1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[Abstract

The combined effects of post‐rift magma emplacement and tectonic inversion on the hyper‐extended West Iberian Margin are unravelled in detail using multichannel 2D/3D seismic data. The Estremadura Spur, acting as an uplifted crustal block bounded by two first‐order transfer zones, shows evidence of four post‐rift tectonic events each with a distinctive seismic‐stratigraphic response that can be used to demonstrate the tectono‐magmatic interplay, namely: (a) the Campanian onset of magmatism (including the Fontanelas Volcano, the widespread evidence of multiple sill complexes and the detailed description of a >20 km long laccolith, the Estremadura Spur Intrusion; (b) the Campanian‐Maastrichtian NE‐SW event pervasively affecting the area, resulting in regional uplift, reverse faulting and folding; (c) the Paleocene‐mid Eocene inversion that resulted in widespread erosion and; (d) the Oligocene‐mid Miocene evidence of rejuvenated NW‐SE inversion marked by crestal faulting and forced‐fault folding establishing the final geometry of the area. The distinct deformation styles within each tectonic phase document a case of decoupled deformation between Late Cretaceous and Tertiary units, in response to the predominant stress field evolution, revealing that the magnitude of Late Cretaceous inversion is far more significant than the one affecting the latter units. A detailed analysis of the laccolith and its overburden demonstrate the distinct deformation patterns associated both with magma ascent (including extensional faulting, forced‐folding and concentric reverse faulting) and its interference as a rigid intrusive body during subsequent transpressive inversion. This reinforces the role that the combined tectono‐magmatic events played on the margin. Also analysed is the wider impact of post‐rift magmatism and the associate emplacement of sub‐lithospheric magma on the rheology of a thinned continental crust. This takes into account the simultaneous tectonic inversion of the margin, the implied alternative views on characteristic heat flow, and on how these can be incorporated in source rock organic maturity modelling.

,

The combined effects of multiphase margin inversion and Late Cretaceous magmatism on the Central West Iberian Margin reveals that deformation is decoupled between Cretaceous and Tertiary strata, with a laccolith accommodating significant shortening and acting as a rigid body.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12524
2021-03-15
2024-04-27
Loading full text...

Full text loading...

References

  1. Alves, T. M., & Abreu Cunha, T. (2018). A phase of transient subsidence, sediment bypass and deposition of regressive‐transgressive cycles during the breakup of Iberia and Newfoundland. Earth and Planetary Science Letters, 484, 168–183. https://doi.org/10.1016/j.epsl.2017.11.054
    [Google Scholar]
  2. Alves, T. M., Gawthorpe, R. L., Hunt, D., & Monteiro, J. H. (2000). Tertiary evolution of the são vicente and setúbal submarine canyons, southwest Portugal: insights from seismic stratigraphy. Ciências Da Terra, 14, 243–256.
    [Google Scholar]
  3. Alves, T. M., Gawthorpe, R. L., Hunt, D. W., & Monteiro, J. H. (2002). Jurassic tectono‐sedimentary evolution of the northern Lusitanian basin (Offshore Portugal). Marine and Petroleum Geology, 19, 727–754. https://doi.org/10.1016/S0264‐8172(02)00036‐3
    [Google Scholar]
  4. Alves, T. M., Gawthorpe, R. L., Hunt, D. W., & Monteiro, J. H. (2003). Cenozoic tectono‐sedimentary evolution of the western Iberian margin. Marine Geology, 195, 75–108. https://doi.org/10.1016/S0025‐3227(02)00683‐7
    [Google Scholar]
  5. Alves, T. M., Moita, C., Cunha, T., Ullnaess, M., Myklebust, R., Monteiro, J. H., & Manupella, G. (2009). Diachronous evolution of late Jurassic‐cretaceous continental rifting in the Northeast Atlantic (West Iberian Margin). Tectonics, 28(4). https://doi.org/10.1029/2008tc002337
    [Google Scholar]
  6. Azerêdo, A. C., Duarte, L. V., Henriques, M. H., Manupella, G., & (2003). Da Dinâmica Continental No Triásico Aos Mares Do Jurássico Inferior E Médio (p. 43). Lisbon, Portugal: Instituto Geológico e Mineiro.
