1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

Abstract

There remains a limited understanding of the controls of pre‐existing structures on the architecture of deep‐water progradational sequences. In the Northern Taranaki Basin (NTB), New Zealand, Pliocene post‐extensional sedimentary sequences overlie Miocene back‐arc volcaniclastic units. We utilize seismic reflection datasets to investigate the relationships between the buried back‐arc mound‐shaped structures, and the spatio‐temporal changes in clinoform architecture and the associated progradational system elements within the overlying continental slope margin sequences. Our results reveal the following: (a) buried mound‐shaped structures in the northern domain of the study area, overlain by younging progression of shelf‐to‐basin prograding clinoforms; (b) folding of the deeper clinoforms that systematically decrease in magnitude with shallowing depth from the top of the seamounts; (c) overall, the N‐S‐trending continental slope margin evolves from a highly curvilinear/angular trend in the deeper clinoforms (Units 1 and 2) into a rectilinear geometry within the shallower post‐extensional intervals (Unit 3 and shallower); (d) Units 1 and 2 characterized by dominance of stacked offlap breaks and over‐steepened (7–10°) clinoform foreset slopes in the northern domain, and dominance of gently dipping foreset slopes (<6°) in the south; (e) Unit 3 shows very low (<5°) and intermediate (5–7°) foreset slopes across the entire survey; (f) in the northern domain, differential loading by prograding sequences about the buried seamounts and horst–graben structures induced a differential compaction of the deeper units, which influenced a temporal pinning of the prograding slope margin in pre‐Unit 2 times and (g) wide, closely spaced channel incision into over‐steepened slopes dominate the deeper prograding sequence in the northern domain, whereas narrower, straighter channels dominate the south. We show that the buried pre‐existing structures constitute rigid buttresses that modulated the syn‐depositional topography and post‐depositional architecture of the prograding sequences in the NTB. Our findings present a distinction in the controls on progradational sedimentation patterns between magmatic and non‐magmatic continental margins.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12487
2021-03-15
2024-04-26
Loading full text...

Full text loading...

References

  1. Allen, P. A., & Allen, J. R. (2005). Basin analysis. Principles and applications (2nd ed.). Oxford: Blackwell Scientific Publications.
    [Google Scholar]
  2. Alves, T. M. (2010). 3D Seismic examples of differential compaction in mass‐transport deposits and their effect on post‐failure strata. Marine Geology, 271(3–4), 212–224. https://doi.org/10.1016/j.margeo.2010.02.014
    [Google Scholar]
  3. Amonpantang, P., Bedle, H., & Wu, J. (2019). Multiattribute analysis for channel element discrimination in the Taranaki Basin, offshore New Zealand. Interpretation, 7(2), SC45–SC61. https://doi.org/10.1190/INT‐2018‐0174.1
    [Google Scholar]
  4. Anell, I., & Midtkandal, I. (2017). The quantifiable clinothem—Types, shapes and geometric relationships in the Plio‐Pleistocene Giant Foresets Formation, Taranaki Basin, New Zealand. Basin Research, 29, 277–297. https://doi.org/10.1111/bre.12149
    [Google Scholar]
  5. Anka, Z., Séranne, M., Lopez, M., Scheck‐Wenderoth, M., & Savoye, B. (2009). The long‐term evolution of the Congo deep‐sea fan: A basin‐wide view of the interaction between a giant submarine fan and a mature passive margin (ZaiAngo project). Tectonophysics, 470(1–2), 42–56. https://doi.org/10.1016/j.tecto.2008.04.009
    [Google Scholar]
  6. Armstrong, P. A., Allis, R. G., Funnell, R. H., & Chapman, D. S. (1998). Late Neogene exhumation patterns in Taranaki Basin (New Zealand): Evidence from offset porosity‐depth trends. Journal of Geophysical Research: Solid Earth, 103(B12), 30269–30282.
    [Google Scholar]
  7. Athy, L. F. (1930). Density, porosity, and compaction of sedimentary rocks. Aapg Bulletin, 14(1), 1–24.
    [Google Scholar]
  8. Berton, F., & Vesely, F. F. (2016). Seismic expression of depositional elements associated with a strongly progradational shelf margin: Northern Santos Basin, southeastern Brazil. Brazilian Journal of Geology, 46(4), 585–603. https://doi.org/10.1590/2317‐4889201620160031
    [Google Scholar]
  9. Bierbrauer, K., Herdy, T. J., Rek, A., & Mills, K. L. (2008). Offshore Northland Basin – Frontier exploration north of the established Taranaki Hydrocarbon Province. In: New Zealand Petroleum Conference Proceedings. Crown Minerals, Wellington.
