1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[Abstract

The Sivas Basin overlaps the northern Neotethys suture zone in central Anatolia (Turkey) and contains a ca. 12‐km thick succession of Cenozoic strata that provides an exceptional record of major tectonic transitions from subduction to continental assembly and tectonic escape. Consensus regarding the tectonic and palaeogeographic evolution of this segment of the Arabia‐Eurasia collision zone has been hindered by uncertainty in the tectonic setting of the early (Palaeogene) Sivas Basin, which has been variably interpreted as a remnant ocean, forearc, foreland, wedge‐top or intracontinental extensional basin. Here we integrate new geologic mapping (>5,000 km2), stratigraphy, facies analysis and U‐Pb geochronology from the western Sivas Basin to produce a detailed time‐stratigraphic framework and a refined Palaeogene tectono‐sedimentary model for the Sivas Basin. Earliest marine sedimentation occurred during the Maastrichtian‐Palaeocene in a remnant ocean setting due to incomplete closure of the northern Neotethys Ocean. Rapid accumulation of >2 km of basin floor turbidites during the middle to late Eocene reflect a transition to a foreland setting. A major late Eocene unconformity (ca. 38–34 Ma) coincides with the initiation of the north‐vergent southern Sivas fold‐thrust belt, which inverted and structurally partitioned the basin into a southern wedge‐top and a northern evaporitic foreland basin; the entire basin was dominantly nonmarine after this unconformity. Published palaeomagnetic data integrated with a newly discovered tuff dated at 31.9 Ma reveal that the 2.8‐km thick Altinyayla Formation was deposited from ca. 34 to 26 Ma in an unconfined braided fluvial system. Close stratigraphic correlations between the western, central and northern Sivas Basin suggest that the entire basin evolved from a remnant ocean to peripheral retro‐foreland basin during the middle to late Eocene, and finally a fragmented foreland basin since the Oligocene. This general evolution may be a characteristic of such sedimentary basins formed on suture zones across Anatolia and in other collisional orogens globally.

,

Conceptual block diagrams showing our proposed ectono‐sedimentary evolution of the western Sivas Basin (red box in inset map) during deposition of TS‐1 (a,b,c) and TS‐2 (d); see Figure 2 for location of X‐X′. (a) Maastrichtian to Paleocene Tauride‐Pontide collision in the easternmost Sivas Basin led to incomplete subduction and a remannt ocean setting in the western Sivas Basin; additional accommodation space may have been generated by an enigmatic phase of extension. (b) Middle Eocene contraction in the Tauride thrust belt to the south led to rapid subsidence in the Sivas Basin and a transition to a flexural foreland basin setting. (c) Northward propagation of shortening during the latest Eocene marked another switch to a fragmented foreland setting involving basin inversion, uplift and isolation from the marine realm, and initiation of the southern Sivas fold‐thrust belt (SSFTB), which structurally partitioned the Sivas Basin into a southern wedge‐top and northern evaporitic foreland basin during the Oligocene (d). A – Altınyayla; B – Bünyan; other abbreviations as in Figure 1.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12498
2021-03-15
2024-04-26
Loading full text...

Full text loading...

References

  1. Aktimur, H. T., Teki̇rli̇, M. E., & Yurdakul, M. E. (1990). Geology of the Sivas‐Erzincan Tertiary basin. Bulletin of the Mineral Research and Exploration Institute of Turkey, Ankara, 111, 21–30.
    [Google Scholar]
  2. Anderson, R. B., Long, S. P., Horton, B. K., Thomson, S. N., Calle, A. Z., & Stockli, D. F. (2018). Orogenic wedge evolution of the central Andes, Bolivia (21°S): Implications for Cordilleran cyclicity. Tectonics, 37, 3577–3609. https://doi.org/10.1029/2018TC005132
    [Google Scholar]
  3. Armijo, R., Meyer, B., Hubert, A., & Barka, A. (1999). Westward propagation of the North Anatolian fault into the northern Aegean: Timing and kinematics. Geology, 27, 267–270. https://doi.org/10.1130/0091‐7613(1999)027<0267:WPOTNA>2.3.CO;2
    [Google Scholar]
  4. Ballato, P., Parra, M., Schildgen, T. F., Dunkl, I., Yıldırım, C., Özsayın, E., … Strecker, M. R. (2018). Multiple exhumation phases in the Central Pontides (N Turkey): New temporal constraints on major geodynamic changes associated with the closure of the Neo‐Tethys Ocean. Tectonics, 37, 1831–1857. https://doi.org/10.1029/2017TC004808
    [Google Scholar]
  5. Ballato, P., Uba, C. E., Landgraf, A., Strecker, M. R., Sudo, M., Stockli, D. F., … Tabatabaei, S. H. (2011). Arabia‐Eurasia continental collision: Insights from late Tertiary foreland‐basin evolution in the Alborz Mountains, northern Iran. Geological Society of America Bulletin, 123, 106–131. https://doi.org/10.1130/B30091.1
    [Google Scholar]
  6. Bally, A. W., & Snelson, S. (1980). Realms of subsidence. In A. D.Miall (Ed.), Facts and principles of world petroleum occurrence, (pp. 9–94). Calgary: Canadian Society of Petroleum Geologists.
    [Google Scholar]
  7. Barrier, E., Vrielynck, B., Brouillet, J. F., & Brunet, M. F. (2018). Paleotectonic reconstruction of the central Tethyan realm: Tectono‐sedimentary‐palinspastic maps from late permian to pliocene. CCGM/CGMW, Paris, Atlas of 20 maps (scale: 1/15,000,000). Retrieved from http://www.ccgm.org
  8. Baski, I., & Keskin, H. (2010). Geologic map of the Elbistan quadrangle, sheet K 36, scale 1:100,000. Ankara, Turkey: General Directorate of Mineral Exploration and Research (MTA).
