1887
Volume 33 Number 2
  • E-ISSN: 1365-2117

Abstract

[Abstract

Hyperextended basins are increasingly recognized along the outboard parts of continental margins as aborted basins created during continental break‐up. Many of the concepts for understanding and modelling basin evolution and fill were developed for regions that have undergone modest crustal stretching ( < 2) and may not be valid in basins where the crust and upper mantle are heavily modified by extreme stretching. The present study uses extensive 2D and 3D seismic and well data to analyse the Late Jurassic–Cretaceous tectono‐stratigraphic evolution of the Porcupine Basin, bracketing the timing of hyperextension. It is an instructive basin, offshore west of Ireland, preserving low‐magnitude strain in the north, with increasing degrees of hyperextension in the south. Detailed mapping of strain domains (proximal, necking and hyperextended) across the Porcupine Basin reveals five main rift segments, each with a distinctive geometry and strain history. During early low‐strain rifting, inherited crustal structures strongly influenced the rift architecture by controlling the location and geometry of fault‐controlled marine depocentres. The transition from hyperextension to post‐rift subsidence was marked by locally developed, unconformity‐bounded, marine sequences that draped the underlying rift topography. Whilst these ‘transition sequences’ are dated as Tithonian above the necking domain, similar but younger Early Cretaceous transition packages developed in the hyperextended domain, suggesting extension migrated towards the rift axis during hyperextension. Early post‐rift sequences were broadly distributed across the rift centre and basin flanks before strong, thermally‐controlled subsidence of the hyperextended crust, along with hinging of the necking domain, locally to the point of slope failure, gave rise to axially‐focused marine deposition. Hyperextension may have left the basin susceptible to intra‐plate stress changes accounting for several unconformities within the post‐rift fill. This study provides an improved basin‐wide understanding of the tectono‐stratigraphic evolution of hyperextended basins.

,

Conceptual model for the development of syn‐rift and transitional sequences during hyperextended rifting. During hyperextension, strain progressively localizes towards the rift axis, leading to the development of transitional depocentres above the tectonically inactive parts of the necking domain, later followed by younger transitional sequences above the hyperextended domain.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12530
2021-03-15
2024-04-26
Loading full text...

Full text loading...

References

  1. Abdelmalak, M. M., Faleide, J. I., Planke, S., Gernigon, L., Zastrozhnov, D., Shephard, G. E., & Myklebust, R. (2017). The T‐reflection and the deep crustal structure of the Vøring margin, offshore mid‐Norway. Tectonics, 36, 2497–2523. https://doi.org/10.1002/2017TC004617
    [Google Scholar]
  2. Alves, T. M., Moita, C., Cunha, T. A., Ullnaess, M., Myklebust, R., Monteiro, J. H., & Manuppella, G. (2009). Diachronous evolution of Late Jurassic‐Cretaceous continental rifting in the northeast Atlantic (west Iberian margin). Tectonics, 28(4). https://doi.org/10.1029/2008TC002337
    [Google Scholar]
  3. Baxter, K., Buddin, T., Corcoran, D. V., & Smith, S. (2001). Structural modelling of the South Porcupine Basin, offshore Ireland: Implications for the timing, magnitude and style of crustal extension. Journal of the Geological Society, London, 188, 275–290. https://doi.org/10.1144/GSL.SP.2001.188.01.16
    [Google Scholar]
  4. Bellahsen, N., Fournier, M., d’Acremont, E., Leroy, S., & Daniel, J. M. (2006). Fault reactivation and rift localization: Northeastern Gulf of Aden margin. Tectonics, 25(1). https://doi.org/10.1029/2004TC001626
    [Google Scholar]
  5. Brekke, H. (2000). The tectonic evolution of the Norwegian Sea Continental Margin with emphasis on the Vøring and Møre Basins. In Nøttvedt, A. (Ed.), Dynamics of the Norwegian Margin (Vol. 167, pp. 327–378). Geological Society, London, Special Publications. https://doi.org/10.1144/GSL.SP.2000.167.01.13
    [Google Scholar]
  6. Buck, W. R. (1988). Flexural rotation of normal faults. Tectonics, 7, 959–973. https://doi.org/10.1029/TC007i005p00959
    [Google Scholar]
  7. Bullock, A. D., & Minshull, T. A. (2005). From continental extension to seafloor spreading: Crustal structure of the Goban Spur rifted margin, southwest of the UK. Geophysical Journal International, 163, 527–546. https://doi.org/10.1111/j.1365‐246X.2005.02726.x
    [Google Scholar]
  8. Bulois, C., Pubellier, M., Chamot‐Rooke, N., & Watremez, L. (2018). From orogenic collapse to rifting: A case study of the northern Porcupine Basin, offshore Ireland. Journal of Structural Geology, 114, 139–162. https://doi.org/10.1016/j.jsg.2018.06.021
    [Google Scholar]
  9. Calves, G., Torvela, T., Huuse, M., & Dinkleman, M. G. (2012). New evidence for the origin of the Porcupine Median Volcanic Ridge: Early Cretaceous volcanism in the Porcupine Basin, Atlantic margin of Ireland. Geochemistry, Geophysics, Geosystems, 13(6). https://doi.org/10.1029/2011GC003852
    [Google Scholar]
  10. Chen, C., Watremez, L., Prada, M., Minshull, T. A., Edwards, R. A., O’Reilly, B. M., Reston, T. J., Wagner, G., Gaw, V., Klaeschen, D., & Shannon, P. M. (2018). From continental hyperextension to seafloor spreading: New insights on the Porcupine Basin from wide‐angle seismic data. Journal of Geophysical Research: Solid Earth, 123, 8312–8330. https://doi.org/10.1029/2018JB016375
    [Google Scholar]
  11. Chenin, P., Manatschal, G., Decarlis, A., Schmalholz, S. M., Duretz, T., & Beltrando, M. (2019). Emersion of distal domains in advanced stages of continental rifting explained by asynchronous crust and mantle necking. Geochemistry, Geophysics, Geosystems, 20, 3821–3840. https://doi.org/10.1029/2019GC008357
    [Google Scholar]
  12. Chenin, P., Manatschal, G., Lavier, L. L., & Erratt, D. (2015). Assessing the impact of orogenic inheritance on the architecture, timing and magmatic budget of the North Atlantic rift system: A mapping approach. Journal of the Geological Society, 172, 711–720. https://doi.org/10.1144/jgs2014‐139
    [Google Scholar]
  13. Chew, D. M., & Stillman, C. J. (2009). Late Caledonian orogeny and magmatism. In C. H.Holland, & I. S.Sanders (Eds.), The geology of Ireland (pp. 143–173). Dunedin Academic Press.