    [Google Scholar]
  7. Badagola, A. (2008). Evolução Morfo‐Tectónica Da Plataforma Continental Do Esporão Da Estremadura. Universidade de Lisboa.
    [Google Scholar]
  8. Bischoff, A., Nicol, A., Cole, J., & Gravley, D. (2019). Stratigraphy of architectural elements of a buried monogenetic volcanic system. Open Geosciences, 11(1), 581–616. https://doi.org/10.1515/geo‐2019‐0048
    [Google Scholar]
  9. Boillot, G., Malod, J. A., & Mougenot, D. (1979). Évolution Géologique De La Marge Ouest‐Ibérique. Ciências Da Terra, 5, 215–222.
    [Google Scholar]
  10. Breitkreuz, C., & Mock, A. (2004). Are Laccolith complexes characteristic of transtensional basin systems? Examples from the permo‐carboniferous of central Europe. Geological Society, London, Special Publications, 234, 13–31. https://doi.org/10.1144/GSL.SP.2004.234.01.03
    [Google Scholar]
  11. Bronner, A., Sauter, D., Manatschal, G., Péron‐Pinvidic, G., & Munschy, M. (2011). Magmatic breakup as an explanation for magnetic anomalies at magma‐poor rifted margins. Nature Geoscience, 4, 549–553. https://doi.org/10.1038/ngeo1201
    [Google Scholar]
  12. Brown, A. R. (2011). Interpretation of three‐dimensional seismic data (p. 534). AAPG SEG.
    [Google Scholar]
  13. Callegaro, S., Rapaille, C., Marzoli, A., Bertrand, H., Chiaradia, M., Reisberg, L., Bellieni, G., Martins, L., Madeira, J., Mata, J., Youbi, N., De Min, A., Azevedo, M. R., & Bensalah, M. K. (2014). Enriched mantle source for the central Atlantic magmatic province: new supporting evidence from Southwestern Europe. Lithos, 188, 15–32. https://doi.org/10.1016/j.lithos.2013.10.021
    [Google Scholar]
  14. Casacão, J. (2015). Tectono‐Estratigrafia E Modelação De Sistemas Petrolíferos Da Bacia Do Porto. Universidade de Lisboa.
    [Google Scholar]
  15. Cebriá, J. M., López‐Ruiz, J., Doblas, M., Martins, L. T., & Munhá, J. (2003). Geochemistry of the early jurassic messejana‐plasencia dyke (Portugal‐Spain); implications on the origin of the central Atlantic magmatic province. Journal of Petrology, 44, 547–568. https://doi.org/10.1093/petrology/44.3.547
    [Google Scholar]
  16. Cloetingh, S., Burov, E., Beekman, F., Andeweg, B., Andriessen, P. A. M., Garcia‐Castellanos, D., de Vicente, G., & Vegas, R. (2002). Lithospheric folding in Iberia. Tectonics, 21, 5‐1–5‐26. https://doi.org/10.1029/2001TC901031
    [Google Scholar]
  17. Corti, G., Moratti, G., & Sani, F. (2005). Relations between surface faulting and granite intrusions in analogue models of strike‐slip deformation. Journal of Structural Geology, 27, 1547–1562. https://doi.org/10.1016/j.jsg.2005.05.011
    [Google Scholar]
  18. Cunha, P. P. (2019). Cenozoic Basins of Western Iberia: Mondego, Lower Tejo and Alvalade Basins. In C.Quesada, & J. T.Oliveira (Eds.), The Geology of Iberia: A Geodynamic Approach: Volume 4: Cenozoic Basins (pp. 105–130). Springer International Publishing.
    [Google Scholar]
  19. Cunha, T. A., Watts, A. B., Pinheiro, L. M., & Alves, T. M. (2009). West Iberia margin subsidence‐uplift history: constraints from seismic data and well and pseudo‐well backstripping. . 6 Simposio sobre el Margen Ibérico Atlántico
    [Google Scholar]
  20. Dini, A., Westerman, D. S., Innocenti, F., & Rocchi, S. (2008). Magma emplacement in a transfer zone: the miocene mafic Orano dyke swarm of Elba Island, Tuscany, Italy. Geological Society, London, Special Publications, 302, 131–148. https://doi.org/10.1144/SP302.10
    [Google Scholar]
  21. Escada, C. (2019). Post‐Rift Magmatism on the Central West Iberian Margin (Estremadura Spur): New Evidences from Potential Field Data. Universidade de Lisboa.