  10. Bischoff, A. P., Nicol, A., & Beggs, M. (2017). Stratigraphy of architectural elements in a buried volcanic system and implications for hydrocarbon exploration. Interpretation, 5(3), SK141–SK159. https://doi.org/10.1190/INT‐2016‐0201.1
    [Google Scholar]
  11. Bridgwater, D., Sutton, J., & Watterson, J. (1974). Crustal downfolding associated with igneous activity. Tectonophysics, 21(1–2), 57–77. https://doi.org/10.1016/0040‐1951(74)90062‐6
    [Google Scholar]
  12. Chen, Q., & Sidney, S. (1997). Seismic attribute technology for reservoir forecasting and monitoring. The Leading Edge, 16(5), 445–448. https://doi.org/10.1190/1.1437657
    [Google Scholar]
  13. Chopra, S., & Marfurt, K. J. (2008). Emerging and future trends in seismic attributes. The Leading Edge, 27(3), 298–318. https://doi.org/10.1190/1.2896620
    [Google Scholar]
  14. Chopra, S., & Marfurt, K. (2013). Structural curvature versus amplitude curvature. The Leading Edge, 32(2), 178–184. https://doi.org/10.1190/tle32020178.1
    [Google Scholar]
  15. Emery, D., & Myers, K. J. (1996). Sequence stratigraphy. Oxford: Blackwell Science. https://doi.org/10.1002/9781444313710
    [Google Scholar]
  16. Feuillet, N., Manighetti, I., Tapponnier, P., & Jacques, E. (2002). Arc parallel extension and localization of volcanic complexes in Guadeloupe, Lesser Antilles. Journal of Geophysical Research: Solid Earth, 107(B12), ETG‐3.
    [Google Scholar]
  17. Geoffroy, L. (2005). Volcanic passive margins. Comptes Rendus Geoscience, 337(16), 1395–1408. https://doi.org/10.1016/j.crte.2005.10.006
    [Google Scholar]
  18. Gerber, T. P., Pratson, L. F., Wolinsky, M. A., Steel, R., Mohr, J., Swenson, J. B., & Paola, C. (2008). Clinoform progradation by turbisity currents: Modeling and experiments. Journal of Sedimentary Research, 78(3), 220–238. https://doi.org/10.2110/jsr.2008.023
    [Google Scholar]
  19. Giba, M., Nicol, A., & Walsh, J. J. (2010). Evolution of faulting and volcanism in a back‐arc basin and its implications for subduction processes: Taranaki Basin Evolution. Tectonics, 29(4), 1–18. https://doi.org/10.1029/2009TC002634
    [Google Scholar]
  20. Giba, M., Walsh, J. J., Nicol, A., Mouslopoulou, V., & Seebeck, H. (2013). Investigation of the spatio‐temporal relationship between normal faulting and arc volcanism on million‐year time scales. Journal of the Geological Society, 170(6), 951–962. https://doi.org/10.1144/jgs2012‐121
    [Google Scholar]
  21. Gomes, M. P., Vital, H., Bezerra, F. H. R., de Castro, D. L., de Macedo, J. W. D. P., (2014). The interplay between structural inheritance and morphology in the Equatorial Continental Shelf of Brazil. Marine Geology, 355, 150–161. https://doi.org/10.1016/j.margeo.2014.06.002
    [Google Scholar]
  22. Gomis‐Cartesio, L. E., Poyatos‐Moré, M., Hodgson, D. M., & Flint, S. S. (2018). Shelf‐margin clinothem progradation, degradation and readjustment: Tanqua depocentre, Karoo Basin (South Africa). Sedimentology, 65(3), 809–841. https://doi.org/10.1111/sed.12406
    [Google Scholar]
  23. Gong, C., Wang, Y., Zhu, W., Li, W., Xu, Q., & Zhang, J. (2011). The central submarine canyon in the qiongdongnan basin, northwestern South China Sea: architecture, sequence stratigraphy, and depositional processes. Marine and Petroleum Geology, 28(9), 1690–1702. https://doi.org/10.1016/j.marpetgeo.2011.06.005
    [Google Scholar]
  24. Hansen, D. M., & Cartwright, J. A. (2006). The three‐dimensional geometry and growth of forced folds above saucer‐shaped igneous sills. Journal of Structural Geology, 28(8), 1520–1535. https://doi.org/10.1016/j.jsg.2006.04.004
    [Google Scholar]
  25. Hansen, R. J., & Kamp, P. J. (2002). Evolution of the Giant Foresets Formation, northern Taranaki Basin, New Zealand, New Zealand Petroleum Conference Proceedings, Ministry of Commerce, p. 419–435.