    [Google Scholar]
  14. Clift, P. (1996). Plume tectonics as a cause of mass wasting on the southeast Greenland continental margin. Marine and Petroleum Geology, 13, 771–780. https://doi.org/10.1016/0264‐8172(96)00021‐9
    [Google Scholar]
  15. Cook, D. R. (1987). The Goban Spur – Exploration in a deep‐water frontier basin. In J.Brooks, & D.Glennie (Eds.), Petroleum geology of north‐west Europe: Proceedings of the 3rd conference (pp. 623–632). Graham and Trotman Ltd.
    [Google Scholar]
  16. Corti, G. (2009). Continental rift evolution: From rift initiation to incipient break‐up in the Main Ethiopian Rift, East Africa. Earth Science Reviews, 96, 1–53. https://doi.org/10.1016/j.earscirev.2009.06.005
    [Google Scholar]
  17. Croker, P. F., & Shannon, P. M. (1987). The evolution and hydrocarbon prospectivity of the Porcupine Basin, offshore Ireland. In J.Brooks, & K. W.Glennie (Eds.), Petroleum geology of north west Europe (Vol. 3, pp. 633–642). Graham & Trotman.
    [Google Scholar]
  18. Croker, P. F., & Shannon, P. M. (1995). The petroleum geology of Ireland’s offshore basins: Introduction. Geological Society, London, Special Publications, 93, 1–8. https://doi.org/10.1144/GSL.SP.1995.093.01.01
    [Google Scholar]
  19. Cunningham, G. A., & Shannon, P. M. (1997). The Erris Ridge: A major geological feature in the NW Irish Offshore Basins. Journal of the Geological Society, London, 154, 503–508. https://doi.org/10.1144/gsjgs.154.3.0503
    [Google Scholar]
  20. Dafoe, L. T., Keen, C. E., Dickie, K., & Williams, G. L. (2015). Regional stratigraphy and subsidence of Orphan Basin near the time of breakup and implications for rifting processes. Basin Research, 29, 233–254. https://doi.org/10.1111/bre.12147
    [Google Scholar]
  21. de Graciansky, P. C., Poag, C. W., Cunningham, R., Loubere, P., Masson, D. G., Mazzullo, J. M., Montadert, L., Müller, C., Otsuka, K., Reynolds, L. A., Sigal, J., Snyder, S. W., Townsend, H. A., Vaos, S. P., & Waples, D. (1985). The Goban Spur transect: Geologic evolution of a sediment‐starved passive continental margin. Geological Society of America, 96, 58–76. https://doi.org/10.1130/0016‐7606(1985)96<58:TGSTGE>2.0.CO;2
    [Google Scholar]
  22. Doré, A. G., Lundin, E. R., Fichler, C., & Olesen, O. (1997). Patterns of basement structure and reactivation along the NE Atlantic margin. Journal of Geological Society, London, 154, 85–92. https://doi.org/10.1144/gsjgs.154.1.0085
    [Google Scholar]
  23. Doré, A. G., Lundin, E. R., Jensen, L. N., Birkeland, Ø., Eliassen, P. E., & Fichler, C. (1999). Principle tectonic events in the evolution of the northwest European Atlantic margin. Geological Society, London, Petroleum Geology Conference Series, 5, 41–61. https://doi.org/10.1144/0050041
    [Google Scholar]
  24. Doré, A. G., & Stewart, I. C. (2002). Similarities and differences in the tectonics of two passive margins: The Northeast Atlantic Margin and the Australian North West Shelf. In M.Keep, & S. J.Moss (Eds.), The sedimentary basins of western Australia 3 (pp. 89–117). Petroleum Exploration Society of Australia.
