1887
Volume 33, Issue 4
  • E-ISSN: 1365-2117

Abstract

[

The manuscript presents the first attempt to define the diagenetic conditions (burial and related paleo‐temperatures) for sulfur formation in relationship with the deposits generated by the Messinian salinit crisis.

, Abstract

Recent studies on the genesis of sedimentary native sulfur deposits indicate diagenetic mid‐low temperature Bacterial Sulfate Reduction (BSR) as the main process, involving organic compounds (kerogen/hydrocarbons), bacterial colonies and gypsiferous rocks. In the peri‐Mediterranean area (Southern Spain, Sicily, Northern Apennines, Israel), the main sulfur accumulations are always associated with late Miocene sulfates and organic‐rich successions encompassing the Messinian salinity crisis (MSC). In particular, the Messinian successions of the Apennine‐Adriatic foreland basin system, due to a large amount of high‐resolution stratigraphic data, represent a perfect case study for understanding the diagenetic conditions controlling the development of the BSR process during sedimentary basin evolution. In this work, thermal models performed in three sub‐basins in a sector of the Northern Apennines comprised of the Sillaro and Marecchia rivers (Italy), calibrated by means of organic and inorganic geothermometers, indicate a general thermal immaturity of the studied successions attained as a result of a constant heat flow similar to the present day one (ca. 40 mW/m2) since Late Tortonian and lithostatic loads between 615 and 1,710 m depending on different sub‐basins. These results suggest that the MSC deposits experienced maximum temperatures between about 39°C and 65°C. Temperatures derived from thermal models have been used to constraint occurrence of the diagenetic BSR associated with evaporitic deposits providing thermal constraints in sulfur genesis as well as new useful thermal‐constraints for basin analysis studies.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12566
2021-07-17
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/4/bre12566.html?itemId=/content/journals/10.1111/bre.12566&mimeType=html&fmt=ahah