  26. Hansen, R. J., & Kamp, P. J. J. (2004a). Late Miocene to early Pliocene stratigraphic record in northern Taranaki Basin: Condensed sedimentation ahead of Northern Graben extension and progradation of the modern continental margin. New Zealand Journal of Geology and Geophysics, 47(4), 645–662. https://doi.org/10.1080/00288306.2004.9515081
    [Google Scholar]
  27. Hansen, R., & Kamp, P. J. J. (2004b). Rapid progradation of the Pliocene‐Pleistocene continental margin, northern Taranaki Basin, New Zealand, and implications. In: Proceedings of New Zealand Petroleum Conference, pp. 1–9.
  28. Hansen, R. J., & Kamp, P. J. J. (2006). Sequence stratigraphy and architectural elements of the Giant Foresets Formation, northern Taranaki Basin, New Zealand. In: Proceedings of New Zealand Petroleum Conference, pp.6–10.
  29. Hardage, B. A., Carr, D. L., Lancaster, D. E., Simmons, J. L., Elphick, R. Y., Pendleton, V. M., & Johns, R. A. (1996). 3‐D seismic evidence of the effects of carbonate karst collapse on overlying clastic stratigraphy and reservoir compartmentalization. Geophysics, 61(5), 1336–1350. https://doi.org/10.1190/1.1444057
    [Google Scholar]
  30. Heezen, B. C., Hollister, C. D., & Ruddiman, W. F. (1966). Shaping of the continental rise by deep geostrophic contour currents. Science, 152(3721), 502–508. https://doi.org/10.1126/science.152.3721.502
    [Google Scholar]
  31. Herzer, R. H. (1995). Seismic stratigraphy of a buried volcanic arc, Northland, New Zealand and implications for Neogene subduction. Marine and Petroleum Geology, 12, 511–531. https://doi.org/10.1016/0264‐8172(95)91506‐K
    [Google Scholar]
  32. Holford, S., Schofield, N., MacDonald, J., Duddy, I., & Green, P. (2012). Seismic analysis of igneous systems in sedimentary basins and their impacts on hydrocarbon prospectivity: Examples from the southern Australian margin. The APPEA Journal, 52(1), 229–252. https://doi.org/10.1071/AJ11017
    [Google Scholar]
  33. Hood, S. D., Nelson, C. S., & Kamp, P. J. J. (2003). Lithostratigraphy and depositional episodes of the Oligocene carbonate‐rich Tikorangi Formation, Taranaki Basin, New Zealand. New Zealand Journal of Geology and Geophysics, 46(3), 363–386. https://doi.org/10.1080/00288306.2003.9515015
    [Google Scholar]
  34. Infante‐Paez, L. (2018). Seismic expression of igneous bodies in sedimentary basins and their impact on hydrocarbon exploration: Examples from a compressive tectonic setting, Taranaki Basin, New Zealand. PhD Dissertation, University of Oklahoma, School of Geology and Geophysics, pp. 196.
  35. Infante‐Paez, L., & Marfurt, K. J. (2017). Seismic expression and geomorphology of igneous bodies: a Taranaki Basin, New Zealand, case study. Interpretation, 5, SK121–SK140. https://doi.org/10.1190/INT‐2016‐0244.1
    [Google Scholar]
  36. Jackson, C. A., Magee, C., & Hunt‐Stewart, E. R. (2019). Cenozoic contourites in the eastern Great Australian Bight, offshore southern Australia: Implications for the onset of the Leeuwin Current. Journal of Sedimentary Research, 89(3), 199–206. https://doi.org/10.2110/jsr.2019.16
    [Google Scholar]
  37. Jackson, C. A., Schofield, N., & Golenkov, B. (2013). Geometry and controls on the development of igneous sill‐related forced folds: A 2‐D seismic reflection case study from offshore southern Australia. Geological Society of America Bulletin, 125(11‐12), 1874–1890. https://doi.org/10.1130/B30833.1
    [Google Scholar]
  38. Johnston, S., Strachan, L., & Cassidy, J. (2010). Late Pliocene to Recent Seismic Stratigraphy of the Northland Basin, New Zealand. AAPG Annual Convention and Exhibition, April 11‐14, 2010. Search and Discovery Article #50327.