    [Google Scholar]
  25. Driscoll, N. W., & Hogg, J. R. (1995). Stratigraphic response to basin formation: Jeanne d’Arc Basin, offshore Newfoundland. Geological Society, London, Special Publications, 80, 145–163. https://doi.org/10.1144/GSL.SP.1995.080.01.07
    [Google Scholar]
  26. Elliott, G. M., Shannon, P. M., Haughton, P. D. W., Praeg, D., & O’Reilly, B. (2006). Mid‐ to Late Cenozoic canyon development on the eastern margin of the Rockall Trough, offshore Ireland. Marine Geology, 229, 113–132. https://doi.org/10.1016/j.margeo.2006.03.008
    [Google Scholar]
  27. Epin, M.‐E., & Manatschal, G. (2018). Three‐dimensional architecture, structural evolution, and role of inheritance controlling detachment faulting at a hyperextended distal margin: The example of the err detachment system (SE Switzerland). Tectonics, 37, 4494–4514. https://doi.org/10.1029/2018TC005125
    [Google Scholar]
  28. Etheve, N., Mohn, G., Frizon de Lemotte, D., Roca, E., Tugend, J., & Gómez‐Romeu, J. (2018). Extreme Mesozoic crustal thinning in the Eastern Iberia Margin: The example of Columbrets Basin (Valencia Trough). Tectonics, 37, 636–662. https://doi.org/10.1002/2017TC004613
    [Google Scholar]
  29. Gagnevin, D., Haughton, D. W., Whiting, L., & Saqab, M. M. (2017). Geological and geophysical evidence for a mafic igneous intrusion origin of the Porcupine Arch, offshore Ireland. Journal of the Geological Society, London, 175(2), 210–228. https://doi.org/10.1144/jgs2017‐041
    [Google Scholar]
  30. Gillard, M., Tugend, J., Müntener, O., Manatschal, G., Karner, G. D., Autin, J., Sauter, D., Figueredo, P. H., & Ulrich, M. (2019). The role of serpentinization and magmatism in the formation of decoupling interfaces at magma‐poor rifted margins. Earth Science Reviews, 196, 102882. https://doi.org/10.1016/j.earscirev.2019.102882
    [Google Scholar]
  31. Gouiza, M., Hall, J., & Welford, J. K. (2017). Tectono‐stratigraphic evolution and crustal architecture of the Orphan Basin during North Atlantic rifting. International Journal of Earth Science (Geol Rundsch), 106, 917–937. https://doi.org/10.1007/s00531‐016‐1341‐0
    [Google Scholar]
  32. Hardy, R. J. J., Querendez, E., Biancotto, F., Jones, S. M., O’Sullivan, J., & White, N. (2010). New methods of improving seismic data to aid understanding of passive margin evolution: A series of case histories from offshore west of Ireland. Geological Society, London, Petroleum Geology Conferences Series, 7, 1005–1012. https://doi.org/10.1144/0071005
    [Google Scholar]
  33. Hart, N. R., Stockli, D. F., Lavier, L. L., & Hayman, N. W. (2017). Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees. Tectonics, 36, 1103–1128. https://doi.org/10.1002/2016TC004365
    [Google Scholar]
  34. Haupert, I., Manatschal, G., Decarlis, A., & Unternehr, P. (2016). Upper‐plate magma‐poor rifted margins: Stratigraphic architecture and structure evolution. Marine and Petroleum Geology, 68, 241–261. https://doi.org/10.1016/j.marpetgeo.2015.10.020
    [Google Scholar]
  35. Hauser, F., O’Reilly, B. M., Jacob, A. W. B., Shannon, P. M., Markis, J., & Vogt, U. (1995). The crustal structure of the Rockall Trough: Differential stretching without underplating. Journal of Geophysical Research, 100, 4097–4116. https://doi.org/10.1029/94JB02879
    [Google Scholar]
  36. Herron, D. A. (2011). First steps in seismic interpretation: Geophysical Monograph Series No. 16 (pp. 83–113). Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560802938.ch7
    [Google Scholar]
  37. Johnston, S., Doré, A. G., & Spencer, A. M. (2001). The Mesozoic evolution of the southern North Atlantic region and its relationship to basin development in the south Porcupine Basin, offshore Ireland. Geological Society, London, 188, 237–263. https://doi.org/10.1144/GSL.SP.2001.188.01.14
    [Google Scholar]
  38. Jones, D. W., & Underhill, J. R. (2011). Structural and stratigraphic evolution of the Connemara discovery, Northern Porcupine Basin: Significance for basin development and petroleum prospectivity along the Irish Atlantic Margin. Petroleum Geoscience, 17, 365–384. https://doi.org/10.1144/1354‐079310‐035
    [Google Scholar]
  39. Kimbell, G. S., Ritchie, J. D., & Henderson, A. F. (2010). Three‐dimensional gravity and magnetic modelling of the Irish section of the NE Atlantic margin. Tectonophysics, 486, 36–54. https://doi.org/10.1016/j.tecto.2010.02.007
    [Google Scholar]
  40. Kimbell, G. S., Stewart, M. A., Gradmann, S., Shannon, P. M., Funck, T., Haase, C., Stoker, M. S., & Hopper, J. R. (2016). Controls on the location of compressional deformation on the NW European margin. Geological Society, London, Special Publications, 447, 249–278. https://doi.org/10.1144/SP447.3
    [Google Scholar]
  41. Krawczyk, C. M., Reston, T. J., Beslier, M. O., & Boillot, G. (1996). Evidence for detachment tectonics on the Iberia Abyssal Plain margin. In R.Whitmarsh, S.Sawyer, & A.Klaus (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 149, pp. 603–615). https://doi.org/10.2973/ODP.PROC.SR.149.244.1996
    [Google Scholar]
  42. Lister, G. S., Etheridge, M. A., & Symonds, P. A. (1986). Detachment faulting and the evolution of passive continental margins. Geology, 14, 246–250. https://doi.org/10.1130/0091‐7613(1986)14<246:DFATEO>2.0.CO;2
    [Google Scholar]
  43. Lundin, E. R., & Doré, A. G. (2011). Hyperextension, serpentinization, and weakening: A new paradigm for rifted margin compressional deformation. Geology, 39(4), 347–350. https://doi.org/10.1130/G31499.1
    [Google Scholar]
  44. Lymer, G., Cresswell, D. J. F., Reston, T. J., Bull, J. M., Sawyer, D. S., Morgan, J. K., Stevenson, C., Causer, A., Minshull, T. A., & Shillington, D. J. (2019). 3D development of detachment faulting during continental breakup. Earth and Planetary Science Letters, 515, 90–99. https://doi.org/10.1016/j.epsl.2019.03.018
    [Google Scholar]
  45. MacDonald, H., Allan, P., & Lovell, J. (1987). Geological of oil accumulation in Block 26/28, Porcupine Basin, offshore Ireland. In J.Brooks, & K.Glennie (eds), Petroleum Geology of Northwest Europe: Proceedings of the 3rd Conference (pp. 643–651). Graham & Trotman.
