1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[

a) The Upper Pleistocene fluvial sand was sourced from a dynamic river system attributable to a distal paleo‐Po with episodic sediment input from South Alpine and Apennine rivers. b) In the Holocene wave‐dominated estuarine depositional system developed under transgressive conditions, Po‐derived detritus mixed in the coastal system with sediment fed by Central/Eastern Alpine Rivers, which was redistributed southwards by alongshore currents. c) and d) Late Holocene highstand depositional systems reflects progradation of Po delta lobes and adjacent strandplain resulting in mixed composition.

, Abstract

We examined downstream trends in sediment composition within the modern Po River system and defined provenance changes within a selected sector of the Upper Pleistocene to Holocene coastal plain in response to paleogeographic reorganisation during the last glacial‐interglacial cycle. Sediment composition of the Upper Pleistocene to Holocene alluvial and coastal plain succession overlaps with the modern petrofacies, suggesting that ancient fluvial sand was sourced from a dynamic river system attributable to a distal paleo‐Po with episodic sediment input from South Alpine and Apennine rivers. In the wave‐dominated estuarine depositional system developed under transgressive conditions, Po‐derived detritus mixed in the coastal system with sediment fed by Central/Eastern Alpine rivers, which was redistributed southwards by alongshore currents. A similar, mixed composition of late Holocene highstand depositional systems reflects the progradation of Po delta lobes (similar in composition to Po River sands) and adjacent strandplains (typified by sediment mixing due to alongshore transport). Compositional variability across the main stratigraphic surfaces suggests that autogenic processes (e.g. marine reworking, sedimentary mixing, delta switching/abandonment) in turn influenced by glacioeustasy, controlled the development of the transgressive and highstand Po Plain succession. This study clarifies the effect of fluvial‐marine interaction during the Holocene evolution of the Po coastal system and can be used as a model to interpret the evolution of many mixed‐delta types and Quaternary successions that shows alternating river‐flood and wave‐dominated deposits.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12519
2021-03-15
2024-04-28
Loading full text...

Full text loading...

References

  1. Amadori, C., Toscani, G., Di Giulio, A., Maesano, F. E., D’Ambrogi, C., Ghielmi, M., & Fantoni, R. (2019). From cylindrical to non‐cylindrical foreland basin: Pliocene‐Pleistocene evolution of the Po Plain‐Northern Adriatic basin (Italy). Basin Research, 31(5), 991–1015. https://doi.org/10.1111/bre.12369
    [Google Scholar]
  2. Amorosi, A. (2012). Chromium and nickel as indicators of source‐to‐sink sediment transfer in a Holocene alluvial and coastal system (Po Plain, Italy). Sedimentary Geology, 280, 260–269. https://doi.org/10.1016/j.sedgeo.2012.04.011
    [Google Scholar]
  3. Amorosi, A., Barbieri, G., Bruno, L., Campo, B., Drexler, T. M., Hong, W., Rossi, V., Sammartino, I., Scarponi, D., Vaiani, S. C., & Bohacs, K. M. (2019). Three‐fold nature of coastal progradation during the Holocene eustatic highstand, Po Plain, Italy—close correspondence of stratal character with distribution patterns. Sedimentology, 66, 3029–3052. https://doi.org/10.1111/sed.12621
    [Google Scholar]
  4. Amorosi, A., Bruno, L., Campo, B., Morelli, A., Rossi, V., Scarponi, D., Hong, W., Bohacs, K. M., & Drexler, T. M. (2017). Global sea‐level control on local parasequence architecture from the Holocene record of the Po Plain, Italy. Marine and Petroleum Geology, 87, 99–111.https://doi.org/10.1016/j.marpetgeo.2017.01.020
    [Google Scholar]
  5. Amorosi, A., Bruno, L., Cleveland, D. M., Morelli, A., & Hong, W. (2017). Paleosols and associated channel‐belt sand bodies from a continuously subsiding late Quaternary system (Po Basin, Italy): New insights into continental sequence stratigraphy. Bulletin, 129(3–4), 449–463. https://doi.org/10.1130/B31575.1
    [Google Scholar]
