1887
Volume 33, Issue 4
  • E-ISSN: 1365-2117

Abstract

[

The applications of MPGA‐DTW utilized for division and correlation of stratigraphic sequence in this study is based on multiple wireline logs. The integrated results of the sequence boundaries searched by the MPGA were consistent with the sequence boundaries revealed by commonly used approaches based on geophysical data and spectral trend attribute analyses (wavelet transform, maximum entropy spectrum, time‐frequency analyses, and integrated prediction error filter). This study reveal that the combination of MPGA‐DTW may be a powerful tool for intelligent sequence stratigraphy division and correlation.

, Abstract

The division and correlation of sequence stratigraphy are one of the essential steps in petroleum exploration. To comprehensively utilize the sequence stratigraphic information implied in multiple wireline well logs and improve the accuracy and reliability of sequence stratigraphic division, based on the edge detection, optimal partition, and natural evolution theories, and realizes the information fusion (formed one ‘chromosome’) of multiple wireline well logs (named as ‘genes’) which can reflect the feature information of sequence stratigraphy by using multipopulation genetic algorithm (MPGA) based on Fisher algorithm, in this study, geophysical data (wireline well logs and 3D seismic data) were used for spectral trend attribute analyses (wavelet transform, maximum entropy spectrum, time‐frequency analyses, and integrated prediction error filter). Since the seismic reflection characteristics of K were difficult to identify and considering subjective factors in conventional methods, a MPGA was also used to intelligently identify the sequence stratigraphy framework of the Lower Cretaceous Qingshuihe (K) Formation. Since the MPGA is an optimization algorithm, the code was run 10 times for accuracy with changes in the dividing layers. The optimal parameters in the process of data fusion (gene combination process) are selected. The sequence boundaries (SBs) searched by the MPGA matched those of the spectral trend attribute analyses, confirming that the MPGA was an effective, fast, and user‐friendly tool for defining the main SBs. MPGA can provide an optimal layering scheme (‘elite population’) through simultaneous searching at multiple depth ranges (‘multipopulation’), recording the optimal SBs (‘elite individuals’) of each population and making the results more convinced. Although simulation solutions may not be unique, the MPGA still provides us a chance to gain some insights into the details of the stratigraphy. Based on this intelligent identification, the maximum flooding surface, two first flooding surfaces (FFS), and three SBs were defined in K. The cyclic patterns (prograding, aggrading, and retrograding) were identified. They showed the relationship between accommodation space (related to tectonic subsidence of the Chemo paleo‐uplift) and sediment supply. In addition, dynamic time warping (DWT) technique was used for sequence discrimination and correlation on the integrated prediction error filter analyses curve. A massive pebbly sandstone set, named ‘bottom sandstone,’ was identified in the lowstand system tract of SQ1 (K1), constrained by SB1 and FFS1, which was a favourable hydrocarbon exploration target.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12567
2021-07-17
2024-04-26
Loading full text...

Full text loading...

References

  1. Aliya, A., Xiao, J. N., Shi, T. M., & Weng, Y. X. (2018). Mesozoic sporopollen assemblages and their stratigraphical significance in well Shimo‐1 of Junggar Basin. Xinjiang Petroleum Geology, 39, 140–150.
    [Google Scholar]
  2. Ariadji, T., Haryadi, F., Rau, I. T., Aziz, P. A., & Dasilfa, R. (2014). A novel tool for designing well placements by combination of modified genetic algorithm and artificial neural network. Journal of Petroleum Science and Engineering, 122, 69–82. https://doi.org/10.1016/j.petrol.2014.05.018
    [Google Scholar]
  3. Behdad, A. (2019). A step toward the practical stratigraphic automatic correlation of well logs using continuous wavelet transform and dynamic time warping technique. Journal of Applied Geophysics, 167, 26–32. https://doi.org/10.1016/j.jappgeo.2019.05.007
    [Google Scholar]
  4. Berg, O. R. (1982). Seismic detection and evaluation of delta and turbidite sequences: Their application to exploration for the subtle trap. AAPG Bulletin, 66, 1271–1288.
    [Google Scholar]
  5. Berndt, D. J., & Clifford, J. (1994). Using dynamic time warping to find patterns in time series. Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining. AAAI Press, Seattle, WA, pp. 359–370.
  6. Boggess, A., Narcowich, F. J., Donoho, D. L., & Donoho, P. L. (2002). A first course in wavelets with Fourier analysis. Physics Today, 55(5), 63.