References

  1. Bassetti, M. A. (2000). Stratigraphy, sedimentology and paleogeography of upper Messinian (‘post‐evaporitic’) deposits in the Marche area (Apennines, central Italy). Memorie di Scienze Geologiche, 52, 319–349.
    [Google Scholar]
  2. Bassetti, M. A., Manzi, V., Lugli, S., Roveri, M., Longinelli, A., Ricci Lucchi, F., & Barbieri, M. (2004). Paleoenvironmental significance of Messinian post‐evaporitic lacustrine carbonates in the northern Apennines, Italy. Sedimentary Geology, 172, 1–18. https://doi.org/10.1016/j.sedgeo.2004.07.004
    [Google Scholar]
  3. Bassetti, M. A., Ricci Lucchi, F., & Roveri, M. (1994). Physical stratigraphy of the Messinian post‐evaporitic deposits in the central‐southern Marche area (Apennines, central Italy). Memorie della Societa` Geologica Italiana, 48, 275–288.
    [Google Scholar]
  4. Benini, A., Farabegoli, E., & Martelli, L. (1991). Stratigrafia e paleogeografia del Gruppo di S. Sofia (alto Appennino Forlivese). Memorie Descrittive della Carta Geologica d’Italia, 46, 231–243.
    [Google Scholar]
  5. Bjørlykke, K. (2010). Petroleum geoscience, from sedimentary environments to rock physics (p. 508). Springer‐Verlag, Berlin Heidelberg.
    [Google Scholar]
  6. Bredehoeft, J. D., & Hanshaw, B. B. (1968). On the maintenance of anomalous fluid pressure: I. Thick Sedimentary Sequences. GSA Bulletin, 79. https://doi.org/10.1130/0016‐7606(1968)79[1097:OTMOAF]2.0.CO;2
    [Google Scholar]
  7. Bustin, R. M., Barnes, M. A., & Barnes, W. C. (1990). Determining levels of organic diagenesis in sediments and fossil fuels. In Diagenesis, geoscience (pp. 205‐226). Canada Reprint, 4th series.
  8. Capozzi, R., Landuzzi, A., Negri, A., & Vai, G. B. (1991). Stili deformativi ed evoluzione tettonica della successione neogenica romagnola: Studi Geologici Camerti. special, no. 1, 261–278.
  9. CARG project
    CARG project . (1988). CARtografia Geologica.
  10. Caruso, A., Pierre, C., Blanc‐Valleron, M.‐M., & Rouchy, J. M. (2015). Carbonate deposition and diagenesis in evaporitic environments: The evaporative and sulphur‐bearing limestones during the settlement of the Messinian salinity crisis in Sicily and Calabria. Palaeogeography, Palaeoclimatology, Palaeoecology, 429, 136–162. https://doi.org/10.1016/j.palaeo.2015.03.035
    [Google Scholar]
  11. Castellarin, A., & Pini, G. A. (1989). L’arco del Sillaro: La messa in posto delle ‘‘Argille Scagliose’’ al margine appenninico padano (Appennino bolognese). Memorie della Società Geologica Italiana, 39, 127–141.
    [Google Scholar]
  12. CIESM
    CIESM . (2008). The Messinian salinity crisis from mega‐deposits to microbiology – A consensus report. CIESM Workshop Monographs, 33 F. Braind Ed., (p. 168), Monaco.
  13. Cita, M. B., Ryan, W. B. F., & Kidd, R. B. (1978). Sedimentation rates in Neogene deep‐sea sediments from the Mediterranean and geodynamic implications of their changes. Deep Sea Drilling Project Initial Reports, 42, 1978. https://doi.org/10.2973/dsdp.proc.42‐1.152.1978
    [Google Scholar]
  14. Clauzon, G., Suc, J. P., Gautier, F., Berger, A., & Loutre, M. F. (1996). Alternate interpretation of the Messinian salinity crisis: Controversy resolved?Geology, 24, 363–366. https://doi.org/10.1130/0091‐7613(1996)024<0363:AIOTMS>2.3.CO;2
    [Google Scholar]
  15. CNR
    CNR . (1994). Surface heat flow density map of Italy. Atlas of Geothermal Resources in Europe. CNR, Italy – Updating 1994.
  16. Colalongo, M. L., Ricci Lucchi, F., Guarnieri, P., & Mancini, E. (1982). Il Plio‐Pleistocene del Santerno (Appennino romagnolo). In G.Cremonini & F.Ricci Lucchi (Eds.), Guida alla geologia del margine appenninico padano. Guide Geologiche regionali della Società Geologica Italiana: Bologna, Società Geologica Italiana, 161–166.
    [Google Scholar]
  17. Conti, S., Fioroni, C., Fontana, D., & Grillenzoni, C. (2016). Depositional hystory of the Epiligurian wedge‐top basin in the Val Marecchia area (northern Apenines, Italy): A revision of the Burdigalian‐tortonian succession. Italian Journal of Geosciences, 135(2), 324–335. https://doi.org/10.3301/IJG.2015.32
    [Google Scholar]
  18. Corrado, S., Aldega, L., Perri, F., Critelli, S., Muto, F., Schito, A., & Tripodi, V. (2019). Detecting syn‐orogenic extension and sediment provenance of the Cilento wedge top basin (southern Apennines, Italy): Mineralogy and geochemistry of fine‐grained sediments and petrography of dispersed organic matter. Tectonophysics, 750, 404–418. https://doi.org/10.1016/j.tecto.2018.10.027
    [Google Scholar]
  19. Corrado, S., Aldega, L., & Zattin, M. (2010). Sedimentary vs. tectonic burial and exhumation along the Apennines (Italy). In M.Beltrando, A.Peccerillo, M.Mattei, S.Conticelli, & C.Doglioni (Eds.), The Geology of Italy: Tectonics and life along plate margins, Journal of the Virtual Explorer, 36, 15. https://doi.org/10.3809/jvirtex.2010.00232