    [Google Scholar]
  9. Bentham, P. A., Talling, P. J., & Burbank, D. W. (1993). Braided stream and flood‐plain deposition in a rapidly aggrading basin: The Escanilla Formation, Spanish Pyrenees. Geological Society of London Special Publications, 75, 177–194. https://doi.org/10.1144/GSL.SP.1993.075.01.11
    [Google Scholar]
  10. Bilgiç, T., & Terlemez, I. (2007). Geologic Map of the Sivas Quadrangle, Sheet J 36, scale 1:100,000. Ankara, Turkey: General Directorate of Mineral Exploration and Research (MTA).
    [Google Scholar]
  11. Carroll, A. R., Yunhai, L., Graham, S. A., Xuchang, X., Hendrix, M. S., Jinchi, C., & McKnight, C. L. (1990). Junggar basin, northwest China: Trapped Late Paleozoic ocean. Tectonophysics, 181, 1–14. https://doi.org/10.1016/0040‐1951(90)90004‐R
    [Google Scholar]
  12. Cater, J. M. L., Hanna, S. S., Ries, A. C., & Turner, P. (1991). Tertiary evolution of the Sivas basin, Central Turkey. Tectonophysics, 195, 29–46. https://doi.org/10.1016/0040‐1951(91)90142‐F
    [Google Scholar]
  13. Cavazza, W., Albino, I., Zattin, M., Galoyan, G., Imamverdiyev, N., & Melkonyan, R. (2015). Thermochronometric evidence for Miocene tectonic reactivation of the Sevan‐Akera suture zone (Lesser Caucasus): A far‐field tectonic effect of the Arabia‐Eurasia collision?Geological Society of London Special Publications, 428, 187–198. https://doi.org/10.1144/SP428.4
    [Google Scholar]
  14. Cavazza, W., Cattò, S., Zattin, M., Okay, A. I., & Reiners, P. (2018). Thermochronology of the Miocene Arabia‐Eurasia collision zone of southeastern Turkey. Geosphere, 14, 2277–2293. https://doi.org/10.1130/GES01637.1.
    [Google Scholar]
  15. Cherven, V. B. (1986). Tethys‐marginal sedimentary basins in western Iran. Geological Society of America Bulletin, 97, 516–522. https://doi.org/10.1130/0016‐7606(1986)97<516:TSBIWI>2.0.CO;2
    [Google Scholar]
  16. Çiner, A., Kosun, E., & Deynoux, M. (2002). Fluvial, evaporitic and shallow‐marine facies architecture, depositional evolution and cyclicity in the Sivas Basin (Lower to Middle Miocene), Central Turkey. Journal of Asian Earth Sciences, 21, 147–165. https://doi.org/10.1016/S1367‐9120(02)00042‐1
    [Google Scholar]
  17. Cosentino, D., Schildgen, T. F., Cipollari, P., Faranda, C., Gliozzi, E., Hudáčková, N., … Strecker, M. R. (2012). Late Miocene surface uplift of the southern margin of the Central Anatolian Plateau, Central Taurides, Turkey. Geological Society of America Bulletin, 124, 133–145. https://doi.org/10.1130/B30466.1
    [Google Scholar]
  18. Dahlen, F. A. (1990). Critical taper model of fold‐and‐thrust belts and accretionary wedges. Annual Review of Earth and Planetary Sciences, 18, 55–99. https://doi.org/10.1146/annurev.ea.18.050190.000415
    [Google Scholar]
  19. Darin, M. H. (2019). Cenozoic tectonic evolution of the Sivas Basin from subduction to collision to escape in central Anatolia, Turkey [Doctoral dissertation] (p. 373). Flagstaff, AZ: Northern Arizona University.
    [Google Scholar]
  20. Darin, M. H., & Umhoefer, P. J. (2019). Structure and kinematic evolution of the southern Sivas fold‐thrust belt, Sivas Basin, Central Anatolia, Turkey. Turkish Journal of Earth Sciences, 28, 834–859. Retrieved from https://10.3906/yer‐1907‐29
    [Google Scholar]
  21. Darin, M. H., Umhoefer, P. J., & Thomson, S. N. (2018). Rapid late Eocene exhumation of the Sivas Basin (Central Anatolia) driven by initial Arabia‐Eurasia collision. Tectonics, 37, 3805–3833. https://doi.org/10.1029/2017TC004954
    [Google Scholar]
  22. De Bruijn, H., Ünay, E., Ostende, L. V. D. H., & Saraç, G. (1992). A new association of small mammals from the lowermost Lower Miocene of Central Anatolia. Geobios, 25, 651–670. https://doi.org/10.1016/0016‐6995(92)80105‐M
    [Google Scholar]
  23. Decelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8, 105–123. https://doi.org/10.1046/j.1365‐2117.1996.01491.x
    [Google Scholar]
  24. Decelles, P. G., Langford, R. P., & Schwartz, R. K. (1983). Two new methods of paleocurrent determination from trough cross‐stratification. Journal of Sedimentary Research, 53, 629–642.