    [Google Scholar]
  7. Bowen, D. W., & Weimer, P. (2003). Regional sequence stratigraphic setting and reservoir geology of Morrow incised‐valley sandstones (lower Pennsylvanian), Eastern Colorado and Western Kansas. AAPG Bulletin, 87, 781–815. https://doi.org/10.1306/08010201131
    [Google Scholar]
  8. Burgess, P. M. (2016). The future of the sequence stratigraphy paradigm: Dealing with a variable third dimension. Geology, 44(4), 335–336.
    [Google Scholar]
  9. Burgess, P. M., & Prince, G. (2015). Non‐unique stratal geometries: Implications for sequence stratigraphic interpretations. Basin Research, 27, 351–365. https://doi.org/10.1111/bre.12082
    [Google Scholar]
  10. Cai, L., Zhang, X., Guo, X., Zeng, Z., Xiao, G., Pang, Y., & Wang, S. (2021). Effective hydrocarbon‐bearing geological conditions of the Permian strata in the South Yellow Sea Basin, China: Evidence from borehole CSDP‐2. Journal of Petroleum Science and Engineering, 196, 107815.https://doi.org/10.1016/j.petrol.2020.107815
    [Google Scholar]
  11. Catuneanu, O. (2006). Principles of sequence stratigraphy (p. 375). Elsevier.
    [Google Scholar]
  12. Catuneanu, O., Galloway, W. E., Kendall, C. G., St, C., Miall, A. D., Posamentier, H. W., Strasser, A., & Tucker, M. E. (2011). Sequence stratigraphy: Methodology and nomenclature. Newsletters on Stratigraphy, 44(3), 173–245. https://doi.org/10.1127/0078‐0421/2011/0011
    [Google Scholar]
  13. Chandrasekhar, E., & Eswara‐Rao, V. (2012). Wavelet analysis of geophysical well‐log data of Bombay offshore basin, India. Mathematical Geosciences, 44, 901–928.
    [Google Scholar]
  14. Chappell, J., & Shackleton, N. J. (1986). Oxygen isotopes and sea level. Nature, 324(6093), 137–140.
    [Google Scholar]
  15. Chen, R. M., Zhang, K. X., Chen, F. N., Xu, Y. D., Ye, H., & Chen, L. (2011). Neogene uplift of West Kunlun coupled to the sedimentary succession from Qimugan section, Xinjiang, NW China. Geological Science and Technology Information, 30, 55–64.
    [Google Scholar]
  16. Creaney, S., & Passey, Q. R. (1993). Recurring patterns of total organic carbon and source rock quality within a sequence stratigraphic framework. AAPG Bulletin, 77, 386–401.
    [Google Scholar]
  17. De Jong, M. G. G., Donselaar, M. E., Boerboom, H. T. W., Van Toorenenburg, K. A., Weltje, G. J., & Van Borren, L. (2020). Long‐range, high‐resolution stratigraphic correlation of Rotliegend fluvial‐fan deposits in the central Dutch offshore. Marine and Petroleum Geology, 119, 104482. https://doi.org/10.1016/j.marpetgeo.2020.104482
    [Google Scholar]
  18. De Jong, M. G. G., Nio, S. D., Böhm, A. R., Seijmonsbergen, A. C., & de Graaff, L. W. S. (2009). Resolving climate change in the period 15–23 ka in Greenland ice cores: A new application of spectral trend analysis. Terra Nova, 21, 137–143.
    [Google Scholar]
  19. De Jong, M. G. G., Nio, S. D., Smith, D., & Böhm, A. R. (2007). Subsurface correlation in the Upper Carboniferous (Westphalian) of the Anglo‐Dutch Basin using the climate stratigraphic approach. First Break, 25, 49–59. https://doi.org/10.3997/1365‐2397.2007029
    [Google Scholar]
  20. De Jong, M. G. G., Seijmonsbergen, A. C., & de Graaff, L. W. S. (2019). In search of stratigraphic subdivision of the period 0–8 ka in Greenland ice cores. Polish Polar Research, 40(2), 55–77.
    [Google Scholar]
  21. Deng, L. J. (2012). Ostracod biostratigraphy near the J/K boundary and the boundary discussions in southern Junggar Basin. China University of Geosciences for Master Degree.
  22. Dobróka, M., & Szabó, N. P. (2012). Interval inversion of well‐logging data for automatic determination of formation boundaries by using a float‐encoded genetic algorithm. Journal of Petroleum Science and Engineering, 86–87, 144–152. https://doi.org/10.1016/j.petrol.2012.03.028
    [Google Scholar]
  23. Eiben, A., & van Kemenade, C. (1997). Diagonal crossover in genetic algorithms for numerical optimization. Control and Cybernetics, 26, 447–465.