  39. Kamp, P. J. J. (1984). Neogene and Quaternary extent and geometry of the subducted Pacific Plate beneath North Island, New Zealand: Implications for Kaikoura tectonics. Tectonophysics, 108, 241–266.
    [Google Scholar]
  40. Kamp, P. J. J., & Furlong, K. P. (2006). Neogene Plate tectonic reconstructions and geodynamics of north island sedimentary basins: Implications for the Petroleum Systems. New Zealand Petroleum Conference, 1, 6–10.
    [Google Scholar]
  41. King, P. R. (2000). Tectonic reconstructions of New Zealand: 40 Ma to the Present. New Zealand Journal of Geology and Geophysics, 43(4), 611–638. https://doi.org/10.1080/00288306.2000.9514913
    [Google Scholar]
  42. King, P. R., & Thrasher, G. P. (1996). Cretaceous‐Cenozoic geology and petroleum systems of the Taranaki Basin, New Zealand. Institute of Geological and Nuclear Sciences monograph 13 (Vol. 243, p. 6) enclosures. Lower Hutt: Institute of Geological and Nuclear Scienses Ltd.
    [Google Scholar]
  43. Kolawole, F., & Carpenter, B. M. (2020). Basement‐controlled deformation of sedimentary sequences, Anadarko Shelf, Oklahoma. Basin Research, 1–23. https://doi.org/10.1111/bre.12433
    [Google Scholar]
  44. Leroy, M., Gueydan, F., & Dauteuil, O. (2008). Uplift and strength evolution of passive margins inferred from 2‐D conductive modelling. Geophysical Journal International, 172(1), 464–476. https://doi.org/10.1111/j.1365‐246X.2007.03566.x
    [Google Scholar]
  45. Lodwick, G., & Rupert, M.. (2019). What controls the reservoir quality of andesitic arc derived volcano clastic sandstone reservoirs: An example from the Mohakatino Formation, Taranaki Basin, New Zealand, Durham theses, Durham University. Retrieved from http://etheses.dur.ac.uk/13239/
  46. Magee, C., Hunt‐Stewart, E., & Jackson, C.‐A.‐L. (2013). Volcano growth mechanisms and the role of sub‐volcanic intrusions: Insights from 2D seismic reflection data. Earth and Planetary Science Letters, 373, 41–53. https://doi.org/10.1016/j.epsl.2013.04.041
    [Google Scholar]
  47. Magee, C., Muirhead, J. D., Karvelas, A., Holford, S. P., Jackson, C. A., Bastow, I. D., … Shtukert, O. (2016). Lateral magma flow in mafic sill complexes. Geosphere, 12(3), 809–841. https://doi.org/10.1130/GES01256.1
    [Google Scholar]
  48. Magee, C., Stevenson, C. T. E., Ebmeier, S. K., Keir, D., Hammond, J. O. S., Gottsmann, J. H., … Jackson, M. D. (2018). Magma plumbing systems: A geophysical perspective. Journal of Petrology, 59(6), 1217–1251. https://doi.org/10.1093/petrology/egy064
    [Google Scholar]
  49. Marfurt, K. J., & Alves, T. M. (2015). Pitfalls and limitations in seismic attribute interpretation of tectonic features. Interpretation, 3(1), SB5–SB15. https://doi.org/10.1190/INT‐2014‐0122.1
    [Google Scholar]
  50. Mitchum, R. M. (1977). Seismic stratigraphy and global changes of sea level, part 11: Glossary of terms used in seismic stratigraphy. In C. E.Payton (Ed.), Seismic Stratigraphy—Applications to Hydrocarbon Exploration (Vol. 26). American Association of Petroleum Geologists. https://doi.org/10.1306/M26490C13
    [Google Scholar]
  51. Mortimer, E. J., Paton, D. A., Scholz, C. A., & Strecker, M. R. (2016). Implications of structural inheritance in oblique rift zones for basin compartmentalization: Nkhata Basin, Malawi Rift (EARS). Marine and Petroleum Geology, 72, 110–121. https://doi.org/10.1016/j.marpetgeo.2015.12.018
    [Google Scholar]
  52. Moscardelli, L., & Wood, L. (2008). New classification system for mass transport complexes in offshore Trinidad. Basin Research, 20(1), 73–98. https://doi.org/10.1111/j.1365‐2117.2007.00340.x
    [Google Scholar]
  53. Muirhead, J. D., Airoldi, G., Rowland, J. V., & White, J. D. (2012). Interconnected sills and inclined sheet intrusions control shallow magma transport in the Ferrar large igneous province, Antarctica. Bulletin, 124(1–2), 162–180. https://doi.org/10.1130/B30455.1