    [Google Scholar]
  25. Dewey, J. F., & Kidd, W. S. F. (1974). Continental collisions in the Appalachian‐Caledonian orogenic belt: Variations related to complete and incomplete suturing. Geology, 2, 543–546. https://doi.org/10.1130/0091‐7613(1974)2<543:CCITAO>2.0.CO;2
    [Google Scholar]
  26. Dirik, K., Göncüoğlu, M. C., & Kozlu, H. (1999). Stratigraphy and pre‐Miocene tectonic evolution of the southwestern part of the Sivas Basin, Central Anatolia, Turkey. Geological Journal, 34, 303–319. https://doi.org/10.1002/(SICI)1099‐1034(199907/09)34:3<303:AID‐GJ829>3.0.CO;2‐Z
    [Google Scholar]
  27. Dokuz, A., Aydin, F., & Karsli, O. (2019). Postcollisional transition from subduction‐ to intraplate‐type magmatism in the eastern Sakarya zone, Turkey: Indicators of northern Neotethyan slab breakoff. Geological Society of America Bulletin, 131, 1623–1642. https://doi.org/10.1130/B31993.1
    [Google Scholar]
  28. Eisbacher, G. H. (1974). Evolution of successor basins in the Canadian Cordillera. In R. H.Dott & R. H.Shaver (Eds.), Modern and ancient geosynclinal sedimentation (pp. 274–291). Tulsa, OK: Society of Economic Paleontologists and Mineralogists Special Publication.
    [Google Scholar]
  29. Emre, Ö., Duman, T. Y., Özlap, S., Elmacı, H., Olgun, Ş., & Şaroğlu, F. (2013). Active fault map of Turkey, 1:250:000 scale. Ankara, Turkey: General Directorate of Mineral Exploration and Research (MTA).
    [Google Scholar]
  30. Folk, R. L. (1980). Petrology of sedimentary rocks. Austin, TX: Hemphill Publishing.
    [Google Scholar]
  31. Friend, P. F. (1978). Distinctive features of some ancient river systems. In A. D.Miall (Ed.), Fluvial sedimentology, (pp. 531–542). Calgary: Canadian Society of Petroleum Geologists.
    [Google Scholar]
  32. Gehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochemistry, Geophysics, Geosystems, 9(3), 13. https://doi.org/10.1029/2007GC001805
    [Google Scholar]
  33. Gökten, E. (1983). Stratigraphy and geological evolution of the south‐southeast of Şarkışla (Sivas) [in Turkish with English abstract]. Bulletin of the Geological Society of Turkey, 26, 167–176.
    [Google Scholar]
  34. Gökten, E. (1984). Tectonics of the Şarkişla (Sivas) region [in Turkish]. Geological Engineering Journal, 20, 3–10.
    [Google Scholar]
  35. Gökten, E., & Floyd, P. A. (1987). Geochemistry and tectonic development of the Şarkışla area volcanic rocks in central Anatolia, Turkey. Mineralogical Magazine, 51, 553–559.
    [Google Scholar]
  36. Gökten, Y. E. (1986). Paleocene carbonate turbidites of the Şarkışla Region, Turkey – Their significance in an orogenic basin. Sedimentary Geology, 49, 143–165.
    [Google Scholar]
  37. Görür, N., Oktay, F. Y., Seymen, I., & Şengör, A. M. C. (1984). Palaeotectonic evolution of the Tuzgölü basin complex, Central Turkey: Sedimentary record of a Neo‐Tethyan closure. Geological Society of London Special Publications, 17, 467–482. https://doi.org/10.1144/GSL.SP.1984.017.01.34
    [Google Scholar]
  38. Görür, N., Tüysüz, O., & Şengör, A. M. C. (1998). Tectonic evolution of the central Anatolian Basins. International Geology Review, 40, 831–850. https://doi.org/10.1080/00206819809465241
    [Google Scholar]
  39. Graham, S. A., Dickinson, W. R., & Ingersoll, R. V. (1975). Himalayan‐Bengal model for flysch dispersal in the Appalachian‐Ouachita system. Geological Society of America Bulletin, 86, 273–286. https://doi.org/10.1130/0016‐7606(1975)86<273:HMFFDI>2.0.CO;2
    [Google Scholar]
  40. Guezou, J. C., Temiz, H., Poisson, A., & Gürsoy, H. (1996). Tectonics of the Sivas basin: The Neogene record of the Anatolian accretion along the inner Tauric suture. International Geology Review, 38, 901–925. https://doi.org/10.1080/00206819709465371
    [Google Scholar]
  41. Gündoģan, I., Önal, M., & Depçi, T. (2005). Sedimentology, petrography and diagenesis of Eocene‐Oligocene evaporites: The Tuzhisar Formation, SW Sivas Basin, Turkey. Journal of Asian Earth Sciences, 25, 791–803. https://doi.org/10.1016/j.jseaes.2004.08.002
    [Google Scholar]
  42. Gürer, D., Plunder, A., Kirst, F., Corfu, F., Schmid, S. M., & van Hinsbergen, D. J. J. (2018). A long‐lived Late Cretaceous–early Eocene extensional province in Anatolia? Structural evidence from the Ivriz Detachment, southern central Turkey. Earth and Planetary Science Letters, 481, 111–124. https://doi.org/10.1016/j.epsl.2017.10.008
    [Google Scholar]
  43. Gürer, D., & van Hinsbergen, D. J. J. (2019). Diachronous demise of the Neotethys Ocean as a driver for non‐cylindrical orogenesis in Anatolia. Tectonophysics, 760, 95–106. https://doi.org/10.1016/j.tecto.2018.06.005
    [Google Scholar]
  44. Gürer, D., van Hinsbergen, D. J. J., Özkaptan, M., Creton, I., Koymans, M. R., Cascella, A., & Langereis, C. G. (2018). Paleomagnetic constraints on the timing and distribution of Cenozoic rotations in Central and Eastern Anatolia. Solid Earth, 9, 295–322. https://doi.org/10.5194/se‐9‐295‐2018
    [Google Scholar]
  45. Gürer, Ö. F., & Aldanmaz, E. (2002). Origin of the Upper Cretaceous‐Tertiary sedimentary basins within the Tauride‐Anatolide platform in Turkey. Geological Magazine, 139, 191–197. https://doi.org/10.1017/S0016756802006295
    [Google Scholar]
  46. Gürsoy, H., Piper, J. D. A., Tatar, O., & Temiz, H. (1997). A palaeomagnetic study of the Sivas Basin, central Turkey: Crustal deformation during lateral extrusion of the Anatolian Block. Tectonophysics, 271, 89–105. https://doi.org/10.1016/S0040‐1951(96)00242‐9
    [Google Scholar]
  47. Hampton, B. A., & Horton, B. K. (2007). Sheetflow fluvial processes in a rapidly subsiding basin, Altiplano plateau, Bolivia. Sedimentology, 54, 1121–1148. https://doi.org/10.1111/j.1365‐3091.2007.00875.x
    [Google Scholar]
  48. Heer, O. (1877). Flora Fossilis Helvetiae. Vorweltliche Flora der Schweiz (p. 182). Zürich, Switzerland: J. Würster Company.