    [Google Scholar]
  24. Emujakporue, G. O., & Enyenihi, E. E. (2020). Identification of seismic attributes for hydrocarbon prospecting of Akos field, Niger Delta, Nigeria. SN Applied Sciences, 2(5), 910. https://doi.org/10.1007/s42452‐020‐2570‐1
    [Google Scholar]
  25. Fang, Y. N., Wu, C. D., Wang, Y. Z., Wang, L. X., Guo, Z. J., & Hu, H. W. (2016). Stratigraphic and sedimentary characteristics of the Upper Jurassic‐Lower Cretaceous strata in the Junggar Basin, Central Asia: Tectonic and climate implications. Journal of Asian Earth Sciences, 129, 294–308. https://doi.org/10.1016/j.jseaes.2016.09.001
    [Google Scholar]
  26. Feeley, M. H., Moore, T. C., Loutit, T. S., & Bryant, W. R. (1990). Sequence stratigraphy of Mississippi fan related to oxygen isotope sea level index. AAPG Bulletin, 74, 407–424.
    [Google Scholar]
  27. Feng, Y. L., Jiang, S., & Wang, C. F. (2015). Sequence stratigraphy, sedimentary systems and petroleum plays in a low‐accommodation basin: Middle to upper members of the Lower Jurassic Sangonghe Formation, Central Junggar Basin, Northwestern China. Journal of Asian Earth Sciences, 105, 85–103. https://doi.org/10.1016/j.jseaes.2015.03.025
    [Google Scholar]
  28. Gao, C. L., Ji, Y. L., Jin, J., Wang, J., Ren, Y., Che, S. Q., Wang, R., & Huan, Z. J. (2017). Characteristics and controlling factors on physical properties of deep buried favorable reservoirs of the Qingshuihe Formation in Mosuowan Area, Junggar Basin. Journal of Jilin University (Earth Science Edition), 47, 990–1006.
    [Google Scholar]
  29. Gao, C. L., Ji, Y. L., Jin, J., Wang, J., Ren, Y., Zeng, L., Wang, D. W., Zhang, H., & Li, J. J. (2018). Development model of sedimentary system and reservoir under valley‐monadnock paleotopography during buried stage of paleouplift: Case study of 1st member of K1q in Shinan area, hinterland of Junggar Basin. Natural Gas Geoscience, 29, 1120–1137.
    [Google Scholar]
  30. Gao, C. L., Ji, Y. L., Ren, Y., Jiang, Y. Q., Zhou, Y., Liu, D. W., & Duan, X. B. (2016). Sedimentary sequence evolution analysis of Qingshuihe formation in Shinan area of Junggar Basin. Journal of China University of Mining and Technology, 45, 958–971.
    [Google Scholar]
  31. Gao, C. L., Ji, Y. L., Ren, Y., Xiang, B. L., Wang, J., Li, D. X., Liu, D. W., Wang, T. Y., & Duan, X. B. (2015). Sedimentary evolution and favorable sandbody distribution of the Cretaceous Qingshuihe Formation in Mosuowan area, Junggar Basin. Journal of Palaeogeography, 17, 813–828.
    [Google Scholar]
  32. Gao, C. L., Ji, Y. L., Ren, Y., Zhou, Y., Jin, J., Zhang, L. Y., Li, Z. C., Zhou, Y. Q., & Wu, H. (2017). Geomorphology and sedimentary sequence evolution during the buried stage of paleo‐uplift in the Lower Cretaceous Qingshuihe Formation, Junggar Basin, northwestern China: Implications for reservoir lithofacies and hydrocarbon distribution. Marine and Petroleum Geology, 86, 1224–1251. https://doi.org/10.1016/j.marpetgeo.2017.07.028
    [Google Scholar]
  33. Giorgino, T. (2009). Computing and visualizing dynamic time warping alignments in R: The DTW package. Journal of Statistical Software, 31, 24.