    [Google Scholar]
  22. Escada, C., Santos, F., Represas, P., Pereira, R., Mata, J., Rosas, F., & Silva, B. (2019). Post‐Rift Magmatism on the Central West Iberian Margin: New Evidence from Magnetic and Gravimetric Data Inversion in the Estremadura Spur. EGU General Assembly 2019, : Geophysical Research Abstracts.
  23. Franke, D. (2013). Rifting, lithosphere breakup and volcanism: comparison of magma‐poor and volcanic rifted margins. Marine and Petroleum Geology, 43, 63–87. https://doi.org/10.1016/j.marpetgeo.2012.11.003
    [Google Scholar]
  24. Geoffroy, L. (2005). Volcanic passive margins. Comptes Rendus Geoscience, 337, 1395–1408. https://doi.org/10.1016/j.crte.2005.10.006
    [Google Scholar]
  25. Gomes, A. S., Rosas, F. M., Duarte, J. C., Schellart, W. P., Almeida, J., Tomás, R., & Strak, V. (2019). Analogue modelling of brittle shear zone propagation across upper crustal morpho‐rheological heterogeneities. Journal of Structural Geology, 126, 175–197. https://doi.org/10.1016/j.jsg.2019.06.004
    [Google Scholar]
  26. Gpep
    Gpep . (1986). The Petroleum Potential of Portugal (p. 62). Gabinete para a Pesquisa e Exploração de Petróleo.
    [Google Scholar]
  27. Grange, M., Schärer, U., Cornen, G., & Girardeau, J. (2008). First alkaline magmatism during iberia‐newfoundland rifting. Terra Nova, 20, 494–503. https://doi.org/10.1111/j.1365‐3121.2008.00847.x
    [Google Scholar]
  28. Grange, M., Scharer, U., Merle, R., Girardeau, J., & Cornen, G. (2010). Plume‐lithosphere interaction during migration of cretaceous alkaline magmatism in Sw Portugal: evidence from U‐Pb Ages and Pb–Sr–Hf isotopes. Journal of Petrology, 51, 1143–1170. https://doi.org/10.1093/petrology/egq018
    [Google Scholar]
  29. Holford, S. P., Schofield, N., & Reynolds, P. (2017). Subsurface fluid flow focused by buried volcanoes in sedimentary basins: Evidence from 3D seismic data, bass basin, offshore Southeastern Australia. Interpretation, 5, SK39–SK50. https://doi.org/10.1190/INT‐2016‐0205.1
    [Google Scholar]
  30. Hubbard, R., Pape, J., & Roberts, D. E. (1985). Depositional Sequence Mapping as a Technique to Establish Tectonic and Stratigraphic Framework and Evaluate Hydrocarbon Potential on a Passive Continental Margin. In: O. R.Berg, & D. G.Woolverton (Ed.), Seismic stratigraphy Ii: an integrated approach (Vol. 39, pp. 79‐91). : American Association of Petroleum Geologists.
    [Google Scholar]
  31. Inverno, C. M. C., Manupella, G., Zbyszewski, G., Pais, J., & Ribeiro, M. L. (1993) Notícia Explicativa Da Folha 42‐C, Santiago Do Cacém, 1:50.000. Serviços geológicos de Portugal, Lisboa. 75.
  32. Jackson, C.‐A.‐L., Schofield, N., & Golenkov, B. (2013). Geometry and controls on the development of igneous sill‐related forced folds: a 2‐D seismic reflection case study from offshore Southern Australia. GSA Bulletin, 125, 1874–1890. https://doi.org/10.1130/B30833.1
    [Google Scholar]
  33. Kullberg, J. C., Terrinha, P., Pais, J., Reis, R. P. D., & Legoinha, P. (2006). Arrábia E Sintra: Dois Exemplos De Tectónica Pós‐Rifting Da Basia Lusitaniana. In: R.Dias, A.Araújo, P.Terrinha, & J. C.Kullberg (Ed.), Geologia De Portugal No Contexto Da Ibéria (pp. 369–395). Évora, Portugal: Universidade de Évora.