    [Google Scholar]
  49. Hempton, M. R. (1987). Constraints on Arabian plate motion and extensional history of the Red Sea. Tectonics, 6, 687–705. https://doi.org/10.1029/TC006i006p00687
    [Google Scholar]
  50. Hüsing, S. K., Zachariasse, W. J., van Hinsbergen, D. J. J., Krijgsman, W., Inceöz, M., Harzhauser, M., … Kroh, A. (2009). Oligocene‐Miocene basin evolution in SE Anatolia, Turkey: constraints on the closure of the eastern Tethys gateway. Geological Society of London Special Publications, 311, 107–132. https://doi.org/10.1144/SP311.4.
    [Google Scholar]
  51. Ingersoll, R. V. (2011). Tectonics of sedimentary basins, with revised nomenclature. In C. J.Busby & A.Azor (Eds.), Tectonics of sedimentary basins: Recent advances (pp. 3–43). Chichester, UK: Blackwell Ltd. https://doi.org/10.1002/9781444347166.ch1
    [Google Scholar]
  52. Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi‐Dickinson point‐counting method. Journal of Sedimentary Research, 54, 103–116.
    [Google Scholar]
  53. Ingersoll, R. V., Dickinson, W. R., & Graham, S. A. (2003). Remnant‐ocean submarine fans: Largest sedimentary systems on Earth. In M. A.Chan & A. W.Archer (Eds.), Extreme depositional environments: Mega end members in geologic time (pp. 191–208). Boulder, CO: Geological Society of America Special Paper.
    [Google Scholar]
  54. Ingersoll, R. V., Graham, S. A., & Dickinson, W. R. (1995). Remnant ocean basins. In C. J.Busby (Ed.), Tectonics of sedimentary basins (pp. 363–391). Oxford, UK: Blackwell Science.
    [Google Scholar]
  55. Jaffey, N., & Robertson, A. (2005). Non‐marine sedimentation associated with Oligocene‐Recent exhumation and uplift of the Central Taurus Mountains, S Turkey. Sedimentary Geology, 173, 53–89. https://doi.org/10.1016/j.sedgeo.2003.11.025
    [Google Scholar]
  56. Kandemir, Ö., AkbayramK., ÇobankayaM., KanarF., PehlivanŞ., TokT., … TemizU. (2019). From arc evolution to arc‐continent collision: Late Cretaceous–middle Eocene geology of the Eastern Pontides, northeastern Turkey. GSA Bulletin, 131, 1889–1906. http://dx.doi.org/10.1130/b31913.1.
    [Google Scholar]
  57. Kaymakci, N., Inceöz, M., Ertepinar, P., & Koç, A. (2010). Late Cretaceous to recent kinematics of SE Anatolia (Turkey). Geological Society of London Special Publications, 340, 409–435. https://doi.org/10.1144/SP340.18
    [Google Scholar]
  58. Kaymakci, N., Özçelik, Y., White, S. H., & Van Dijk, P. M. (2009). Tectono‐stratigraphy of the Çankırı Basin: Late Cretaceous to early Miocene evolution of the Neotethyan suture zone in Turkey. Geological Society of London Special Publications, 311, 67–106. https://doi.org/10.1144/SP311.3
    [Google Scholar]
  59. Kergaravat, C., Ribes, C., Legeay, E., Callot, J. P., Kavak, K. S., & Ringenbach, J. C. (2016). Minibasins and salt canopy in foreland fold‐and‐thrust belts: The central Sivas Basin, Turkey. Tectonics, 35, 1342–1366. https://doi.org/10.1002/2016TC004186
    [Google Scholar]
  60. Ketin, I. (1966). Tectonic units for Anatolia. Bulletin of the Mineral Research and Exploration Institute of Turkey, 66, 23–34.
    [Google Scholar]
  61. Koçyiğit, A., & Beyhan, A. (1998). A new intracontinental transcurrent structure: The Central Anatolian Fault Zone, Turkey. Tectonophysics, 284, 317–336. https://doi.org/10.1016/S0040‐1951(97)00176‐5
    [Google Scholar]
  62. Krijgsman, W., Duermeijer, C. E., Langereis, C. G., de Bruijn, H., Saraç, G., & Andriessen, P. A. (1996). Magnetic polarity stratigraphy of late Oligocene to middle Miocene mammal‐bearing continental deposits in central Anatolia (Turkey). Newsletters on Stratigraphy, 34, 13–29. https://doi.org/10.1127/nos/34/1996/13
    [Google Scholar]
  63. Kurtman, F. (1973). Geologic and tectonic study of the area around Sivas‐Hafik‐Zara and Imranlı. Bulletin of the Mineral Research and Exploration Institute of Turkey, 80, 32 pp.