    [Google Scholar]
  34. Giosan, L., Flood, R. D., & Aller, R. C. (2002). Paleoceanographic significance of sediment color on western North Atlantic drifts: I. Origin of color. Marine Geology, 189(1–2), 25–41. https://doi.org/10.1016/s0025‐3227(02)00321‐3
    [Google Scholar]
  35. Giosan, L., Flood, R. D., Grützner, J., & Mudie, P. (2002). Paleoceanographic significance of sediment color on western North Atlantic Drifts: II. Late Pliocene‐Pleistocene sedimentation. Marine Geology, 189(1–2), 43–61. https://doi.org/10.1016/s0025‐3227(02)00322‐5
    [Google Scholar]
  36. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison‐Wesley.
    [Google Scholar]
  37. Goupillaud, R. A., Grossmann, A., & Morlet, J. (1985). Cycle‐octave and related transform in seismic signal analysis. Geoexploration, 23, 85–102.
    [Google Scholar]
  38. Groch, W. D. (1982). Extraction of line shaped objects from aerial images using a special operator to analyze the profiles of functions. Computer Graphics and Image Processing, 18, 347–358. https://doi.org/10.1016/0146‐664X(82)90003‐X
    [Google Scholar]
  39. Helmke, J. P., Schulz, M., & Bauch, H. A. (2002). Sediment‐color record from the Northeast Atlantic reveals patterns of millennial‐scale climate variability during the past 500,000 years. Quaternary Research, 57(1), 49–57. https://doi.org/10.1006/qres.2001.2289
    [Google Scholar]
  40. Hou, L. H., Wang, J. H., Kuang, L. C., Zhang, G. Y., Liu, L., & Kuang, J. (2009). Provenance sediments and its exploration significance – A case from Member 1 of Qingshuihe Formation of Lower Cretaceous in Junggar Basin. Earth Science Frontiers, 16, 337–348. https://doi.org/10.1016/S1872‐5791(08)60113‐X
    [Google Scholar]
  41. Huang, B., & Li, J. G. (2007). Sporopollen assemblages from Xishanyao and Toutunhe formations at the Honggou section of the Manasi River, Xinjiang and their stratigraphical significance. Acta Micropalaeontogica Sinica, 24, 170–193.
    [Google Scholar]
  42. Kadkhodaie, A., & Rezaee, R. (2017). Intelligent sequence stratigraphy through a wavelet based decomposition of well log data. Journal of Natural Gas Science and Engineering, 40, 38–50. https://doi.org/10.1016/j.jngse.2017.02.010
    [Google Scholar]
  43. Kaydani, H., Mohebbi, A., & Eftekhari, M. (2014). Permeability estimation in heterogeneous oil reservoirs by multi‐gene genetic programming algorithm. Journal of Petroleum Science and Engineering, 123, 201–206. https://doi.org/10.1016/j.petrol.2014.07.035
    [Google Scholar]
  44. Kim, K. J., Yoo, D. G., Kang, N. K., & Yi, B. Y. (2020). Tectonostratigraphic framework and depositional history of the deepwater Ulleung Basin, East Sea/Sea of Japan. Basin Research, 32(4), 613–635. https://doi.org/10.1111/bre.12386
    [Google Scholar]
  45. Koch, G., Prtoljan, B., Husinec, A., & Hajek‐Tadesse, V. (2017). Palynofacies and paleoenvironment of the Upper Jurassic mudsupported carbonates, southern Croatia: Preliminary evaluation of the hydrocarbon source rock potential. Marine and Petroleum Geology, 80, 243–253. https://doi.org/10.1016/j.marpetgeo.2016.12.006
    [Google Scholar]
  46. Li, X. S., Yuan, Y., Zhang, J. L., & Lv, X. (2014). Seismic sedimentology of Changling gas field, Northeast China. Advanced Materials Research, 962–965, 608–611.
    [Google Scholar]
  47. Li, Y., Chang, X. C., Yin, W., Sun, T., & Song, T. (2017). Quantitative impact of diagenesis on reservoir quality of the Triassic Chang 6 tight oil sandstones, Zhenjing area, Ordos Basin, China. Marine and Petroleum Geology, 86, 1014–1028.
    [Google Scholar]
  48. Li, Y., Chang, X. C., Yin, W., Wang, G., Zhang, J., Shi, B., Zhang, J., & Mao, L. (2019). Quantitative identification of diagenetic facies and controls on reservoir quality for tight sandstones: A case study of the Triassic Chang 9 oil layer, Zhenjing area, Ordos Basin. Marine and Petroleum Geology, 102, 680–694.