  6. Amorosi, A., Bruno, L., Rossi, V., Severi, P., & Hajdas, I. (2014). Paleosol architecture of a late Quaternary basin–margin sequence and its implications for high‐resolution, non‐marine sequence stratigraphy. Global and Planetary Change, 112, 12–25. https://doi.org/10.1016/j.gloplacha.2013.10.007
    [Google Scholar]
  7. Amorosi, A., Colalongo, M., Pasini, G., & Preti, D. (1999). Sedimentary response to Late Quaternary sea‐level changes in the Romagna coastal plain (northern Italy). Sedimentology, 46(1), 99–121
    [Google Scholar]
  8. Amorosi, A., Fontana, A., Antonioli, F., Primon, S., & Bondesan, A. (2008). Post‐LGM sedimentation and Holocene shoreline evolution in the NW Adriatic coastal area. GeoActa, 7, 41–67
    [Google Scholar]
  9. Amorosi, A., Maselli, V., & Trincardi, F. (2016). Onshore to offshore anatomy of a late Quaternary source‐to‐sink system (Po Plain‐Adriatic Sea, Italy). Earth‐Science Reviews, 153, 212–237. https://doi.org/10.1016/j.earscirev.2015.10.010
    [Google Scholar]
  10. Amorosi, A., & Sammartino, I. (2018). Shifts in sediment provenance across a hierarchy of bounding surfaces: A sequence‐stratigraphic perspective from bulk‐sediment geochemistry. Sedimentary Geology, 375, 145–156. https://doi.org/10.1016/j.sedgeo.2017.09.017
    [Google Scholar]
  11. Amorosi, A., & Zuffa, G. G. (2011). Sand composition changes across key boundaries of siliciclastic and hybrid depositional sequences. Sedimentary Geology, 236(1–2), 153–163. https://doi.org/10.1016/j.sedgeo.2011.01.003
    [Google Scholar]
  12. Anderson, J. B., Wallace, D. J., Simms, A. R., Rodriguez, A. B., Weight, R. W., & Taha, Z. P. (2016). Recycling sediments between source and sink during a eustatic cycle: Systems of late Quaternary northwestern Gulf of Mexico Basin. Earth‐Science Reviews, 153, 111–138. https://doi.org/10.1016/j.earscirev.2015.10.014
    [Google Scholar]
  13. Beltrando, M., Compagnoni, R., & Lombardo, B. (2010). (Ultra‐) High‐pressure metamorphism and orogenesis: An Alpine perspective. Gondwana Research, 18(1), 147–166. https://doi.org/10.1016/j.gr.2010.01.009
    [Google Scholar]
  14. Bentley, S. J.Sr, Blum, M. D., Maloney, J., Pond, L., & Paulsell, R. (2016). The Mississippi River source‐to‐sink system: Perspectives on tectonic, climatic, and anthropogenic influences, Miocene to Anthropocene. Earth‐Science Reviews, 153, 139–174. https://doi.org/10.1016/j.earscirev.2015.11.001
    [Google Scholar]
  15. Berger, A., & Bousquet, R. (2008). Subduction‐related metamorphism in the Alps: Review of isotopic ages based on petrology and their geodynamic consequences. Geological Society, London, Special Publications, 298(1), 117–144. https://doi.org/10.1144/SP298.7
    [Google Scholar]
  16. Bhattacharya, J. P. (2006). "Deltas", Posamentier, H. W., & Walker, R. G. (Eds.). (2006). Facies models revisited. https://doi.org/10.2110/pec.06.84.0237
  17. Boccaletti, M., Calamita, F., Deiana, G., Gelati, R., & Massari, F. (1990). Migrating foredeep‐thrust belt system in the northern Apennines and southern Alps. Palaeogeography, Palaeoclimatology, Palaeoecology, 77(1), 3–14. https://doi.org/10.1016/0031‐0182(90)90095‐O
    [Google Scholar]
  18. Bosellini, A., Gianolla, P., & Stefani, M. (2003). Geology of the dolomites. Episodes, 26(3), 181–185. https://doi.org/10.18814/epiiugs/2003/v26i3/005
    [Google Scholar]
  19. Bruno, L., Bohacs, K. M., Campo, B., Drexler, T. M., Rossi, V., Sammartino, I., Scarponi, D., Hong, W., & Amorosi, A. (2017). Early Holocene transgressive palaeogeography in the Po coastal plain (northern Italy). Sedimentology, 64(7), 1792–1816. https://doi.org/10.1111/sed.12374
    [Google Scholar]
  20. Campo, B., Amorosi, A., & Vaiani, S. C. (2017). Sequence stratigraphy and late Quaternary paleoenvironmental evolution of the Northern Adriatic coastal plain (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 466, 265–278. https://doi.org/10.1016/j.palaeo.2016.11.016
    [Google Scholar]
  21. Carminati, E., & Doglioni, C. (2012). Alps vs. Apennines: The paradigm of a tectonically asymmetric Earth. Earth‐Science Reviews, 112(1–2), 67–96. https://doi.org/10.1016/j.earscirev.2012.02.004
    [Google Scholar]
  22. Carminati, E., Doglioni, C., & Scrocca, D. (2004). Alps vs apennines. Special Volume of the Italian Geological Society for the IGC, 32, 141–151.