    [Google Scholar]
  34. Kullberg, M. C., & Kullberg, J. C. (2000). Tectónica da região de sintra. Memórias Geociências, 2, 1–34.
    [Google Scholar]
  35. Llave, E., Hernández‐Molina, F. J., García, M., Ercilla, G., Roque, C., Juan, C., Mena, A., Preu, B., Van Rooij, D., Rebesco, M., Brackenridge, R., Jané, G., Gómez‐Ballesteros, M., & Stow, D. (2020). Contourites along the iberian continental margins: Conceptual and economic implications. Geological Society, London, Special Publications, 476, 403.
    [Google Scholar]
  36. Lneg‐Lgm
    Lneg‐Lgm , (2010). Carta Geológica De Portugal. 1:000.000. LNEG‐LGM.
  37. Magee, C., Hunt‐Stewart, E., & Jackson, C. A.‐ L. (2013). Volcano growth mechanisms and the role of sub‐volcanic intrusions: Insights from 2d seismic reflection data. Earth and Planetary Science Letters, 373, 41–53. https://doi.org/10.1016/j.epsl.2013.04.041
    [Google Scholar]
  38. Magee, C., Jackson, C.‐L., Hardman, J. P., & Reeve, M. T. (2017). Decoding sill emplacement and forced fold growth in the exmouth sub‐basin, offshore northwest Australia: Implications for hydrocarbon exploration. Interpretation, 5, SK11–SK22. https://doi.org/10.1190/INT‐2016‐0133.1
    [Google Scholar]
  39. Manatschal, G., & Bernoulli, D. (1999). Architecture and evolution of nonvolcanic margins: present‐day galicia and ancient adria. Tectonics, 18, 1099–1119.
    [Google Scholar]
  40. Martín‐Chivelet, J., Floquet, M., García‐Senz, J., Callapez, P. M., López‐Mir, B., Muñoz, J. A., Barroso‐Barcenilla, F., Segura, M., Soares, A. F., Dinis, P. M., Marques, J. F., & Arbués, P. (2019) Late cretaceous post‐rift to convergence in Iberia. In: The Geology of Iberia: A Geodynamic Approach (Ed. by, Regional Geology Reviews, 3, 285–376. Springer.
  41. Martins, L. T., Madeira, J., Youbi, N., Munhá, J., Mata, J., & Kerrich, R. (2008). Rift‐related magmatism of the central Atlantic magmatic province in Algarve, Southern Portugal. Lithos, 101, 102–124. https://doi.org/10.1016/j.lithos.2007.07.010
    [Google Scholar]
  42. Mata, J., Alves, C. F., Martins, L., Miranda, R., Madeira, J., Pimentel, N., Martins, S., Azevedo, M. R., Youbi, N., De Min, A., Almeida, I. M., Bensalah, M. K., & Terrinha, P. (2015). 40ar/39ar ages and Petrogenesis of the west Iberian margin onshore magmatism at the Jurassic‐cretaceous transition: geodynamic implications and assessment of open‐system processes involving saline materials. Lithos, 236–237, 156–172. https://doi.org/10.1016/j.lithos.2015.09.001
    [Google Scholar]
  43. Mclean, C. E., Schofield, N., Brown, D. J., Jolley, D. W., & Reid, A. (2017). 3d seismic imaging of the shallow plumbing system beneath the ben nevis monogenetic volcanic field: Faroe‐Shetland Basin. Journal of the Geological Society, 174, 468. https://doi.org/10.1144/jgs2016‐118
    [Google Scholar]
  44. Merle, R. E., Jourdan, F., Chiaradia, M., Olierook, H. K. H., & Manatschal, G. (2019). Origin of widespread cretaceous alkaline magmatism in the Central Atlantic: a single melting anomaly?Lithos, 342–343, 480–498. https://doi.org/10.1016/j.lithos.2019.06.002
    [Google Scholar]
  45. Merle, R., Jourdan, F., Marzoli, A., Renne, P. R., Grange, M., & Girardeau, J. (2009). Evidence of multi‐phase cretaceous to quaternary alkaline magmatism on tore‐madeira rise and neighbouring seamounts from 40ar/39ar ages. Journal of the Geological Society, 166, 879–894.
    [Google Scholar]
  46. Miranda, R., Terrinha, P., Mata, J., Azevêdo, M. D. R., Chadwick, J., Lourenço, N., & Moreira, M. (2010). Caracterização Geoquímica Do Monte Submarino De Fontanelas, Margem Oeste Ibérica. X Congresso de geoquímica dos países de lingua oficial portuguesa, XVI Semana de geoquímica, Porto, Portugal, Universidade do Porto.