    [Google Scholar]
  49. Li, Y. M., Zhang, S. J., & Zeng, X. P. (2009). Research of multi‐population agent genetic algorithm for feature selection. Expert Systems with Applications, 36, 11570–11581. https://doi.org/10.1016/j.eswa.2009.03.032
    [Google Scholar]
  50. Li, Z. M., Qin, J. Z., Liao, Z. T., Shi, W. J., Luo, Y. M., Fan, M., Zhu, Y., Liu, W. X., & Yin, W. (2006). Reservoirs features of the second member of Jurassic Sangonghe Formation in Moxizhuang Area of Junggar Basin, NW China. Journal of Jilin University: Earth Science Edition, 36, 799–805.
    [Google Scholar]
  51. Liang, J. T., Wang, H. L., Blum, M. J., & Ji, X. Y. (2019). Demarcation and correlation of stratigraphic sequences using wavelet and Hilbert‐Huang transforms: A case study from Niger Delta Basin. Journal of Petroleum Science and Engineering, 182, 106319. https://doi.org/10.1016/j.petrol.2019.106329
    [Google Scholar]
  52. Mail, A. D., Neal, J. E., Nummedal, D., Pomar, L., Posamentier, H. W., Pratt, B. R., Sarg, J. F., Shanley, K. W., Steel, R. J., Strasser, A., Tucker, M. E., & Winker, C. (2009). Towards the standardization of sequence stratigraphy. Earth‐Science Review, 92, 1–33.
    [Google Scholar]
  53. Maschio, C., Davolio, A., Correia, M. G., & Schiozer, D. J. (2015). A new framework for geostatistics‐based history matching using genetic algorithm with adaptive bounds. Journal of Petroleum Science and Engineering, 127, 387–397. https://doi.org/10.1016/j.petrol.2015.01.033
    [Google Scholar]
  54. Maschio, C., Vidal, A. C., & Schiozer, D. J. (2008). A framework to integrate history matching and geostatistical modeling using genetic algorithm and direct search methods. Journal of Petroleum Science and Engineering, 63, 34–42. https://doi.org/10.1016/j.petrol.2008.08.001
    [Google Scholar]
  55. Mauša, G., & Grbac, T. G. (2017). Co‐evolutionary multi‐population genetic programming for classification in software defect prediction: An empirical case study. Applied Soft Computing, 55, 331–351. https://doi.org/10.1016/j.asoc.2017.01.050
    [Google Scholar]
  56. Mayhoub, A. A., Moustafa, A. R., Yousef, M., & Zalat, S. M. (2019). Cyclo‐sequence stratigraphy of the Miocene syn‐rift succession, Al Amir and Geyad fields, southwestern part of the Gulf of Suez rift. Journal of African Earth Sciences, 157, 103504.
    [Google Scholar]
  57. Mohammadi, S., Papa, M., Pereyra, E., & Sarica, C. (2019). Genetic algorithm to select a set of closure relationships in multiphase flow models. Journal of Petroleum Science and Engineering, 181, 106224. https://doi.org/10.1016/j.petrol.2019.106224
    [Google Scholar]
  58. Morley, R. J., Dung, B. V., Tung, N. T., Kullman, A. J., Bird, R. T., Kieu, N. V., & Chung, N. H. (2019). High‐resolution Palaeogene sequence stratigraphic framework for the Cuu Long Basin, offshore Vietnam, driven by climate change and tectonics, established from sequence biostratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology, 530, 113–135. https://doi.org/10.1016/j.palaeo.2019.05.010
    [Google Scholar]
  59. Nazeer, A., Abbasi, S. A., & Solangi, S. H. (2016). Sedimentary facies interpretation of gamma ray (GR) log as basic well logs in Central and Lower Indus Basin of Pakistan. Geodesy and Geodynamics, 7(6), 432–443. https://doi.org/10.1016/j.geog.2016.06.006
    [Google Scholar]
  60. Neal, J., & Abreu, V. (2009). Sequence stratigraphy hierarchy and the accommodation succession method. Geology, 37(9), 779–782. https://doi.org/10.1130/G25722A.1
    [Google Scholar]
  61. Neal, J., Abreu, V., Bohacs, K. M., Feldman, H. R., & Pederson, K. H. (2016). Accommodation succession (δA/δS) sequence stratigraphy: Observational method, utility and insights into sequence boundary formation. Journal of the Geological Society, 173(5), 803–816.
    [Google Scholar]
  62. Nio, S. D., Böhm, A. R., Brouwer, J. H., Jong, M. G. G. D., & Smith, D. G. (2006). Climate stratigraphy, principles and applications in subsurface correlation. EAGE Short Course Series. EAGE Publications b.v.