    [Google Scholar]
  23. Carter, L., Manighetti, B., Elliot, M., Trustrum, N., & Gomez, B. (2002). Source, sea level and circulation effects on the sediment flux to the deep ocean over the past 15 ka off eastern New Zealand. Global and Planetary Change, 33(3–4), 339–355. https://doi.org/10.1016/S0921‐8181(02)00087‐5
    [Google Scholar]
  24. Carvajal, C., & Steel, R. (2009). Shelf‐edge architecture and bypass of sand to deep water: Influence of shelf‐edge processes, sea level, and sediment supply. Journal of Sedimentary Research, 79(9), 652–672. https://doi.org/10.2110/jsr.2009.074
    [Google Scholar]
  25. Cibin, U., Spadafora, E., Zuffa, G. G., & Castellarin, A. (2001). Continental collision history from arenites of episutural basins in the Northern Apennines, Italy. Geological Society of America Bulletin, 113(1), 4–19. https://doi.org/10.1130/0016‐7606(2001)113<0004:CCHFAO>2.0.CO;2
    [Google Scholar]
  26. Coleman, J. M., Huh, O. K., & Braud, D. (2003). Major world deltas: A perspective from space (pp. 1–238). Lousiana State University.
    [Google Scholar]
  27. Covault, J. A., Romans, B. W., Graham, S. A., Fildani, A., & Hilley, G. E. (2011). Terrestrial source to deep‐sea sink sediment budgets at high and low sea levels: Insights from tectonically active Southern California. Geology, 39(7), 619–622. https://doi.org/10.1130/G31801.1
    [Google Scholar]
  28. Dal Piaz, G. V., Bistacchi, A., & Massironi, M. (2003). Geological outline of the Alps. Episodes, 26(3), 175–180. https://doi.org/10.18814/epiiugs/2003/v26i3/004
    [Google Scholar]
  29. Desmons, J., Neubauer, F., & Frey, M. (Eds.). (1999). The new metamorphic map of the Alps. Stäubli. Schweizerische Mineralogische Und Petrographische Mitteilungen, 79(1), 1–4.
    [Google Scholar]
  30. Di Giulio, A. (1992). The evolution of the Western Ligurian Flysch Units and the role of mud diapirism in ancient accretionary prisms (Maritime Alps, Northwestern Italy). Geologische Rundschau, 81(3), 655–668. https://doi.org/10.1007/BF01791383
    [Google Scholar]
  31. Di Giulio, A. (1999). Mass transfer from the Alps to the Apennines: volumetric constraints in the provenance study of the Macigno‐Modino source–basin system, Chattian‐Aquitanian, northwestern Italy. Sedimentary Geology, 124(1–4), 69–80. https://doi.org/10.1016/S0037‐0738(98)00121‐3
    [Google Scholar]
  32. Dinelli, E., Lucchini, F., Mordenti, A., & Paganelli, L. (1999). Geochemistry of Oligocene‐Miocene sandstones of the northern Apennines (Italy) and evolution of chemical features in relation to provenance changes. Sedimentary Geology, 127(3–4), 193–207. https://doi.org/10.1016/S0037‐0738(99)00049‐4
    [Google Scholar]
  33. Dixon, J. F., Steel, R. J., & Olariu, C. (2012). Shelf‐edge delta regime as a predictor of deep‐water deposition. Journal of Sedimentary Research, 82, 681–768. https://doi.org/10.2110/jsr.2012.59
    [Google Scholar]
  34. Fielding, C. R., Trueman, J. D., & Alexander, J. (2005). Sharp‐based, flood‐dominated mouth bar sands from the Burdekin River Delta of northeastern Australia: extending the spectrum of mouth‐bar facies, geometry, and stacking patterns. Journal of Sedimentary Research, 75(1), 55–66. https://doi.org/10.2110/jsr.2005.006
    [Google Scholar]
  35. Garzanti, E. (2016). From static to dynamic provenance analysis—Sedimentary petrology upgraded. Sedimentary Geology, 336, 3–13. https://doi.org/10.1016/j.sedgeo.2015.07.010
    [Google Scholar]
  36. Garzanti, E. (2019). Petrographic classification of sand and sandstone. Earth‐science Reviews, 192, 545–563. https://doi.org/10.1016/j.earscirev.2018.12.014
    [Google Scholar]
  37. Garzanti, E., Ando, S., & Vezzoli, G. (2006). The continental crust as a source of sand (Southern Alps cross section, northern Italy). The Journal of Geology, 114(5), 533–554. https://doi.org/10.1086/506159