  47. Miranda, R., Valadares, V., Terrinha, P., Mata, J., Azevedo, M. D. R., Gaspar, M., Kullberg, J. C., & Ribeiro, C. (2009). Age constrains on the late cretaceous alkaline magmatism on the west Iberian margin. Cretaceous Research, 30, 575–586.
    [Google Scholar]
  48. Montanari, D., Bonini, M., Corti, G., Agostini, A., & Del Ventisette, C. (2017). Forced folding above shallow magma intrusions: insights on supercritical fluid flow from analogue modelling. Journal of Volcanology and Geothermal Research, 345, 67–80. https://doi.org/10.1016/j.jvolgeores.2017.07.022
    [Google Scholar]
  49. Mougenot, D. (1980). Une Phase De Compression Au Crétacé Terminal À L'ouest Du Portugal: Quelques Arguments. Boletim da Sociedade Geológica de Portugal, XXII, 233‐239.
  50. Mougenot, D., Monteiro, J. H., Dupeuble, P. A., & Malod, J. A. (1979). La marge continentale sud‐portugaise: évolution structurale et sédimentaire. Ciências Da Terra, 5, 223–246.
    [Google Scholar]
  51. Neres, M., Bouchez, J. L., Terrinha, P., Font, E., Moreira, M., Miranda, R., Launeau, P., & Carvallo, C. (2014). Magnetic fabric in a cretaceous sill (Foz Da Fonte, Portugal): Flow model and implications for regional magmatism. Geophysical Journal International, 199, 78–101. https://doi.org/10.1093/gji/ggu250
    [Google Scholar]
  52. Neres, M., Terrinha, P., Custódio, S., Silva, S. M., Luis, J., & Miranda, J. M. (2018). Geophysical evidence for a magmatic intrusion in the ocean‐continent transition of the Sw Iberia margin. Tectonophysics, 744, 118–133. https://doi.org/10.1016/j.tecto.2018.06.014
    [Google Scholar]
  53. Peace, A. L., Welford, J. K., Ball, P. J., & Nirrengarten, M. (2019). Deformable plate tectonic models of the southern north Atlantic. Journal of Geodynamics, 128, 11–37. https://doi.org/10.1016/j.jog.2019.05.005
    [Google Scholar]
  54. Pereira, R., & Alves, T. M. (2011). Margin segmentation prior to continental break‐up: a seismic‐stratigraphic record of multiphased rifting in the North Atlantic. Tectonophysics, 505, 17–34.
    [Google Scholar]
  55. Pereira, R., & Alves, T. M. (2012). Tectono‐Stratigraphic signature of multiphased rifting on divergent margins (Deep‐Offshore Southwest Iberia, North Atlantic). Tectonics, 31, TC4001. https://doi.org/10.1029/2011TC003001
    [Google Scholar]
  56. Pereira, R., & Alves, T. M. (2013). Crustal deformation and submarine canyon incision in a meso‐cenozoic first‐order transfer zone (Sw Iberia, North Atlantic Ocean). Tectonophysics, 601, 148–162. https://doi.org/10.1016/j.tecto.2013.05.007
    [Google Scholar]
  57. Pereira, R., Alves, T. M., & Cartwright, J. (2011). Post‐rift compression on the southwest iberian margin (Eastern North Atlantic): a case of prolonged inversion in the ocean‐continent transition. Journal of the Geological Society, 168, 1249–1263.
    [Google Scholar]
  58. Pereira, R., Alves, T. M., & Mata, J. (2017). Alternating crustal architecture in West Iberia: A review of its significance in the context of ne Atlantic rifting. Journal of the Geological Society, 174, 522–540. https://doi.org/10.1144/jgs2016‐050
    [Google Scholar]
  59. Pereira, R., & Barreto, P. (2018). Evidence and Significance of Buried Magmatic Features Offshore the West Iberian Margin. AAPG Europe Conference and Exhibition, Lisbon, Portugal.
  60. Péron‐Pinvidic, G., Manatschal, G., Masini, E., Sutra, E., Flament, J. M., Haupert, I., & Unternehr, P. (2015). Unravelling the along‐strike variability of the Angola–Gabon rifted margin: A mapping approach. Geological Society, London, Special Publications, 438.