    [Google Scholar]
  64. Langereis, C. G., Sen, S., Sümengen, M., Ünay, E. (1990). Preliminary magnetostratigraphic results of some Neogene mammal localities from Anatolia (Turkey). In E. H.Lindsay, V.Fahlbusch, & P.Mein (Eds.), European Neogene Mammal Chronology (pp. 515–525). Boston, MA: Springer.
    [Google Scholar]
  65. Le Pichon, X., & Kreemer, C. (2010). The Miocene‐to‐present kinematic evolution of the Eastern Mediterranean and Middle East and its implications for dynamics. Annual Review of Earth and Planetary Sciences, 38, 323–351. https://doi.org/10.1146/annurev‐earth‐040809‐152419
    [Google Scholar]
  66. Lefebvre, C., Meijers, M. J., Kaymakci, N., Peynircioğlu, A., Langereis, C. G., & Van Hinsbergen, D. J. J. (2013). Reconstructing the geometry of central Anatolia during the late Cretaceous: Large‐scale Cenozoic rotations and deformation between the Pontides and Taurides. Earth and Planetary Science Letters, 366, 83–98. https://doi.org/10.1016/j.epsl.2013.01.003
    [Google Scholar]
  67. Legeay, E., Mohn, G., Callot, J. P., Ringenbach, J. C., Ulianov, A., & Kavak, K. S. (2019). The pre‐obduction to post‐obduction evolution of the Sivas Ophiolite (Turkey) and implications for the precollisional history of eastern Anatolia. Tectonics, 38, 2114–2141. https://doi.org/10.1029/2018TC005114
    [Google Scholar]
  68. Legeay, E., Pichat, A., Kergaravat, C., Ribes, C., Callot, J. P., Ringenbach, J. C., … Temiz, H. (2018). Geology of the Central Sivas Basin (Turkey). Journal of Maps, 15(2), 406–417. https://doi.org/10.1080/17445647.2018.1514539
    [Google Scholar]
  69. Legeay, E., Ringenbach, J. C., Kergaravat, C., Pichat, A., Mohn, G., Vergés, J., … Callot, J. P. (2019). Structure and kinematics of the Central Sivas Basin (Turkey): Salt deposition and tectonics in an evolving fold‐and‐thrust belt. Geological Society of London Special Publications, 490, 36. https://doi.org/10.1144/SP490‐2019‐92
    [Google Scholar]
  70. Leturmy, P., Mugnier, J. L., Vinour, P., Baby, P., Colletta, B., & Chabron, E. (2000). Piggyback basin development above a thin‐skinned thrust belt with two detachment levels as a function of interactions between tectonic and superficial mass transfer: The case of the Subandean Zone (Bolivia). Tectonophysics, 320, 45–67. https://doi.org/10.1016/S0040‐1951(00)00023‐8
    [Google Scholar]
  71. Ludwig, K. R. (2012). Isoplot 3.75. Berkeley, CA: Berkeley Geochronology Center Special Publication, 5, 75 pp.
    [Google Scholar]
  72. Madanipour, S., Ehlers, T. A., Yassaghi, A., & Enkelmann, E. (2017). Accelerated middle Miocene exhumation of the Talesh Mountains constrained by U‐Th/He thermochronometry: Evidence for the Arabia‐Eurasia collision in the NW Iranian Plateau. Tectonics, 36, 1538–1561. https://doi.org/10.1002/2016TC004291
    [Google Scholar]
  73. Mcquarrie, N., & van Hinsbergen, D. J. J. (2013). Retrodeforming the Arabia‐Eurasia collision zone: Age of collision versus magnitude of continental subduction. Geology, 41, 315–318. https://doi.org/10.1130/G33591.1
    [Google Scholar]
  74. Meijers, M. J., Brocard, G. Y., Cosca, M. A., Lüdecke, T., Teyssier, C., Whitney, D. L., & Mulch, A. (2018). Rapid late Miocene surface uplift of the Central Anatolian Plateau margin. Earth and Planetary Science Letters, 497, 29–41. https://doi.org/10.1016/j.epsl.2018.05.040
    [Google Scholar]
  75. Meijers, M. J., Kaymakci, N., van Hinsbergen, D. J. J., Langereis, C. G., Stephenson, R. A., & Hippolyte, J. C. (2010). Late Cretaceous to Paleocene oroclinal bending in the central Pontides (Turkey). Tectonics. https://doi.org/10.1016/j.lithos.2010.07.017
    [Google Scholar]
  76. Meijers, M. J., Peynircioğlu, A. A., Cosca, M. A., Brocard, G. Y., Whitney, D. L., Langereis, C. G., & Mulch, A. (2018). Climate stability in central Anatolia during the Messinian Salinity Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 498, 53–67. https://doi.org/10.1016/j.palaeo.2018.03.001
    [Google Scholar]
  77. Menant, A., Jolivet, L., & Vrielynck, B. (2016). Kinematic reconstructions and magmatic evolution illuminating crustal and mantle dynamics of the eastern Mediterraneanregion since the late Cretaceous. Tectonophysics, 675, 103–140. https://doi.org/10.1016/j.tecto.2016.03.007
    [Google Scholar]
  78. Miller, K. G., Mountain, G. S., Wright, J. D., & Browning, J. V. (2011). A 180‐million‐year record of sea level and ice volume variations from continental margin and deep‐sea isotopic records. Oceanography, 24, 40–53. https://doi.org/10.5670/oceanog.2011.26
    [Google Scholar]
  79. MTA
    MTA . (2002). 1:500,000 scale geological maps of Turkey. Ankara, Turkey: General Directorate of Mineral Research and Exploration (MTA).