    [Google Scholar]
  46. Makris, J., Egloff, R., Jacob, A. W. B., Mohr, P., Murphy, T., & Ryan, P. (1988). Continental crust under the southern Porcupine Seabight west of Ireland. Earth and Planetary Science Letters, 89, 387–397. https://doi.org/10.1016/0012‐821X(88)90125‐2
    [Google Scholar]
  47. Manatschal, G., Lavier, L., & Chenin, P. (2015). The role of inheritance in structuring hyperextended rift systems: Some considerations based on observations and numerical modeling. Gondwana Research, 27, 140–164. https://doi.org/10.1016/j.gr.2014.08.006
    [Google Scholar]
  48. Martin, A. K. (1984). Propagating rifts: Crustal extension during continental rifting. Tectonics, 3, 611–617. https://doi.org/10.1029/TC003i006p00611
    [Google Scholar]
  49. Masini, E., Manatschal, G., & Mohn, G. (2013). The Alpine Tethys rifted margins: Reconciling old and new ideas to understand the stratigraphic architecture of magma‐poor rifted margins. International Association of Sedimentologists, 60, 174–196. https://doi.org/10.1111/sed.12017
    [Google Scholar]
  50. Masini, E., Manatschal, G., Tugend, J., Mohn, G., & Flament, J.‐M. (2014). The tectono‐sedimentary evolution of a hyper‐extended rift basin: The example of the Mauléon rift system (Western Pyrenees, SW France). International Journal of Earth Sciences, 103, 1569–1596. https://doi.org/10.1007/s00531‐014‐1023‐8
    [Google Scholar]
  51. Masson, D. G., & Miles, P. R. (1987). Structure and development of Porcupine Seabight sedimentary basin, offshore southwest Ireland. American Association of Petroleum Geologists Bulletin, 70(5), 536–548. https://doi.org/10.1306/94885949‐1704‐11D7‐8645000102C1865D
    [Google Scholar]
  52. McCann, T., Shannon, P. M., & Moore, J. G. (1995a). Fault styles in the Porcupine Basin, offshore Ireland: tectonic and sedimentary controls. In P. F.Croker, & P. M.Shannon (Eds.), The Petroleum Geology of Ireland's Offshore Basins (Vol. 93, pp. 371–383) Geological Society Special Publication. https://doi.org/10.1144/GSL.SP.1995.093.01.29
    [Google Scholar]
  53. McCann, T., Shannon, P. M., & Moore, J. G. (1995b). Fault patterns in the Cretaceous and Tertiary (end syn‐rift, thermal subsidence) succession of the Porcupine Basin, Offshore Ireland. Journal of Structural Geology, 17, 201–214. https://doi.org/10.1016/0191‐8141(94)E0037‐Y
    [Google Scholar]
  54. McKenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40, 25–32. https://doi.org/10.1016/0012‐821X(78)90071‐7
    [Google Scholar]
  55. Merlin Energy Resources Consortium
    Merlin Energy Resources Consortium . (2020). The Standard Stratigraphic Nomenclature of Offshore Ireland: An Integrated Lithostratigraphic, Biostratigraphic and Sequence Stratigraphic Framework. (1 edn.), Project Atlas, Special Publication 1/21. Petroleum Affairs Division, Department of the Environment, Climate and Communications.