    [Google Scholar]
  61. Péron‐Pinvidic, G., Manatschal, G., & Osmundsen, P. T. (2013). Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts. Marine and Petroleum Geology, 43, 21–47. https://doi.org/10.1016/j.marpetgeo.2013.02.002
    [Google Scholar]
  62. Planke, S., Millett, J. M., Maharjan, D., Jerram, D. A., Abdelmalak, M. M., Groth, A., Hoffmann, J., Berndt, C., & Myklebust, R. (2017). Igneous seismic geomorphology of buried lava fields and coastal escarpments on the vøring volcanic rifted margin. Interpretation, 5, SK161–SK177. https://doi.org/10.1190/INT‐2016‐0164.1
    [Google Scholar]
  63. Planke, S., Svensen, H., Myklebust, R., Bannister, S., Manton, B., & Lorenz, L. (2015) Geophysics and Remote Sensing. In: Physical Geology of Shallow Magmatic Systems (Ed. by, 131‐146).
  64. Ravnås, R., & Steel, R. J. (1998). Architecture of marine rift‐basin successions. AAPG Bulletin, 82, 110–146.
    [Google Scholar]
  65. Rey, J., Dinis, J. L., Callapez, P., & Cunha, P. P. (2006). Da Rotura Continental À Margem Passiva: Composição E Evolução Do Cretácico De Portugal. INETI, Lisboa, Portugal. 75.
  66. Ribeiro, A., Kullberg, M. C., Kullberg, J. C., Manuppella, G., & Phipps, S. (1990). A review of alpine tectonics in Portugal: Foreland detachment in basement and cover rocks. Tectonophysics, 184, 357–366. https://doi.org/10.1016/0040‐1951(90)90448‐H
    [Google Scholar]
  67. Ribeiro, P., Silva, P. F., Moita, P., Kratinová, Z., Marques, F. O., & Henry, B. (2013). Palaeomagnetism in the Sines Massif (Sw Iberia) revisited: Evidences for late cretaceous hydrothermal alteration and associated partial remagnetization. Geophysical Journal International, 195, 176–191. https://doi.org/10.1093/gji/ggt261
    [Google Scholar]
  68. Rock, N. M. S. (1982). The Late Cretaceous Alkaline Igneous Province in the Iberian Peninsula, and Its Tectonic Significance. Lithos, 15, 111–131. https://doi.org/10.1016/0024‐4937(82)90004‐4
    [Google Scholar]
  69. Roman‐Berdiel, T., Gapais, D., & Brun, J. P. (1995). Analogue models of laccolith formation. Journal of Structural Geology, 17, 1337–1346. https://doi.org/10.1016/0191‐8141(95)00012‐3
    [Google Scholar]
  70. Schmiedel, T., Galland, O., & Breitkreuz, C. (2017). Dynamics of sill and laccolith emplacement in the brittle crust: role of host rock strength and deformation mode. Journal of Geophysical Research: Solid Earth, 122, 8860–8871.
    [Google Scholar]
  71. Sibuet, J.‐C., Srivastava, S., & Manatschal, G. (2007). Exhumed mantle‐forming transition crust in the newfoundland‐iberia rift and associated magnetic anomalies. Journal of Geophysical Research, 112.
    [Google Scholar]
  72. Silva, E. A., Miranda, J. M., Luis, J. F., & Galdeano, A. (2000). Correlation between the Palaeozoic Structures from West Iberian and Grand Banks Margins Using Inversion of Magnetic Anomalies. Tectonophysics, 321, 57–71. https://doi.org/10.1016/S0040‐1951(00)00080‐9
    [Google Scholar]
  73. Simões, P., Neres, M., & Terrinha, P. (2020). Joint Modeling of Seismic, Magnetic and Gravimetric Data Unravels the Extent of the Late Cretaceous Magmatic Province on the Estremadura Spur Offshore West Iberia. EGU General Assembly.