    [Google Scholar]
  38. Garzanti, E., & Malusà, M. G. (2008). The Oligocene Alps: Domal unroofing and drainage development during early orogenic growth. Earth and Planetary Science Letters, 268(3–4), 487–500. https://doi.org/10.1016/j.epsl.2008.01.039
    [Google Scholar]
  39. Garzanti, E., Resentini, A., Vezzoli, G., Ando, S., Malusa, M. G., Padoan, M., & Paparella, P. (2010). Detrital fingerprints of fossil continental‐subduction zones (Axial Belt Provenance, European Alps). The Journal of Geology, 118(4), 341–362. https://doi.org/10.1086/652720
    [Google Scholar]
  40. Garzanti, E., & Vezzoli, G. (2003). A classification of metamorphic grains in sands based on their composition and grade. Journal of Sedimentary Research, 73(5), 830–837. https://doi.org/10.1306/012203730830
    [Google Scholar]
  41. Garzanti, E., Vezzoli, G., & Andò, S. (2011). Paleogeographic and paleodrainage changes during Pleistocene glaciations (Po Plain, northern Italy). Earth‐Science Reviews, 105(1–2), 25–48. https://doi.org/10.1016/j.earscirev.2010.11.004
    [Google Scholar]
  42. Garzanti, E., Vezzoli, G., Lombardo, B., Ando, S., Mauri, E., Monguzzi, S., & Russo, M. (2004). Collision‐orogen provenance (western Alps): Detrital signatures and unroofing trends. The Journal of Geology, 112(2), 145–164. https://doi.org/10.1086/381655
    [Google Scholar]
  43. Ghielmi, M., Minervini, M., Nini, C., Rogledi, S., & Rossi, M. (2013). Late Miocene‐Middle Pleistocene sequences in the Po Plain‐Northern Adriatic Sea (Italy): the stratigraphic record of modification phases affecting a complex foreland basin. Marine and Petroleum Geology, 42, 50–81. https://doi.org/10.1016/j.marpetgeo.2012.11.007
    [Google Scholar]
  44. Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: a test of the Gazzi‐Dickinson point‐counting method. Journal of Sedimentary Research, 54(1), 103–116. https://doi.org/10.1306/212F83B9‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  45. Johnsson, M. J., & Basu, A. (Eds.) (1993). Processes controlling the composition of clastic sediments, Vol. 284. Geological Society of America, Special Paper 284.
  46. Marchesini, L., Amorosi, A., Cibin, U., Zuffa, G. G., Spadafora, E., & Preti, D. (2000). Sand composition and sedimentary evolution of a Late Quaternary depositional sequence, northwestern Adriatic Coast, Italy. Journal of Sedimentary Research, 70(4), 829–838. https://doi.org/10.1306/2DC4093B‐0E47‐11D7‐8643000102C1865D
    [Google Scholar]
  47. Matenco, L., & Andriessen, P. (2013). Quantifying the mass transfer from mountain ranges to deposition in sedimentary basins: Source to sink studies in the Danube Basin‐Black Sea system. Global and Planetary Change, 103, 1–18. https://doi.org/10.1016/j.gloplacha.2013.01.003
    [Google Scholar]
  48. Monegato, G., Stefani, C., & Zattin, M. (2010). From present rivers to old terrigenous sediments: The evolution of the drainage system in the eastern Southern Alps. Terra Nova, 22(3), 218–226. https://doi.org/10.1111/j.1365‐3121.2010.00937.x
    [Google Scholar]
  49. Monegato, G., & Vezzoli, G. (2011). Post‐Messinian drainage changes triggered by tectonic and climatic events (eastern Southern Alps, Italy). Sedimentary Geology, 239(3–4), 188–198. https://doi.org/10.1016/j.sedgeo.2011.06.012
    [Google Scholar]
  50. Morton, R. A., & Suter, J. R. (1996). Sequence stratigraphy and composition of late Quaternary shelf‐margin deltas, northern Gulf of Mexico. AAPG Bulletin, 80(4), 505–530. https://doi.org/10.1306/64ED882C‐1724‐11D7‐8645000102C1865D
    [Google Scholar]
  51. Mutti, E., Davoli, G., Tinterri, R., & Zavala, C. (1996). The importance of fluvio‐deltaic systems dominated by catastrophic flooding in tectonically active basins. Memorie Di Scienze Geologiche, 48, 233–291.