    [Google Scholar]
  54. Murdmaa, I. O., Levchenko, O. V., & Marinova, J. G. (2012). Quaternary seismic facies of the atlantic continental rise. Lithology and Mineral Resources, 47(5), 379–400. https://doi.org/10.1134/S0024490212050069
    [Google Scholar]
  55. Nicol, A., Mazengarb, C., Chanier, F., Rait, G., Uruski, C., & Wallace, L. (2007). Tectonic evolution of the active Hikurangi subduction margin, New Zealand, since the Oligocene. Tectonics, 26(4), 1–24. https://doi.org/10.1029/2006TC002090
    [Google Scholar]
  56. O’Grady, D. B., & Syvitski, J. P. M. (2002). Large‐scale morphology of Arctic continental slopes: The influence of sediment delivery on slope form. Geological Society, London, Special Publications, 203(1), 11–31. https://doi.org/10.1144/GSL.SP.2002.203.01.02
    [Google Scholar]
  57. O’Grady, D. B., Syvitski, J. P. M., Pratson, L. F., & Sarg, J. F. (2000). Categorizing the morphologic variability of siliciclastic passive continental margins. Geology, 28(3), 207.
    [Google Scholar]
  58. O’Leary, R., Luft, F., & Mogg, W.Origin Energy New Zealand Pty Ltd (2010). Ministry of Economic Development New Zealand Unpublished Petroleum Report 4299.
  59. Orton, G. J., & Reading, H. G. (1993). Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size. Sedimentology, 40(3), 475–512. https://doi.org/10.1111/j.1365‐3091.1993.tb01347.x
    [Google Scholar]
  60. Palmer, J. (1985). Pre‐Miocene lithostratigraphy of Taranaki Basin, New Zealand. New Zealand Journal of Geology and Geophysics, 28, 197–216. https://doi.org/10.1080/00288306.1985.10422220
    [Google Scholar]
  61. Patruno, S., & Helland‐Hansen, W. (2018). Clinoforms and clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth‐Science Reviews, 185, 202–233. https://doi.org/10.1016/j.earscirev.2018.05.016
    [Google Scholar]
  62. Postma, G. (1984). Slumps and their deposits in fan delta front and slope. Geology, 12(1), 27.
    [Google Scholar]
  63. Puga‐Bernabéu, Á., Vonk, A. J., Nelson, C. S., & Kamp, P. J. J. (2009). Mangarara Formation: Exhumed remnants of a middle Miocene, temperate carbonate, submarine channel‐fan system on the eastern margin of Taranaki Basin, New Zealand. New Zealand Journal of Geology and Geophysics, 52(2), 73–93. https://doi.org/10.1080/00288300909509880
    [Google Scholar]
  64. Randen, T., Pedersen, S. I., & Sønneland, L. (2001). Automatic extraction of fault surfaces from three‐dimensional seismic data. SEG Technical Program Expanded Abstracts, 2001, 551–554. https://doi.org/10.1190/1.1816675
    [Google Scholar]
  65. Reynolds, P., Schofield, N., Brown, R. J., & Holford, S. P. (2018). The architecture of submarine monogenetic volcanoes – Insights from 3D seismic data. Basin Research, 30, 437–451. https://doi.org/10.1111/bre.12230
    [Google Scholar]
  66. Rusconi, F. J. (2017). 3D seismic interpretation of a plio‐pleistocene mass transport deposit in the deepwater taranaki basin of New Zealand. Theses and Dissertations. Retrieved from https://scholarworks.uark.edu/etd/2583
  67. Salazar, M., Moscardelli, L., & Wood, L. (2016). Utilising clinoform architecture to understand the drivers of basin margin evolution: A case study in the Taranaki Basin. New Zealand. Basin Research, 28(6), 840–865. https://doi.org/10.1111/bre.12138
    [Google Scholar]
  68. Sclater, J. G., & Christie, P. A. (1980). Continental stretching: An explanation of the post‐mid‐Cretaceous subsidence of the central North Sea basin. Journal of Geophysical Research: Solid Earth, 85(B7), 3711–3739.
    [Google Scholar]
  69. Seebeck, H. C. (2013). Normal Faulting, Volcanic and Fluid Flow, Hikurangi Subduction Plate Boundary, New Zealand. PhD. Dissertation, University of Canterbury.