  74. Soares, D. M., Alves, T. M., & Terrinha, P. (2012). The breakup sequence and associated lithospheric breakup surface: Their significance in the context of rifted continental margins (West Iberia and Newfoundland Margins, North Atlantic). Earth and Planetary Science Letters, 355–356, 311–326. https://doi.org/10.1016/j.epsl.2012.08.036
    [Google Scholar]
  75. Stapel, G., Cloetingh, S., & Pronk, B. (1996). Quantitative subsidence analysis of the Mesozoic evolution of the Lusitanian basin (Western Iberian Margin). Tectonophysics, 266, 493–507. https://doi.org/10.1016/S0040‐1951(96)00203‐X
    [Google Scholar]
  76. Sun, Q., Jackson, C.‐L., Magee, C., Mitchell, S. J., & Xie, X. (2019). Extrusion dynamics of deepwater volcanoes revealed by 3‐D seismic data. Solid Earth, 10, 1269–1282. https://doi.org/10.5194/se‐10‐1269‐2019
    [Google Scholar]
  77. Sutra, E., Manatschal, G., Mohn, G., & Unternehr, P. (2013). Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland Rifted Margins. Geochemistry, Geophysics, Geosystems, 14, 2575–2597. https://doi.org/10.1002/ggge.20135
    [Google Scholar]
  78. Teixeira, B. (2012) Modelação Da Subsidência, Evolução Térmica E Maturação De Intervalos Geradores Do Jurássico Na Bacia Lusitânica. : Universidade de Lisboa.
  79. Terrinha, P., Pueyo, E. L., Aranguren, A., Kullberg, J. C., Kullberg, M. C., Casas‐Sainz, A., & Azevedo, M. D. R. (2017). Gravimetric and magnetic fabric study of the sintra igneous complex: laccolith‐plug emplacement in the western iberian passive margin. International Journal of Earth Sciences, 107, 1807–1833. https://doi.org/10.1007/s00531‐017‐1573‐7
    [Google Scholar]
  80. Tucholke, B. E., Sawyer, D. S., & Sibuet, J. C. (2007). Breakup of the Newfoundland Iberia Rift. In: G. D. Karner, G. Manatschal, & L. M. Pinheiro (Eds.). Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup. Geological Society, London, 282, 9–46.
    [Google Scholar]
  81. Vanney, J. R., & Mougenot, D. (1990). Un Canyon Sous‐Marin Du Type "Gouf': Le Canhão Da Nazare (Portugal). Oceanologica Acta, 13, 1–14.
    [Google Scholar]
  82. Vissers, R. L. M., & Meijer, P. T. (2012). Mesozoic rotation of Iberia: Subduction in the Pyrenees?Earth‐Science Reviews, 110, 93–110. https://doi.org/10.1016/j.earscirev.2011.11.001
    [Google Scholar]
  83. Walker, F., Schofield, N., Millett, J., Jolley, D., Holford, S., Planke, S., Jerram, D. A., & Myklebust, R. (2020). Inside the Volcano: three‐dimensional magmatic architecture of a buried shield volcano. Geology. https://doi.org/10.1130/g47941.1
    [Google Scholar]
  84. Whitmarsh, R. B., Manatschal, G., & Minshull, T. A. (2001). Evolution of magma‐poor continental margins from rifting to seafloor spreading. Nature, 413, 150–154. https://doi.org/10.1038/35093085
    [Google Scholar]
  85. Wilson, R. C. L. (1988). Mesozoic development of the Lusitanian Basin, Portugal. Revista De La Sociedad Geologica De España, 1, 393–407.
    [Google Scholar]
  86. Wilson, R. C. L., Manatschal, G., & Wise, S. (2001). Rifting Along Non‐Volcanic Passive Margins: Stratigraphic and Seismic Evidence from the Mesozoic Successions of the Alps and Western Iberia. In R. C. L. Wilson, R. B. Whitmarsh, B. Taylor, & N. Froitzheim (Eds.), Non‐volcanic rifting of the continental margins: a comparison of evidence from Land and Sea. Geological Society, London. 197, 429‐452.
    [Google Scholar]
  87. Witt, W. G. (1977). Stratigraphy of the Lusitanian Basin, Shell Prospex Portuguesa, 61.
  88. Zhao, F., Alves, T. M., Wu, S., Li, W., Huuse, M., Mi, L., Sun, Q., & Ma, B. (2016). Prolonged post‐rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea). Earth and Planetary Science Letters, 445, 79–91. https://doi.org/10.1016/j.epsl.2016.04.001
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12524
Loading
/content/journals/10.1111/bre.12524
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error