    [Google Scholar]
  80. Mueller, M. A., Licht, A., Campbell, C., Ocakoğlu, F., Taylor, M. H., Burch, L., … Beard, K. C. (2019). Collision chronology along the İzmir‐Ankara‐Erzincan suture zone: Insights from the Sarıcakaya Basin, western Anatolia. Tectonics, 38, 3652–3674. https://doi.org/10.1029/2019TC005683
    [Google Scholar]
  81. Ocakoğlu, F., Hakyemez, A., Açıkalın, S., Özkan Altıner, S., Büyükmeriç, Y., Licht, A., … Campbell, C. (2019). Chronology of subduction and collision along the İzmir‐Ankara suture in Western Anatolia: Records from the Central Sakarya Basin. International Geology Review, 61, 1244–1269. https://doi.org/10.1080/00206814.2018.1507009
    [Google Scholar]
  82. Ogg, J. G. (2012). Geomagnetic polarity time scale. In F. M.Gradstein, J.Ogg, & F.Hilgen (Eds.), The geologic time scale (pp. 85–113). Oxford, UK: Elsevier.
    [Google Scholar]
  83. Okay, A. I., Sunal, G., Sherlock, S., Alt, D., Tüysüz, O., Kylander‐Clark, A. R., & Aygül, M. (2013). Early Cretaceous sedimentation and orogeny on the active margin of Eurasia: Southern Central Pontides, Turkey. Tectonics, 32, 1247–1271. https://doi.org/10.1002/tect.2077
    [Google Scholar]
  84. Okay, A. I., & Tüysüz, O. (1999). Tethyan sutures of northern Turkey. Geological Society of London Special Publications, 156, 475–516. https://doi.org/10.1144/GSL.SP.1999.156.01.22
    [Google Scholar]
  85. Okay, A. I., Zattin, M., & Cavazza, W. (2010). Apatite fission‐track data for the Miocene Arabia‐Eurasia collision. Geology, 38, 35–38. https://doi.org/10.1130/G30234.1.
    [Google Scholar]
  86. Onal, K. M., Buyuksarac, A., Aydemir, A., & Ates, A. (2008). Investigation of the deep structure of the Sivas Basin (innereast Anatolia, Turkey) with geophysical methods. Tectonophysics, 460, 186–197. https://doi.org/10.1016/j.tecto.2008.08.006
    [Google Scholar]
  87. Ori, G. G., & Friend, P. F. (1984). Sedimentary basins formed and carried piggyback on active thrust sheets. Geology, 12, 475–478. https://doi.org/10.1130/0091‐7613(1984)12<475:SBFACP>2.0.CO;2
    [Google Scholar]
  88. Parlak, O. (2016). The Tauride ophiolites of Anatolia (Turkey): A review. Journal of Earth Science, 27(6), 901–934. https://doi.org/10.1007/s12583‐016‐0679‐3
    [Google Scholar]
  89. Pichat, A., Hoareau, G., Callot, J. P., Legeay, E., Kavak, K. S., Révillon, S., … Ringenbach, J. C. (2018). Evidence of multiple evaporite recycling processes in a salt‐tectonic context, Sivas Basin, Turkey. Terra Nova, 30, 40–49. https://doi.org/10.1111/ter.12306
    [Google Scholar]
  90. Platzman, E. S., Tapirdamaz, C., & Sanver, M. (1998). Neogene anticlockwise rotation of central Anatolia (Turkey): Preliminary palaeomagnetic and geochronological results. Tectonophysics, 299, 175–189. https://doi.org/10.1016/S0040‐1951(98)00204‐2
    [Google Scholar]
  91. Poisson, A., Guezou, J. C., Ozturk, A., Inan, S., Temiz, H., Gürsöy, H., … Özden, S. (1996). Tectonic setting and evolution of the Sivas Basin, central Anatolia, Turkey. International Geology Review, 38, 838–853. https://doi.org/10.1080/00206819709465366
    [Google Scholar]
  92. Poisson, A., Vrielynck, B., Wernli, R., Negri, A., Bassetti, M. A., Büyükmeriç, Y., … Orszag‐Sperber, F. (2016). Miocene transgression in the central and eastern parts of the Sivas Basin (Central Anatolia, Turkey) and the Cenozoic palaeogeographical evolution. International Journal of Earth Sciences, 105(1), 339–368. https://doi.org/10.1007/s00531‐015‐1248‐1
    [Google Scholar]
  93. Pourteau, A., Candan, O., & Oberhänsli, R. (2010). High‐pressure metasediments in central Turkey: Constraints on the Neotethyan closure history. Tectonics, 29, 18. https://doi.org/10.1029/2009TC002650
    [Google Scholar]
  94. Reid, M. R., Delph, J. R., Cosca, M. A., Schleiffarth, W. K., & Kuşcu, G. G. (2019). Melt equilibration depths as sensors of lithospheric thickness during Eurasia‐Arabia collision and the uplift of the Anatolian Plateau. Geology, 47, 943–947. https://doi.org/10.1130/G46420.1
    [Google Scholar]
  95. Ribes, C., Kergaravat, C., Bonnel, C., Crumeyrolle, P., Callot, J. P., Poisson, A., Ringenbach, J.‐C. (2015). Fluvial sedimentation in a salt‐controlled mini‐basin: Stratal patterns and facies assemblages, Sivas Basin, Turkey. Sedimentology, 62(6), 1513–1545. https://doi.org/10.1111/sed.12195