    [Google Scholar]
  63. Nio, S. D., Brouwer, J., Smith, D., De Jong, M., & Böhm, A. (2005). Spectral trend attribute analysis: Applications in the stratigraphic analysis of wireline logs. First Break, 23, 71–75. https://doi.org/10.3997/1365‐2397.23.4.26503
    [Google Scholar]
  64. Ólavsdóttir, J., Stoker, M. S., Boldreel, L. O., Andersen, M. S., & Eidesgaard, Ó. R. (2019). Seismic‐stratigraphic constraints on the age of the Faroe Islands Basalt Group, Faroe‐Shetland region, Northeast Atlantic Ocean. Basin Research, 31, 841–865. https://doi.org/10.1111/bre.12348
    [Google Scholar]
  65. Pan, S. Y., Hsieh, B. Z., Lu, M. T., & Lin, Z. S. (2008). Identification of stratigraphic formation interfaces using wavelet and Fourier transforms. Computers & Geosciences, 34(1), 77–92. https://doi.org/10.1016/j.cageo.2007.01.002
    [Google Scholar]
  66. Pang, Y., Guo, X., Shi, B., Zhang, X., Cai, L., Han, Z., Chang, X., & Xiao, G. (2020). Hydrocarbon generation evaluation, burial history, and thermal maturity of the lower Triassic−Silurian organic‐rich sedimentary rocks in the central uplift of the South Yellow Sea Basin, East Asia. Energy & Fuels, 34, 4565–4578. https://doi.org/10.1021/acs.energyfuels.0c00552
    [Google Scholar]
  67. Pang, Y. M., Guo, X. W., Zhang, X. H., Zhu, X. Q., Hou, F. H., Wen, Z. H., & Han, Z. Z. (2020). Late Mesozoic and Cenozoic tectono‐thermal history and geodynamic implications of the Great Xing'an Range, NE China. Journal of Asian Earth Sciences, 189, 104155. https://doi.org/10.1016/j.jseaes.2019.104155
    [Google Scholar]
  68. Pang, Y. M., Zhang, X. H., Xiao, G. L., Shang, L. N., Guo, X. W., & Wen, Z. H. (2018). The Mesozoic‐Cenozoic igneous intrusions and related sediment‐dominated hydrothermal activities in the South Yellow Sea Basin, the Western Pacific continental margin. Journal of Marine Systems, 180, 152–161.
    [Google Scholar]
  69. Perez‐Muñoz, T., Velasco‐Hernandez, J., & Hernandez‐Martinez, E. (2013). Wavelet transform analysis for lithological characteristics identification in siliciclastic oil fields. Journal of Applied Geophysics, 98, 298–308. https://doi.org/10.1016/j.jappgeo.2013.09.010
    [Google Scholar]
  70. Pham, D. T., & Karaboga, D. (2000). Intelligent optimization techniques: Genetic algorithms, tabu search, simulated annealing and neural networks. Springer.
    [Google Scholar]
  71. Posamentier, H. W., & Allen, G. P. (1999). Siliciclastic sequence stratigraphy: Concepts and applications. SEPM Concepts in Sedimentology and Paleontology, 7, 210.
    [Google Scholar]
  72. Posamentier, H. W., Jervey, M. T., & Vail, P. R. (1988). Eustatic controls on clastic deposition I – Conceptual framework. In C. K.Wilgus, B. S.Hastings, H.Posamentier, J.Van Wagoner, C. A.Ross, & C. G. S. C.Kendall (Eds.), Sea‐level changes‐an intergated approach (Vol. 42, pp. 109–124). SEPM Special Publication.
    [Google Scholar]
  73. Qayyum, F., & Smith, D. (2014, December). Integrated sequence stratigraphy using trend logs and densely mapped seismic data. First Break, 32, 75–84.
    [Google Scholar]
  74. Rabiller, P. J. Y. M., Robail, F., Remacha, E., Richard, L., Sancho‐Jaquel, F.‐J., Climent, F., & Fernandez, L. P. (2003). Sequence Stratigraphy Applied to Log Interpretation: Improving Methodology by Means of Signal Processing Techniques and Outcrop Calibration. AAPG International Conference, Barcelona, Spain, September 21–24, 1–5.
