrology and chemostratigraphy of the Albian wayan formation of the wedge‐top depozone, North American western interior basin. Science China Earth Sciences, 60, 44–57.
    [Google Scholar]
  46. Ruhl, K. W., & Hodges, K. V. (2005). The use of detrital mineral cooling ages to evaluate steady state assumptions in active orogens: An example from the central Nepalese Himalaya. Tectonics, 24(4), https://doi.org/10.1029/2004TC001712
    [Google Scholar]
  47. Saylor, J. E., & Sundell, K. E. (2016). Quantifying comparison of large detrital geochronology data sets. Geosphere, 12(1), 203–220. https://doi.org/10.1130/GES01237.1
    [Google Scholar]
  48. Schoene, B., & Szymanowski, D. (2019). 0.01% Precision and accuracy in ID‐TIMS U‐Pb geochronology: Are we there yet?GSA Abstracts with Programs, Paper 79‐13.
  49. Schwartz, T. M., Fosdick, J. C., & Graham, S. A. (2017). Using detrital zircon U‐Pb ages to calculate Late Cretaceous sedimentation rates in the Magallanes‐Austral basin, Patagonia. Basin Research, 29, 725–746. https://doi.org/10.1111/bre.12198
    [Google Scholar]
  50. Sickman, Z. T., Schwartz, T. M., & Graham, S. A. (2018). Refining stratigraphyand tectonic history using detrital zircon maximum depositionalage: An example fromthe Cerro Fortaleza Formation, Austral Basin, southern Patagonia. Basin Research, 30, 708–729. https://doi.org/10.1111/bre.12272
    [Google Scholar]
  51. Spencer, C. J., Kirkland, C. L., & Taylor, R. J. M. (2016). Strategies towards statistically robust interpretations of in situ U‐Pb zircon geochronology. Geoscience Frontiers, 7, 581–589. https://doi.org/10.1016/j.gsf.2015.11.006
    [Google Scholar]
  52. Stirling, C. H., Esat, T. M., Lambeck, K., McCulloch, M. T., Blake, S. G., Lee, D. C., & Halliday, A. N. (2001). Orbital forcing of the marine isotope stage 9 interglacial. Science, 291(5502), 290–293. https://doi.org/10.1126/science.291.5502.290
    [Google Scholar]
  53. Szulc, A. G., Najman, Y., Sinclair, H. D., Pringle, M., Bickle, M., Chapman, H., … DeCelles, P. (2006). Tectonic evolution of the Himalaya constrained by detrital 40Ar‐39Ar, Sm‐Nd and petrographic data from the Siwalik foreland basin succession, SW Nepal. Basin Research, 18(4), 375–391. https://doi.org/10.1111/j.1365‐2117.2006.00307.x
    [Google Scholar]
  54. Toscano, M. A., & Lundberg, J. (1999). Submerged Late Pleistocene reefs on the tectonically‐stable S.E. Florida margin: High‐precision geochronology, stratigraphy, resolution of Substage 5a sea‐level elevation, and orbital forcing. Quaternary Science Reviews, 18(6), 753–767. https://doi.org/10.1016/S0277‐3791(98)00077‐8
    [Google Scholar]
  55. Tucker, R. T., Roberts, E. M., Hu, Y., Kemp, A. I. S., & Salisbury, S. W. (2013). Detrital zircon age constraints for the Winton formation, Queensland: Contextualizing Australia’s late cretaceous dinosaur faunas. Gondwana Research, 24, 767–779. https://doi.org/10.1016/j.gr.2012.12.009
    [Google Scholar]
  56. van der Beek, P., Robert, X., Mugnier, J.‐L., Bernet, M., Huyghe, P., & Labrin, E. (2006). Late‐Miocene–Recent exhumation of the central Himalaya and recycling in the foreland basin assessed by apatite fission‐track thermochronology of Siwalik sediments, Nepal. Basin Research, 18(4), 413–434. https://doi.org/10.1111/j.1365‐2117.2006.00305.x
    [Google Scholar]
  57. Vermeesch, P. (2004). How many grains are needed for a provenance study?Earth and Planetary Science Letters, 224, 351–441. https://doi.org/10.1016/j.epsl.2004.05.037
    [Google Scholar]
  58. Vermeesch, P. (2018). Dissimilarity measures in detrital geochronology. Earth Science Reviews, 178, 310–321. https://doi.org/10.1016/j.earscirev.2017.11.027
    [Google Scholar]
  59. Waldron, J. W. F., Schofield, D. I., White, C. E., & Barr, S. M. (2011). Cambrian successions of the Meguma Terrane, Nova Scotia, and Harlech Dome, North Wales: Dispersed fragments of a peri‐Gondwanan basin?Journal of the Geological Society, London, 168(2011), 83–98. https://doi.org/10.1144/0016‐76492010‐068
    [Google Scholar]
  60. Wei, Y., Zhao, Z., Niu, Y., Zhu, D.‐C., DePaolo, D. J., Jing, T., … Sheikh, L. (2020). Geochemistry, detrital zircon geochronology and Hf isotope of the clastic rocks in southern Tibet: Implications for the Jurassic‐Cretaceous tectonic evolution of the Lhasa terrane. Gondwana Research, 78, 41–57. https://doi.org/10.1016/j.gr.2019.08.014
    [Google Scholar]
  61. Wyld, S. J., Rodgers, J. W., & Copeland, P. (2003). Metamorphic evolution of the Luning‐Fencemaker fold‐thrust belt, Nevada: 40Ar/39Ar geochronology, illite crystallinity, and metamorphic petrology. Journal of Geology, 111, 17–38.
    [Google Scholar]
  62. Zhang, X., Pease, V., Skogseid, J., & Wohlgemuth‐Ueberwasser, C. (2016). Reconstruction of tectonic events on the northern Eurasia margin of the Arctic, from U‐Pb detrital zircon provenance investigations of late Paleozoic to Mesozoic sandstones in southern Taimyr Peninsula. Geological Society of America Bulletin, 128, 29–46. https://doi.org/10.1130/B31241.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12441
Loading
/content/journals/10.1111/bre.12441
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): sedimentology; stratigraphy; tectonics and sedimentation

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error