    [Google Scholar]
  96. Ribes, C., Lopez, M., Kergaravat, C., Crumeyrolle, P., Poisson, A., Callot, J. P., … Ringenbach, J.‐C. (2018). Facies partitioning and stratal pattern in salt‐controlled marine to continental mini‐basins: Examples from the Late Oligocene to Early Miocene of the Sivas Basin, Turkey. Marine and Petroleum Geology, 93, 468–496. https://doi.org/10.1016/j.marpetgeo.2018.03.018
    [Google Scholar]
  97. Rice, S. P., Robertson, A. H., & Ustaömer, T. (2006). Late Cretaceous‐Early Cenozoic tectonic evolution of the Eurasian active margin in the Central and Eastern Pontides, northern Turkey. Geological Society of London Special Publications, 260, 413–445. https://doi.org/10.1144/GSL.SP.2006.260.01.17
    [Google Scholar]
  98. Rice, S. P., Robertson, A. H., Ustaömer, T., Inan, N., & Tasli, K. (2009). Late Cretaceous–early Eocene tectonic development of the Tethyan suture zone in the Erzincan area, eastern Pontides, Turkey. Geological Magazine, 146, 567–590. https://doi.org/10.1017/S0016756809006360
    [Google Scholar]
  99. Ridgway, K. D., Trop, J. M., Nokleberg, W. J., Davidson, C. M., & Eastham, K. R. (2002). Mesozoic and Cenozoic tectonics of the eastern and central Alaska Range: Progressive basin development and deformation in a suture zone. Geological Society of America Bulletin, 114, 1480–1504. https://doi.org/10.1130/0016‐7606(2002)114<1480:MACTOT>2.0.CO;2
    [Google Scholar]
  100. Robertson, A. H. F., Parlak, O., Metin, Y., Vergili, Ö., Tasli, K., İnan, N., & Soycan, H. (2013). Late Palaeozoic‐Cenozoic tectonic development of carbonate platform, margin and oceanic units in the Eastern Taurides, Turkey. Geological Society of London Special Publications, 372, 167–218. https://doi.org/10.1144/SP372.16
    [Google Scholar]
  101. Robertson, A. H. F., Parlak, O., & Ustaömer, T. (2012). Overview of the Palaeozoic‐Neogene evolution of Neotethys in the Eastern Mediterranean region (southern Turkey, Cyprus, Syria). Petroleum Geoscience, 18, 381–404. https://doi.org/10.1144/petgeo2011‐091
    [Google Scholar]
  102. Rolland, Y. (2017). Caucasus collisional history: Review of data from East Anatolia to West Iran. Gondwana Research, 49, 130–146. https://doi.org/10.1016/j.gr.2017.05.005
    [Google Scholar]
  103. Rolland, Y., Perincek, D., Kaymakci, N., Sosson, M., Barrier, E., & Avagyan, A. (2012). Evidence for ∼80–75 Ma subduction jump during Anatolide–Tauride–Armenian block accretion and ∼48 Ma Arabia‐Eurasia collision in Lesser Caucasus‐East Anatolia. Journal of Geodynamics, 56, 76–85. https://doi.org/10.1016/j.jog.2011.08.006
    [Google Scholar]
  104. Schleiffarth, W. K., Darin, M. H., Reid, M. R., & Umhoefer, P. J. (2018). Dynamics of episodic Late Cretaceous‐Cenozoic magmatism across Central to Eastern Anatolia: New insights from an extensive geochronology compilation. Geosphere, 14, 1990–2008. https://doi.org/10.1130/GES01647.1
    [Google Scholar]
  105. Schreiber, B. C., & Hsü, K. J. (1980). Evaporites. In G. D.Hobson (Ed.), Developments in petroleum geology (Vol. 2, pp. 87–138). Amsterdam, the Netherlands: Elsevier Science.
    [Google Scholar]
  106. Schuster, M. W., & Steidtmann, J. R. (1987). Fluvial sandstone architecture and thrust‐induced subsidence, Northern Green River Basin, Wyoming. In F. G.Etheridge, R. M.Flores, M. D.Harvey (Eds.), Recent developments in fluvial sedimentology (pp. 279–286). Tulsa, OK: Society of Sedimentary Geology (SEPM).
    [Google Scholar]
  107. Seilacher, A. (1967). Bathymetry of trace fossils. Marine Geology, 5, 413–428. https://doi.org/10.1016/0025‐3227(67)90051‐5
    [Google Scholar]
  108. Sengör, A. M. C. (1976). Collision of irregular continental margins: Implications for foreland deformation of Alpine‐type orogens. Geology, 4, 779–782. https://doi.org/10.1130/0091‐7613(1976)4<779:COICMI>2.0.CO;2
    [Google Scholar]
  109. Şengör, A. M. C., Görür, N., & Şaroğlu, F. (1985). Strike‐slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In K. T.Biddle & N.Christie‐Blick (Eds.), Strike‐slip deformation, basin formation, and sedimentation (pp. 227–264). Tulsa, OK: Society of Economic Paleontologists and Mineralogists Special Publications.