  75. Sallam, E. S., Afife, M. M., Fares, M., Van Loon, A. J., & Ruban, D. A. (2019). Depositional cycles of the Lower Miocene Rudeis Formation (southwestern offshore margin of the Gulf of Suez, Egypt): Implications for reservoir evaluation. Marine Geology, 415, 105964. https://doi.org/10.1016/j.margeo.2019.105964
    [Google Scholar]
  76. Shi, B. B., Chang, X. C., Yin, W., Li, Y., & Mao, L. X. (2019). Quantitative evaluation model for tight sandstone reservoirs based on statistical methods – A case study of the Triassic Chang 8 tight sandstones, Zhenjing area, Ordos Basin, China. Journal of Petroleum Science & Engineering, 173, 601–616. https://doi.org/10.1016/j.petrol.2018.10.035
    [Google Scholar]
  77. Shi, T. M., Zhou, C. M., Gu, X. Y., & He, Z. S. (2007). Upper cretaceous sporopollen assemblage and significance of Ziniquanzi Formation in southern margin of Junggar Basin. Xinjiang Petroleum Geology, 28, 67–71.
    [Google Scholar]
  78. Song, L. C., Liu, C. L., Zhang, J. D., & Qu, H. J. (2015). High‐resolution sequence stratigraphy of shallow lacustrine delta front: The second member of Sangonghe Formation, Central Junggar Basin. Acta Geologica Sinica (English Edition), 89, 314–315.
    [Google Scholar]
  79. Song, M. H., Li, K. Y., & Kim, S. N. (2018). Evaluation of periodicities and fractal characteristics by wavelet analysis of well log data. Computers and Geosciences, 119, 29–38. https://doi.org/10.1016/j.cageo.2018.05.002
    [Google Scholar]
  80. Song, Z. C., Wang, W. M., & Mao, F. Y. (2008). Palynological implications for relationship between aridification and monsoon climate in the tertiary of NW China. Acta Palaeontologica Sinica, 47, 265–272.
    [Google Scholar]
  81. Tyson, R. V. (1995). Sedimentary organic matter; organic facies and palynofacies (615 pp.). Chapman and Hall.
    [Google Scholar]
  82. Vail, P. R., Mitchum, R. M., & Thompson, S. (1977). Seismic stratigraphy and global changes of sea level. In C. E.Payton (Ed.), Seismic stratigraphy‐applications to hydrocarbon exploration (Vol. 26, pp. 83–97), AAPG Memoir.
    [Google Scholar]
  83. Van Wagoner, J., Mitchum, R., Campion, K., & Rahmanian, V. (1990). Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: Concepts for high‐resolution correlation of time and facies. The American Association of Petroleum Geologists.
    [Google Scholar]
  84. Wang, C. X. (2014). Spore‐pollen flora and paleoclimate of the Chepaizi area, Xinjiang, NW China. Acta Micropalaeontogica Sinica, 31, 75–84.
    [Google Scholar]
  85. Wang, S. H. (2009). Identification and prediction for the subtle oil reservoir developed at Yongjin Area in Junggar Basin. Doctor Degree Thesis of Ocean University of China. (in Chinese with English abstract)
    [Google Scholar]
  86. Wang, S. N., Pang, Q. Q., & Wang, D. N. (2012). New advances in the study of Jurassic‐Cretaceous biostratigraphy and isotopic ages of the Junggar Basin in Xinjiang and their significance. Geological Bulletin of China, 31, 493–502.
    [Google Scholar]
  87. Wang, X. Z. (2019). New progress has been made in deep exploration in the Junggar Basin. China Petrochemical News.
    [Google Scholar]
  88. Wells, N. A. (2002). Quantitative evaluation of color measurements: I. Triaxial stereoscopic scatter plots. Sedimentary Geology, 151(1–2), 1–15. https://doi.org/10.1016/s0037‐0738(01)00204‐4
    [Google Scholar]
  89. Wells, N. A., Konowal, M., & Sundback, S. A. (2002). Quantitative evaluation of color measurements. Sedimentary Geology, 151(1–2), 17–44. https://doi.org/10.1016/s0037‐0738(01)00205‐6
    [Google Scholar]
  90. Wu, W., Li, Q., Pei, J. X., Ning, S. Y., Tong, L. Q., Liu, W. Q., & Feng, Z. D. (2020). Seismic sedimentology, facies analyses, and high‐quality reservoir predictions in fan deltas: A case study of the Triassic Baikouquan Formation on the western slope of the Mahu Sag in China's Junggar Basin. Marine and Petroleum Geology, 120, 104546. https://doi.org/10.1016/j.marpetgeo.2020.104546
    [Google Scholar]
  91. Xie, Y. F., Li, H. Q., & Sun, Z. C. (2006). Discovery of a weathering crust between Jurassic and Cretaceous and its stratigraphic significance in the Shinan Area of the Junggar Basin. Geological Review, 52, 137–144.