    [Google Scholar]
  52. Mutti, E., Tinterri, R., Benevelli, G., Di Biase, D., & Cavanna, G. (2003). Deltaic, mixed and turbidite sedimentation of ancient foreland basins. Marine Petroleum Geology, 20, 733–755. https://doi.org/10.1016/j.marpetgeo.2003.09.001
    [Google Scholar]
  53. Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., Rogledi, S., & Sciunnach, D. (2003). Onset of major Pleistocene glaciations in the Alps. Geology, 31(11), 989–992. https://doi.org/10.1130/G19445.1
    [Google Scholar]
  54. Parra, J. G., Marsaglia, K. M., Rivera, K. S., Dawson, S. T., & Walsh, J. P. (2012). Provenance of sand on the Poverty Bay shelf, the link between source and sink sectors of the Waipaoa River sedimentary system. Sedimentary Geology, 280, 208–233. https://doi.org/10.1016/j.sedgeo.2012.04.012
    [Google Scholar]
  55. Picard, M. D., McBride, E. F., Arribas, J., Johnsson, M. J., & Critelli, S. (2007). Comparison of river and beach sand composition with source rocks, Dolomite Alps drainage basins, northeastern Italy. Special Papers‐Geological Society of America, 420, 1
    [Google Scholar]
  56. Ricci Lucchi, F. (1986). The oligocene to recent foreland basins of the northern apennines. In: P. A. Allen, & P. Homewood (Eds.), Foreland basins (Vol. 8, pp. 105–139). International Association of Sedimentologists, Special Publication, 8, 105–139.
    [Google Scholar]
  57. Rodriguez, A. B., Hamilton, M. D., & Anderson, J. B. (2000). Facies and evolution of the modern Brazos Delta, Texas: wave versus flood influence. Journal of Sedimentary Research, 70(2), 283–295. https://doi.org/10.1306/2DC40911‐0E47‐11D7‐8643000102C1865D
    [Google Scholar]
  58. Rossi, M., Minervini, M., Ghielmi, M., & Rogledi, S. (2015). Messinian and Pliocene erosional surfaces in the Po Plain‐Adriatic Basin: Insights from allostratigraphy and sequence stratigraphy in assessing play concepts related to accommodation and gateway turnarounds in tectonically active margins. Marine and Petroleum Geology, 66, 192–216. https://doi.org/10.1016/j.marpetgeo.2014.12.012
    [Google Scholar]
  59. Scarponi, D., Azzarone, M., Kusnerik, K., Amorosi, A., Bohacs, K. M., Drexler, T. M., & Kowalewski, M. (2017). Systematic vertical and lateral changes in quality and time resolution of the macrofossil record: insights from Holocene transgressive deposits, Po coastal plain, Italy. Marine and Petroleum Geology, 87, 128–136. https://doi.org/10.1016/j.marpetgeo.2017.03.031
    [Google Scholar]
  60. Scarponi, D., Kaufman, D., Amorosi, A., & Kowalewski, M. (2013). Sequence stratigraphy and the resolution of the fossil record. Geology, 41(2), 239–242. https://doi.org/10.1130/G33849.1
    [Google Scholar]
  61. Scarponi, D., & Kowalewski, M. (2004). Stratigraphic paleoecology: bathymetric signatures and sequence overprint of mollusk associations from upper Quaternary sequences of the Po Plain, Italy. Geology, 32(11), 989–992. https://doi.org/10.1130/G20808.1
    [Google Scholar]
  62. Schmid, S. M., Fügenschuh, B., Kissling, E., & Schuster, R. (2004). Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae, 97(1), 93–117. https://doi.org/10.1007/s00015‐004‐1113‐x
    [Google Scholar]
  63. Seguinot, J., Ivy‐Ochs, S., Jouvet, G., Huss, M., Funk, M., & Preusser, F. (2018). Modelling last glacial cycle ice dynamics in the Alps. The Cryosphere, 12(10), 3265–3285. https://doi.org/10.5194/tc‐12‐3265‐2018
    [Google Scholar]
  64. Shanmugam, G. (2018). A global satellite survey of density plumes at river mouths and at other environments: Plume configurations, external controls, and implications for deep‐water sedimentation. Petroleum Exploration and Developement, 45(4), 640–661.