    [Google Scholar]
  56. Mohn, G., Manatschal, G., Beltrando, M., Masini, E., & Kusznir, N. (2012). Necking of continental crust in magma‐poor rifted margins: Evidence from the fossil Alpine Tethys margins. Tectonics, 31(1). https://doi.org/10.1029/2011TC002961
    [Google Scholar]
  57. Mohn, G., Manatschal, O., Müntener, M., Beltrando, M., & Masini, E. (2010). Unravelling the interaction between tectonic and sedimentary processes during lithospheric thinning in the Alpine Tethys margins. International Journal of Earth Sciences, 99, 75–101. https://doi.org/10.1007/s00531‐010‐0566‐6
    [Google Scholar]
  58. Moore, J. G. (1992). A syn‐rift to post‐rift transition sequence in the Main Porcupine Basin, offshore western Ireland. Geological Society Special Publication, 62, 333–349. https://doi.org/10.1144/GSL.SP.1992.062.01.26
    [Google Scholar]
  59. Moore, J. G., & Shannon, P. M. (1995). The Cretaceous succession of the Porcupine Basin, offshore Ireland: Facies distribution and hydrocarbon potential. Geological Society Special Publication, 93, 345–370. https://doi.org/10.1144/GSL.SP.1995.093.01.28
    [Google Scholar]
  60. Morales, E., Change, H. K., Soto, M., Corrêa, F. A., Veroslavsky, G., Santa Ana, H., Conti, B., & Daners, G. (2017). Tectonic and stratigraphic evolution of the Punta del Este and Pelotas basins (offshore Uruguay). Petroleum Geoscience, 23, 415–426. https://doi.org/10.1144/petgeo2016‐059
    [Google Scholar]
  61. Morewood, N. C., Mackenzie, G. D., Shannon, P. M., O’Reilly, B. M., Readman, P. W., & Makris, J. (2005). The crustal structure and regional development of the Irish Atlantic margin region. Geological Society, London, Petroleum Geology Conference Series, 6, 1023–1033. https://doi.org/10.1144/0061023
    [Google Scholar]
  62. Morewood, N. C., Shannon, P. M., & Mackenzie, G. D. (2004). Seismic stratigraphy of the southern Rockall Basin: A comparison between wide‐angle seismic and normal incidence reflection data. Marine and Petroleum Geological, 21, 1149–1163. https://doi.org/10.1016/j.marpetgeo.2004.07.006
    [Google Scholar]
  63. Murphy, J. B., Quesada, C., Gutierrez‐Alonso, G., Johnston, S. T., & Weil, A. B. (2016). Reconciling competing models for the tectono‐stratigraphic zonation of the Variscan orogen in Western Europe. Tectonophysics, 681, 209–219. https://doi.org/10.1016/j.tecto.2016.01.006
    [Google Scholar]
  64. Naylor, D., & Anstey, N. A. (1987). A reflection seismic study of the Porcupine Basin, offshore west Ireland. Irish Journal of Earth Sciences, 8, 187–210.
    [Google Scholar]
  65. Naylor, D., Shannon, P. M., & Murphy, N. (2002). Porcupine‐Goban region – A standard structural nomenclature system. Petroleum Affairs Division, Special Publication.
    [Google Scholar]
  66. Nirrengarten, M., Manatschal, G., Tugend, J., Kusznir, N., & Sauter, D. (2017). Kinematic evolution of the Southern Atlantic: Implications for the formation of hyperextended rift systems. Tectonics, 37, 89–118. https://doi.org/10.1002/2017TC004495
    [Google Scholar]
  67. O’Reilly, B. M., Hauser, F., Jacob, A. W. B., & Shannon, P. M. (1996). The lithosphere below the Rockall Trough: Wide‐angle seismic evidence for extensive serpentinisation. Tectonophysics, 255, 1–23. https://doi.org/10.1016/0040‐1951(95)00149‐2
    [Google Scholar]
  68. O’Reilly, B. M., Hauser, F., Ravaut, C., Shannon, P. M., & Readman, P. W. (2006). Crustal thinning, mantle exhumation and serpentinization in the Porcupine Basin. Journal of the Geological Society, London, 163, 775–787. https://doi.org/10.1144/0016‐76492005‐079
    [Google Scholar]
  69. O’Reilly, B. M., Readman, P. W., & Murphy, T. (1996). The gravity signature of Caledonian and Variscan tectonics in Ireland. Physics and Chemistry of the Earth, 21, 299–304. https://doi.org/10.1016/S0079‐1946(97)00052‐9
    [Google Scholar]
  70. O’Sullivan, J. M., Jones, S. M., & Hardy, R. J. (2010). Geological modelling of the Porcupine Median Ridge: Implications for the hydrocarbon prospectivity of North Atlantic hyper‐extensional basin and margin systems. AAPG Annual Conventional and Exhibition, New Orleans, LA, 11‐14 April 2010, Search and Discovery Article #10253.