  70. Seebeck, H., Nicol, A., Villamor, P., Ristau, J., & Pettinga, J. (2014). Structure and kinematics of the Taupo Rift, New Zealand. Tectonics, 33(6), 1178–1199. https://doi.org/10.1002/2014TC003569
    [Google Scholar]
  71. Shumaker, L. E., Jobe, Z. R., & Graham, S. A. (2017). Evolution of submarine gullies on a prograding slope: Insights from 3D seismic reflection data. Marine Geology, 393, 35–46. https://doi.org/10.1016/j.margeo.2016.06.006
    [Google Scholar]
  72. Slingerland, R., Driscoll, N. W., Milliman, J. D., Miller, S. R., & Johnstone, E. A. (2008). Anatomy and growth of a Holocene clinothem in the Gulf of Papua. Journal of Geophysical Research, 113(F1), F01S13. https://doi.org/10.1029/2006JF000628
    [Google Scholar]
  73. Stagpoole, V., & Funnell, R. (2001). Arc magmatism and hydrocarbon generation in the northern Taranaki Basin. New Zealand. Petroleum Geoscience, 7(3), 255–267. https://doi.org/10.1144/petgeo.7.3.255
    [Google Scholar]
  74. Stagpoole, V., & Nicol, A. (2008). Regional structure and kinematic history of a large subduction back thrust: Taranaki Fault, New Zealand. Journal of Geophysical Research, 113(B1), B01403. https://doi.org/10.1029/2007JB005170
    [Google Scholar]
  75. Steel, R. J., & Olsen, T. (2002). Clinoforms, clinoform trajectories and deepwater sands. In: J. M.Armentrout, & N. C.Rosoen (Eds.). Sequence stratigraphic models fpr exploration and production: evolving models and application histories (Vol. 22, 367–381). Proceeding of the 22nd Annual Bob F. Perkins Research Conference, Gulf Coast Section, Society of Economic Paleontologists and Mineralogists: GCS‐SEPM Special Publication.
    [Google Scholar]
  76. Talling, P. J. (1998). How and where do incised valleys form if sea level remains above the shelf edge?Geology, 26(1), 87.
    [Google Scholar]
  77. Tippett, J. M., & Kamp, P. J. J. (1995). Geomorphic evolution of the Southern Alps, New Zealand. Earth Surface Processes and Landforms, 20(2), 177–192. https://doi.org/10.1002/esp.3290200207
    [Google Scholar]
  78. Tsikalas, F., Gudlaugsson, S. T., & Faleide, J. I. (1998). The anatomy of a buried complex impact structure: The Mjølnir Structure, Barents Sea. Journal of Geophysical Research: Solid Earth, 103(B12), 30469–30483. https://doi.org/10.1029/97JB03389
    [Google Scholar]
  79. Unkaracalar, E. E. (2018). 3D seismic imaging of submarine stratovolcanic and salt structures beneath the Taranaki Basin, New Zealand and the Gulf of Mexico. Masters Theses. 7787. Retrieved form: http://scholarsmine.mst.edu/masters_theses/7787
  80. Uruski, C., & Baillie, P. (2004). Mesozoic evolution of the Greater Taranaki Basin and implications for petroleum prospectivity. The APPEA Journal, 44(1), 385. https://doi.org/10.1071/AJ03014
    [Google Scholar]
  81. Vail, P. R. (1987). Seismic stratigraphy interpretation using sequence stratigraphy. Part I: Seismic stratigraphy interpretation procedure. In: Bally, A. W. (Ed.), Atlas of Seismic Statigraphy, Am. Assoc. Pet. Geol. Studies in Geology 27, (Vol.1, pp. 1–10).
    [Google Scholar]
  82. Vail, P. R., Audeart, F., Bowman, S. A., Eisner, P. N., & Perez‐Cruz, G. (1991). The stratigraphic signatures of tectonics, eustasy and sedimentation – an overview. In: G.Einsele, W.Ricken, & Seilacher (Eds.), Cyclic Stratigraphy (pp. 617–659). New York: Springer‐Verlag.
    [Google Scholar]
  83. Zhao, F., Wu, S., Sun, Q., Huuse, M., Li, W., & Wang, Z. (2014). Submarine volcanic mounds in the Pearl River Mouth Basin, northern South China Sea. Marine Geology, 355, 162–172. https://doi.org/10.1016/j.margeo.2014.05.018
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12487
Loading
/content/journals/10.1111/bre.12487
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error