    [Google Scholar]
  65. Stefani, C. (2002). Variation in terrigenous supplies in the Upper Pliocene to Recent deposits of the Venice area. Sedimentary Geology, 153(1–2), 43–55. https://doi.org/10.1016/S0037‐0738(02)00101‐X
    [Google Scholar]
  66. Stefani, C., Fellin, M. G., Zattin, M., Zuffa, G. G., Dalmonte, C., Mancin, N., & Zanferrari, A. (2007). Provenance and paleogeographic evolution in a multi‐source foreland: The Cenozoic Venetian‐Friulian Basin (NE Italy). Journal of Sedimentary Research, 77(11), 867–887. https://doi.org/10.2110/jsr.2007.083
    [Google Scholar]
  67. Tentori, D., Marsaglia, K. M., & Milli, S. (2016). Sand compositional changes as a support for sequence‐stratigraphic interpretation: the Middle Upper Pleistocene to Holocene deposits of the Roman Basin (Rome, Italy). Journal of Sedimentary Research, 86(10), 1208–1227. https://doi.org/10.2110/jsr.2016.75
    [Google Scholar]
  68. Tentori, D., Milli, S., & Marsaglia, K. M. (2018). A source‐to‐sink compositional model of a present highstand: an example in the low‐rank Tiber depositional sequence (Latium Tyrrhenian Margin, Italy). Journal of Sedimentary Research, 88(10), 1238–1259. https://doi.org/10.2110/jsr.2018.60
    [Google Scholar]
  69. Vermeesch, P., Resentini, A., & Garzanti, E. (2016). An R package for statistical provenance analysis. Sedimentary Geology, 336, 14–25. https://doi.org/10.1016/j.sedgeo.2016.01.009
    [Google Scholar]
  70. Vittori, E., & Ventura, G. (1995). Grain size of fluvial deposits and late Quaternary climate: A case study in the Po River valley (Italy). Geology, 23(8), 735–738. https://doi.org/10.1130/0091‐7613(1995)023<0735:GSOFDA>2.3.CO;2
    [Google Scholar]
  71. Walsh, J. P., Wiberg, P. L., Aalto, R., Nittrouer, C. A., & Kuehl, S. A. (2016). Source‐to‐sink research: Economy of the Earth's surface and its strata. Earth Science Reviews, 153, 1–6. https://doi.org/10.1016/j.earscirev.2015.11.010
    [Google Scholar]
  72. Weltje, G. J. (2002). Quantitative analysis of detrital modes: statistically rigorous confidence regions in ternary diagrams and their use in sedimentary petrology. Earth‐Science Reviews, 57(3–4), 211–253. https://doi.org/10.1016/S0012‐8252(01)00076‐9
    [Google Scholar]
  73. Weltje, G. J. (2006). Ternary sandstone composition and provenance: An evaluation of the ‘Dickinson model’. Geological Society, London, Special Publications, 264(1), 79–99. https://doi.org/10.1144/GSL.SP.2006.264.01.07
    [Google Scholar]
  74. Weltje, G. J., & Brommer, M. B. (2011). Sediment‐budget modelling of multi‐sourced basin fills: Application to recent deposits of the western Adriatic mud wedge (Italy). Basin Research, 23(3), 291–308. https://doi.org/10.1111/j.1365‐2117.2010.00484.x
    [Google Scholar]
  75. Winkler, H. G. (1979). Anatexis, formation of migmatites, and origin of granitic magmas. Petrogenesis of metamorphic rocks (pp. 283–339). Springer. https://doi.org/10.1007/978‐1‐4757‐4215‐2_18
    [Google Scholar]
  76. Zuffa, G. G. (1980). Hybrid arenites; their composition and classification. Journal of Sedimentary Research, 50(1), 21–29. https://doi.org/10.1306/212F7950‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  77. Zuffa, G. G. (1985). Optical analyses of arenites: influence of methodology on compositional results. In: G.G.Zuffa (ed.), Provenance of Arenites. NATO ASI Series (Series C: Mathematical and Physical Sciences) (148, pp. 165–189). Dordrecht, the Netherlands: Springer. https://doi.org/10.1007/978‐94‐017‐2809‐6_8
    [Google Scholar]
  78. Zuffa, G. G., Cibin, U., & Di Giulio, A. (1995). Arenite petrography in sequence stratigraphy. The Journal of Geology, 103(4), 451–459. https://doi.org/10.1086/629763
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12519
Loading
/content/journals/10.1111/bre.12519
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error