    [Google Scholar]
  71. Osmundsen, P. T., & Péron‐Pinvidic, G. (2018). Crustal‐scale fault interaction at rifted margins and the formation of domain‐bounding breakaway complexes: Insights from offshore Norway. Tectonics, 37, 935–964. https://doi.org/10.1002/2017TC004792
    [Google Scholar]
  72. Paton, D. A., Primio, R., Kuhlmann, G., van der Spuy, D., & Horsfield, B. (2007). Insights into the petroleum system evolution of the southern Orange Basin, South Africa. South African Journal of Geology, 110, 261–274. https://doi.org/10.2113/gssajg.110.2‐3.261
    [Google Scholar]
  73. Pérez‐Gussinyé, M., & Reston, T. J. (2001). Rheological evolution during extension at nonvolcanic rifted margins: Onset of serpentinization and development of detachments leading to continental breakup. Journal of Geophysical Research, 106, 3961–3975. https://doi.org/10.1029/2000JB900325
    [Google Scholar]
  74. Péron‐Pinvidic, G., & Manatschal, G. (2009). The final rifting evolution at deep magma‐poor passive margins from Iberia‐Newfoundland: A new point of view. International Journal of Earth Sciences, 98, 1581–1597. https://doi.org/10.1007/s00531‐008‐0337‐9
    [Google Scholar]
  75. Péron‐Pinvidic, G., Manatschal, G., Minshull, T. A., & Sawyer, D. S. (2007). Tectonosedimentary evolution of the deep Iberia‐Newfoundland margins: Evidence for a complex breakup history. Tectonics, 26. https://doi.org/10.1029/2006TC001970
    [Google Scholar]
  76. Péron‐Pinvidic, G., Manatschal, G., & Osmundsen, P. T. (2013). Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts. Marine and Petroleum Geology, 43, 21–47. https://doi.org/10.1016/j.marpetgeo.2013.02.002
    [Google Scholar]
  77. Péron‐Pinvidic, G., & Osmundsen, P. T. (2016). Architecture of the distal and outer domains of the mid‐Norwegian rifted margin: Insights from the Rån‐Gjallar Ridges system. Marine and Petroleum Geology, 77, 280–299. https://doi.org/10.1016/j.marpetgeo.2016.06.014
    [Google Scholar]
  78. Phillips, T. B., Fazlikhani, H., Gawthorpe, R. L., Fossen, H., Jackson, C. A. L., Bell, R. E., Faleide, J. I., & Rotevatn, A. (2019). The influence of structural inheritance and multiphase extension on rift development, the northern North Sea. Tectonics, 38, 4099–4126. https://doi.org/10.1029/2019TC005756
    [Google Scholar]
  79. Piercey, S. J., Squires, G. C., & Brace, T. D. (2014). Lithostratigraphic, hydrothermal, and tectonic setting of the Boundary volcanogenic massive sulphide deposit, Newfoundland Appalachians, Canada: Formation by subseafloor replacement in a Cambria rifted arc. Economic Geology, 109, 661–687. https://doi.org/10.2113/econgeo.109.3.661
    [Google Scholar]
  80. Pindell, J., Graham, R., & Horn, B. (2014). Rapid outer marginal collapse at the rift to drift transition of passive margin evolution, with a Gulf of Mexico case study. Basin Research, 26, 701–725. https://doi.org/10.1111/bre.12059
    [Google Scholar]
  81. Prada, M., Watremez, L., Chen, C., O’Reilly, B. M., Minshull, T. A., Reston, T. J., Shannon, P. M., Klaeschen, D., Wagner, G., & Gaw, V. (2017). Crustal strain‐dependent serpentinisation in the Porcupine Basin, offshore Ireland. Earth and Planetary Science Letters, 474, 148–156. https://doi.org/10.1016/j.epsl.2017.06.040
    [Google Scholar]
  82. Praeg, D., Stoker, M. S., Shannon, P. M., Ceramicola, S., Hjelstuen, B., Laberd, J. S., & Mathiesen, A. (2005). Episodic Cenozoic tectonism and the development of the NW European ‘passive’ continental margin. Marine and Petroleum Geology, 22, 1007–1030. https://doi.org/10.1016/j.marpetgeo.2005.03.014
    [Google Scholar]
  83. Prosser, S. (1993). Rift‐related linked depositional systems and their seismic expression. Geological Society, London, Special Publications, 71, 35–66. https://doi.org/10.1144/GSL.SP.1993.071.01.03
    [Google Scholar]
  84. Ranero, C. R., & Pérez‐Guissinyé, M. (2010). Sequential faulting explains the asymmetry and extension discrepancy of conjugate margins. Nature, 468, 294–300. https://doi.org/10.1038/nature09520
    [Google Scholar]
  85. Readman, P. W., O’Reilly, B. M., Shannon, P. M., & Naylor, D. (2005). The deep structure of the Porcupine Basin, offshore Ireland, from gravity and magnetic studies. InA. G.Doré, & B. A.Vining (Eds.), Petroleum Geology: North‐West Europe and Global Perspectives – Proceedings of the 6th Petroleum Geology Conference (Vol. 6, pp. 1047–1056). Geological Society. https://doi.org/10.1144/0061047
    [Google Scholar]
  86. Reston, T. J. (2009). The structure, evolution and symmetry of the magma‐poor rifted margins of the North and Central Atlantic: A synthesis. Tectonophysics, 468, 6–27. https://doi.org/10.1016/j.tecto.2008.09.002
    [Google Scholar]
  87. Reston, T. J., Gaw, V., Pennell, J., Klaeschen, D., Stubenrauch, A., & Walker, I. (2004). Extreme crustal thinning in the south Porcupine Basin and the nature of the Porcupine Median High: Implications for the formation of non‐volcanic margins. Journal of the Geological Society, London, 161, 783–798. https://doi.org/10.1144/0016‐764903‐036
    [Google Scholar]
  88. Reston, T. J., Krawczyk, C. M., & Klaeschen, D. (1996). The S reflector west of Galicia (Spain): Evidence from prestack depth migration for detachment faulting during continental breakup. Journal of Geophysical Research, 127, 230–244. https://doi.org/10.1029/95JB03466
    [Google Scholar]
  89. Reston, T. J., & McDermott, K. G. (2011). Successive detachment faults and mantle unroofing at magma‐poor rifted margins. Geological Society, America, 39, 1071–1074. https://doi.org/10.1130/G32428.1
    [Google Scholar]
  90. Reston, T. J., & McDermott, K. (2014). An assessment of the cause of the ‘extension discrepancy’ with reference to the west Galicia margin. Basin Research, 26, 135–153. https://doi.org/10.1111/bre.12042
    [Google Scholar]
  91. Reston, T. J., Pennell, J., Stubenrauch, J., Walker, I., & Perez‐Gussinye, M. (2001). Detachment faulting, mantle serpentinization, and serpentinite‐mud volcanism beneath the Porcupine Basin, southwest of Ireland. Geology, 29, 587–590. https://doi.org/10.1130/0091‐7613(2001)029<0587:DFMSAS>2.0.CO;2
    [Google Scholar]
  92. Ribes, C., Manatschal, G., Ghienne, J.‐F., Karner, G. D., Johnson, C. A., Figueredo, P. H., Incerpi, N., & Epin, M.‐E. (2019). The syn‐rift stratigraphic record across a fossil hyperextended rifted margin: The example of the northwestern Adriatic margin exposed in the Central Alps. International Journal of Earth Sciences, 108, 2071–2095. https://doi.org/10.1007/s00531‐019‐01750‐6
    [Google Scholar]
  93. Roberts, D. G., Masson, D. G., Montadert, L., & de Charpal, O. (1981). Continental margin from the Porcupine Seabight to the Armorican marginal basin. In L. V.Illing, & G. D.Hobson (Eds.), Petroleum Geology of the Continental Shelf of North‐West Europe: Proceedings of the 2nd Conference (pp. 455–473).