    [Google Scholar]
  110. Şengör, A. M. C., & Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75(3‐4), 181–241. https://doi.org/10.1016/0040‐1951(81)90275‐4
    [Google Scholar]
  111. Seyitoğlu, G., Işik, V., Gürbüz, E., & Gürbüz, A. (2017). The discovery of a low‐angle normal fault in the Taurus Mountains: The İvriz detachment and implications concerning the Cenozoic geology of southern Turkey. Turkish Journal of Earth Sciences, 26, 189–205. https://doi.org/10.3906/yer‐1610‐11
    [Google Scholar]
  112. Sheikholeslami, M. R. (2016). Tectonostratigraphic evidence for the opening and closure of the Neotethys Ocean in the southern Sanandaj‐Sirjan Zone, Iran. In R.Sorkhabi (Ed.), Tectonic Evolution, Collision, and Seismicity of Southwest Asia. In Honor of Manuel Berberian’s Forty‐Five Years of Research Contributions (pp. 319–341). Boulder, CO: Geological Society of America Special Paper.https://doi.org/10.1130/2016.2525(09)
    [Google Scholar]
  113. Stampfli, G. M., & Borel, G. D. (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Planetary Science Letters, 196, 17–33.
    [Google Scholar]
  114. Stewart, S. A. (1999). Geometry of thin‐skinned tectonic systems in relation to detachment layer thickness in sedimentary basins. Tectonics, 18, 719–732. https://doi.org/10.1029/1999TC900018
    [Google Scholar]
  115. Sümengen, M., Ünay, E., Sarac, G., de Bruijn, H., Terlemez, I., & Gürbüz, M. (1990). New Neogene rodent assemblages from Anatolia (Turkey). In E. H.Lindsay, V.Fahlbusch, & P.Mein (Eds.), European Neogene Mammal Chronology, NATO ASI Series (Series A: Life Sciences) (pp. 61–72). Boston, MA: Springer.
    [Google Scholar]
  116. Tekin, E. (2001). Stratigraphy, geochemistry and depositional environment of the celestine‐bearing gypsiferous formations of the Tertiary Ulaş‐Sivas Basin, East‐Central Anatolia (Turkey). Turkish Journal of Earth Sciences, 10, 35–49.
    [Google Scholar]
  117. Tekin, E., Varol, B., & Friedman, G. M. (2001). A prelimennary study: Celestite‐bearing gypsum in the Tertiary Sivas basin, central‐eastern Turkey. Carbonates and Evaporites, 16, 93–101. https://doi.org/10.1007/BF03176228.
    [Google Scholar]
  118. Topüz, G., Candan, O., Zack, T., & Yılmaz, A. (2017). East Anatolian plateau constructed over a continental basement: No evidence for the East Anatolian accretionary complex. Geology, 45, 791–794. https://doi.org/10.1130/G39111.1
    [Google Scholar]
  119. Umhoefer, P. J., Whitney, D. L., Teyssier, C., Fayon, A. K., Casale, G., & Heizler, M. T. (2007). Yo‐yo tectonics in a wrench zone, Central Anatolian fault zone, Turkey. Geological Society of America Special Papers, 434, 35–57.
    [Google Scholar]
  120. Ünay, E., De Bruijn, H., & Saraç, G. (2003). A preliminary zonation of the continental Neogene of Anatolia based on rodents. Deinsea, 10, 539–548.
    [Google Scholar]
  121. Van Hinsbergen, D. J. J., Maffione, M., Plunder, A., Kaymakcı, N., Ganerød, M., Hendriks, B. W., … Vissers, R. L. M. (2016). Tectonic evolution and paleogeography of the Kırşehir Block and the Central Anatolian Ophiolites, Turkey. Tectonics, 35, 983–1014. https://doi.org/10.1002/2015TC004018
    [Google Scholar]
  122. Van Hinsbergen, D. J. J., Torsvik, T. H., Schmid, S. M., Maţenco, L. C., Maffione, M., Vissers, R. L. M., … Spakman, W. (2020). Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research, 81, 79–229. https://doi.org/10.1016/j.gr.2019.07.009
    [Google Scholar]
  123. Westaway, R. (1999). A new intracontinental transcurrent structure: The Central Anatolian Fault Zone, Turkey: Comment. Tectonophysics, 314, 469–479.
    [Google Scholar]
  124. Whipple, K. X. (2009). The influence of climate on the tectonic evolution of mountain belts. Nature Geoscience, 2, 97–104. https://doi.org/10.1038/NGEO413
    [Google Scholar]
  125. Yilmaz, A. (1994). An example of post‐collisional trough: Sivas Basin, Turkey. In Proceedings of the 10th Petroleum Congress of Turkey, Ankara (pp. 21–23).
    [Google Scholar]
  126. Yilmaz, A., Sümengen, M., Terlemez, I., & Bilgiç, T. (1989). Geologic Map of the Sivas Quadrangle, Sheet G 23, scale 1:100,000. Ankara, Turkey: General Directorate of Mineral Exploration and Research (MTA).
    [Google Scholar]
  127. Yilmaz, A., & Yılmaz, H. (2006). Characteristic features and structural evolution of a post collisional basin: The Sivas Basin, Central Anatolia, Turkey. Journal of Asian Earth Sciences, 27, 164–176. https://doi.org/10.1016/j.jseaes.2005.02.006
    [Google Scholar]
  128. Yilmaz, Y., Tüysüz, O., Yiğitbas, E., Genç, Ş. C., & Şengör, A. M. C. (1997). Geology and tectonic evolution of the Pontides. In A. G.Robinson (Ed.), Regional and petroleum geology of the Black Sea and surrounding region (pp. 183–226). Tulsa: American Association of Petroleum Geologists Memoir 68.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12498
Loading
/content/journals/10.1111/bre.12498
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): collision; fold‐thrust belt; foreland basin; remnant ocean; suture zone; wedge‐top

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error