    [Google Scholar]
  92. Xu, S. T., Jiao, C. L., & Wang, J. Q. (1998). Color index characteristics of sedimentary rock, basin evolution and advantageous exploration layers in Yili Basin. China Petroleum Exploration, 3, 60–63.(in Chinese with English abstract).
    [Google Scholar]
  93. Xue, W. (2004). SPSS statistical analysis method and application (pp. 308–316). Electronic Industry Press. (in Chinese)
    [Google Scholar]
  94. Xue, Y. C., Cheng, L. S., Mou, J. Y., & Zhao, W. Q. (2014). A new fracture prediction method by combining genetic algorithm with neural network in low‐permeability reservoirs. Journal of Petroleum Science and Engineering, 121, 159–166. https://doi.org/10.1016/j.petrol.2014.06.033
    [Google Scholar]
  95. Yadav, U. S., Shukla, K. M., Ojha, M., Kumar, P., & Shankar, U. (2019). Assessment of gas hydrate accumulations using velocities derived from vertical seismic profiles and acoustic log data in Krishna‐Godavari Basin, India. Marine and Petroleum Geology, 108, 551–561. https://doi.org/10.1016/j.marpetgeo.2019.02.001
    [Google Scholar]
  96. Yang, J. L., Shen, Y. X., Shang, H., Zheng, X. L., Zhou, C. M., Wang, R., Xu, J., Liu, F. C., & Liya, A. (2012). Cretaceous‐Palaeogene ostracods from the Southern edge of the Junggar Basin and their stratigraphic significance. Acta Palaeontologica Sinica, 51, 359–369.
    [Google Scholar]
  97. Yang, J. L., Wang, Q. F., & Lu, H. N. (2005). Discovery of cretaceous and Paleocene charophyte floras from Well Hu‐2 in the southern edge of Junggar Basin. Acta Micropalaeontologica Sinica, 22, 251–268.
    [Google Scholar]
  98. Yang, J. L., Wang, Q. F., & Lu, H. N. (2008). Cretaceous charophyte floras from the Junggar Basin, Xinjiang, China. Acta Micropalaeontologica Sinica, 25, 345–363.
    [Google Scholar]
  99. Zhang, C. X. (2015). Microfossil assemblage (early Cretaceous and Neogene) characteristics and its geological significance in the Chunfeng Oilfield, Junggar Basin, Xinjiang, China. Acta Micropalaeontologica Sinica, 32, 372–383.
    [Google Scholar]
  100. Zhang, J. Y., Burgess, P. M., Granjeon, D., & Steel, R. (2019). Can sediment supply variations create sequences? Insights from stratigraphic forward modelling. Basin Research, 31(2), 274–289. https://doi.org/10.1111/bre.12320
    [Google Scholar]
  101. Zhang, Q., Zhang, F., Liu, J., Wang, X., Chen, Q., Zhao, L., Tian, L., & Wang, Y. (2018). A method for identifying the thin layer using the wavelet transform of density logging data. Journal of Petroleum Science & Engineering, 160, 433–441. https://doi.org/10.1016/j.petrol.2017.10.048
    [Google Scholar]
  102. Zhang, Z. F., Xie, Z. H., Li, B. L., & Zhang, S. P. (2009). A genetic algorithm for optimal stratigraphic division using multi‐parameter log data with application to Mesozoic strata in Jiyang depression, Shandong. Earth Science – Journal of China University of Geosciences, 34, 682–690.
    [Google Scholar]
  103. Zhang, Z. Y., Zhu, G. Y., Chi, L. X., Wang, P. J., Zhou, L., Li, J. F., & Wu, Z. H. (2020). Discovery of the high‐yield well GT1 in the deep strata of the southern margin of the Junggar Basin, China: Implications for liquid petroleum potential in deep assemblage. Journal of Petroleum Science and Engineering, 191, 107178. https://doi.org/10.1016/j.petrol.2020.107178
    [Google Scholar]
  104. Zhou, T. (2016). The distribution of fault system and its controlling on reservoir in middle of Jungar basin. China University of Petroleum (East China) Master Degree Thesis (in Chinese with English abstract).
    [Google Scholar]
  105. Zhu, C. K., & Liang, X. (2015). An edge detection optimum intelligent division method and its application for multi‐parameter log data. Progress in Geophysics, 30, 466–470.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12567
Loading
/content/journals/10.1111/bre.12567
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error