    [Google Scholar]
  94. Robinson, A. J., & Canham, A. C. (2001). Reservoir characteristics of the Upper Jurassic sequence in the 35/8‐2 discovery, Porcupine Basin.InP. M.Shannon, P. D. W.Haughton, & D. W.Corcoran (Eds.), The Petroleum Exploration of Ireland’s Offshore Basins (Vol. 188, pp. 301–321). Geological Society, London, Special Publications. https://doi.org/10.1144/GSL.SP.2001.188.01.18
    [Google Scholar]
  95. Scotchman, I. C., Doré, A. G., & Spencer, A. M. (2016). Petroleum systems and results of exploration on the Atlantic margins of the UK, Faroes & Ireland: What have we learnt?Geological Society, London, Petroleum Geology Conference Series, 8, 187–197. https://doi.org/10.1144/PGC8.14
    [Google Scholar]
  96. Shannon, P. M. (1991). The development of Irish offshore sedimentary basins. Journal of the Geological Society, 148, 181–189. https://doi.org/10.1144/gsjgs.148.1.0181
    [Google Scholar]
  97. Shannon, P. M., English, K., & Hanrahan, M. (2019). The new Irish offshore stratigraphic nomenclature: What’s in a name? In Atlantic Ireland 2019 conference, Dublin, 29 October 2019, Petroleum Infrastructure Programme.
    [Google Scholar]
  98. Shannon, P. M., Jacob, A. W. B., O’Reilly, B. M., Hauser, F., Readman, P. W., & Makris, J. (1999). Structural setting, geological development and basin modelling in the Rockall Trough. Geological Society, London, Petroleum Geology Conference Proceedings, 5, 421–431. https://doi.org/10.1144/0050421
    [Google Scholar]
  99. Shannon, P. M., Moore, J. G., Jacob, A. W. B., & Makris, J. (1993). Cretaceous and Tertiary basin development west of Ireland. Geological Society, London, Petroleum Geology Conference Series, 4, 1057–1066. https://doi.org/10.1144/0041057
    [Google Scholar]
  100. Shannon, P. M., & Naylor, D. (1998). An assessment of Irish offshore basins and petroleum plays. Journal of Petroleum Geology, 21, 125–152. https://doi.org/10.1111/j.1747‐5457.1998.tb00651.x
    [Google Scholar]
  101. Shannon, P. M., Williams, B. P. J., & Sinclair, I. K. (1995). Tectonic controls on Upper Jurassic to Lower Cretaceous reservoir architecture in Jeanne d’Arc Basin, with some comparisons from the Porcupine and Moray Firth Basins. Geological Society, London, Special Publications, 93, 467–490. https://doi.org/10.1144/GSL.SP.1995.093.01.37
    [Google Scholar]
  102. Sinclair, I. K. (1995). Sequence stratigraphic response to Aptian‐Albian rifting in conjugate margin basins: A comparison of the Jeanne d’Arc, offshore Newfoundland, and the Porcupine Basin, offshore Ireland. Geological Society, London, Special Publications, 90, 29–49. https://doi.org/10.1144/GSL.SP.1995.090.01.02
    [Google Scholar]
  103. Sinclair, I. K., Shannon, P. M., Williams, B., Harkers, S., & Moore, J. (1994). Tectonic control on sedimentary evolution of three North Atlantic borderland Mesozoic basins. Basin Research, 6, 193–217. https://doi.org/10.1111/j.1365‐2117.1994.tb00085.x
    [Google Scholar]
  104. Stoker, M. S., Stewart, M. A., Shannon, P. M., Bjerager, M., Nielsen, T., Blischke, A., Hjelstuen, B. O., Gaina, C., McDermott, K., & Ólavsdóttir, J. (2017). An overview of the Upper Palaeozoic‐Mesozoic stratigraphy of the NE Atlantic region. Geological Society, London, Special Publications, 447, 11–68. https://doi.org/10.1144/SP447.2
    [Google Scholar]
  105. Štolfová, K., & Shannon, P. M. (2009). Permo‐Triassic development from Ireland to Norway: Basin architecture and regional controls. Geological Journal, 44, 562–676. https://doi.org/10.1002/gj.1187
    [Google Scholar]
  106. Sutra, E., Manatschal, G., Mohn, G., & Unternehr, P. (2013). Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochemistry, Geophysics, Geosystems, 14, 2575–2597. https://doi.org/10.1002/ggge.20135
    [Google Scholar]
  107. Tate, M. P. (1992). The Clare Lineament: Relic transform fault west of Ireland. Geological Society, London, Special Publications, 62, 375–384. https://doi.org/10.1144/GSL.SP.1992.062.01.28
    [Google Scholar]
  108. Tate, M. P. (1993). Structural framework and tectonostratigraphic evolution of the Porcupine Seabight Basin, offshore western Ireland. Marine and Petroleum Geology, 10, 95–123. https://doi.org/10.1016/0264‐8172(93)90016‐L
    [Google Scholar]
  109. Tate, M. P., & Dobson, M. R. (1988). Syn‐ and post‐rift igneous activity in the Porcupine Seabight Basin and adjacent continental margin west of Ireland. Geological Society, London, Special Publications, 39, 309–334. https://doi.org/10.1144/GSL.SP.1988.039.01.28
    [Google Scholar]
  110. Tate, M. P., White, N., & Conroy, J. J. (1993). Lithospheric extension and magmatism in the Porcupine Basin west of Ireland. Journal of Geophysical Research: Solid Earth, 98, 13905–13923. https://doi.org/10.1029/93JB00890
    [Google Scholar]
  111. Thinon, I. (1999). Structure profonde de la Marge Nord Gascogne et du Bassin Armoricain. PhD thesis. Ifremer‐IUEM.
    [Google Scholar]
  112. Tugend, J., Manatschal, G., & Kusznir, N. J. (2015). Spatial and temporal evolution of hyperextended rift systems: Implication for the nature, kinematics, and timing of the Iberian‐European plate boundary. Geology, 43, 15–18. https://doi.org/10.1130/G36072.1
    [Google Scholar]
  113. Tugend, J., Manatschal, G., Kusznir, N. J., Masini, E., Mohn, G., & Thinon, L. (2014). Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay‐Pyrenees. Tectonics, 33, 1239–1276. https://doi.org/10.1002/2014TC003529
    [Google Scholar]
  114. Vail, P. R., Mitchum, R. M., & Thompson, S. (1977). Seismic stratigraphy and global changes of sea level, Part 4: Global cycles of relative changes of sea level. In Seismic Stratigraphy – Applications to hydrocarbon Exploration. American Association of Petroleum Geologists Memoir (Vol. 26, pp. 83–97). https://doi.org/10.1306/M26490C6
    [Google Scholar]
  115. Van Staal, C. R., & Barr, S. (2012). Lithospheric architecture and tectonic evolution of the Canadian Appalachians and associated Atlantic margin. Geological Association of Canada, Special Paper, 49, 41–95.
    [Google Scholar]
  116. Vink, G. E. (1982). Continental rifting and the implications for plate tectonic reconstructions. Journal of Geophysical Research, 87, 10677–10688. https://doi.org/10.1029/JB087iB13p10677
    [Google Scholar]
  117. Watremez, L., Prada, M., Minshull, T., O’Reilly, B., Chen, C., Reston, T., Shannon, P. M., Wagner, G., Gaw, V., Klaeschen, D., Edwards, R., & Lebedev, S. (2016). Deep structure of the Porcupine Basin from wide‐angle seismic data. Geological Society, London, Petroleum Geology Conference Series, 8, 199–209. https://doi.org/10.1144/PGC8.26
    [Google Scholar]
  118. Welford, J. K., Shannon, P. M., O’Reilly, B. M., Hall, J. (2012). Comparison of lithosphere structure across the Orphan Basin‐Flemish Cap and Irish Atlantic conjugate margins from constrained 3D gravity inversions. Journal of the Geological Society, London, 169, 405–420. https://doi.org/10.1144/0016‐76492011‐114
    [Google Scholar]
  119. Whiting, L. (2019). From rifting to hyperextension: Upper Jurassic – Cretaceous succession of the Porcupine Basin, Irish Atlantic margin. PhD thesis. University College Dublin.
    [Google Scholar]
  120. Willner, A., van Staal, C. R., Zagorevski, A., Glodny, J., Romer, R. L., & Sudo, M. (2018). Tectonometamorphic evolution along the Iapetus suture zone in Newfoundland: Evidence for polyphase Salinic, Acadian and Neoacadian very low‐ to medium‐grade metamorphism and deformation. Tectonophyisics, 742, 137–167. https://doi.org/10.1016/j.tecto.2018.05.023
    [Google Scholar]
  121. Withjack, M. O., Schlische, R. W., & Olsen, P. E. (2002). Rift‐basin structure and its influence of sedimentary systems. In R. W.Renaut, & G. M.Ashley (Eds.), Sedimentation in Continental Rifts (Vol. 73, pp. 57–81). SEPM Society for Sedimentary Geology, Special Publication. https://doi.org/10.2110/pec.02.73.0057
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12530
Loading
/content/journals/10.1111/bre.12530
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error