    [Google Scholar]
  20. Costa, G. P., Colalongo, M. L., De Giuli, C., Marabini, S., Masini, F., Torre, D., & Vai, G. B. (1986). Latest Messinian vertebrate fauna preserved in a paleokarst neptunian dike setting (Brisighella, Northern Apennines). Le grotte d’Italia, 12, 221–235.
    [Google Scholar]
  21. Cosentino, D., Buchwaldt, R., Sampalmieri, G., Iadanza, A., Cipollari, P., Schildgen, T. F., Hinnov, L. A., Ramezani, J., & Bowring, S. A. (2013). Refining the Mediterranean “Messinian gap” with high‐precision U‐Pb zircon geochronology, central and northern Italy. Geology, 41, 323–326. https://doi.org/10.1130/G33820.1
    [Google Scholar]
  22. Cremonini, G., Elmi, C., & Monesi, A. (1969). Osservazioni geologiche e sedimentologiche su alcune sezioni plio‐pleistoceniche dell’Appennino romagnolo. Giornale di Geologia, 35, 85–96.
    [Google Scholar]
  23. Davis, J. B., & Kirkland, D. W. (1970). Native sulfur deposition in the Castile Formation, Culberson County, Texas. Economic Geology, 65, 107–121. https://doi.org/10.2113/gsecongeo.65.2.107
    [Google Scholar]
  24. De Feyter, A. J. (1991). Gravity tectonics and sedimentation of the Montefeltro, Italy. Geologica Ultraiectina, 35, 7–168.
    [Google Scholar]
  25. De Giuli, C., Masini, F., & Torre, D. (1988). The mammal fauna of the Monticino quarry. In C.De Giuli & G. B.Vai (Eds.), Fossil vertebrates in the Lamone valley, Romagna Apennines, International Workshop: Continental Faunas at the Mio‐Pliocene Boundary (pp. 28–31). Field Trip Guidebook, Gaenza Litografica, 65–69.
    [Google Scholar]
  26. De Lange, G. J., & Krijgsman, W. (2010). Messinian salinity crisis: A novel unifying shallow gypsum/deep dolomite formation mechanism. Marine Geology, 275, 273–277. https://doi.org/10.1016/j.margeo.2010.05.003
    [Google Scholar]
  27. Decima, A., McKenzie, J. A., & Schreiber, B. C. (1988). The origin of “evaporative” limestones: An example from the Messinian of Sicily (Italy). Journal of Sedimentary Petrology, 58, 256–272. https://doi.org/10.1306/212F8D6E‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  28. Dela Pierre, F., Bernardi, E., Cavagna, S., Clari, P., Gennari, R., Irace, A., Lozar, F., Lugli, S., Manzi, V., Natalicchio, M., Roveri, M., & Violanti, D. (2011). The record of the Messinian salinity crisis in the Tertiary Piedmont Basin (NW Italy): The Alba Section revisited. Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 238–255. https://doi.org/10.1016/j.palaeo.2011.07.017
    [Google Scholar]
  29. Dela Pierre, F., Clari, P., Bernardi, E., Natalicchio, M., Costa, E., Cavagna, S., Lozar, F., Lugli, S., Manzi, V., Roveri, M., & Violanti, D. (2012). Messinian carbonate‐rich beds of the Tertiary Piedmont Basin (NW Italy): Microbially‐mediated products straddling the onset of the salinity crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 344–345, 78–93. https://doi.org/10.1016/j.palaeo.2012.05.022
    [Google Scholar]
  30. Della Vedova, B., Bellani, S., Pellis, G., & Squarci, P. (2001). Deep temperature and surface heat flow distribution. In G. B.Vai & I.Peter Martini (Eds.), Anatomy of an Orogen. The Apennines and Adjacent Mediterranean Basins. Chapter: Chapter 7 – Deep temperatures and surface heat flow distribution. Kluwer Academic Publisher. https://doi.org/10.1007/978‐94‐015‐9829‐3_7
    [Google Scholar]
  31. Della Vedova, B., Lucazeau, F., Pasquale, V., Pellis, G., & Verdoya, M. (1995). Heat‐flow in the tectonic provinces crossed by the southern segment of the European geotraverse. Tectonophysics, 244(1–3), 57–74. https://doi.org/10.1016/0040‐1951(94)00217‐W
    [Google Scholar]
  32. Dessau, G., Jensen, M. L., & Nakai, N. (1962). Geology and isotopic studies of Sicilian sulfur deposits. Economic Geology, 57, 410–438. https://doi.org/10.2113/gsecongeo.57.3.410
    [Google Scholar]
  33. Ehrlich, H. L. (1990). Geomicrobiology, (2nd ed, p. 646). Marcel Dekker.
    [Google Scholar]
  34. Elter, P., & Trevisan, L. (1973). Alistostromes in the tectonic evolution of the Norther Apennines. In K. A.DeJong & S.Robert (Eds.), Gravity and tectonics (pp. 175–188). John Wiley and Sons.
    [Google Scholar]
  35. Endignoux, L., Wolf, S., & Letouzey, J. (1990). Thermal and kinematic evolution of thrust basins: A 2D numerical model. Petroleum and Tectonics in Mobile Belts: Paris, 47, 181–192.
    [Google Scholar]
  36. Farabegoli, E., Benini, A., Martelli, L., Onorevoli, G., & Severi, P. (1991). Geologia dell’Appennino Romagnolo da Campigna a Cesenatico. Memorie Descrittive della Carta Geologica d’Italia, 46, 165–184.
    [Google Scholar]
  37. Feely, H. W., & Kulp, J. L. (1957). Origin of Gulf coast salt‐dome sulphur deposits. Bulletin of the American Association of Petroleum Geologists, 41, 1802–1853. https://doi.org/10.1306/0BDA5939‐16BD‐11D7‐8645000102C1865D
    [Google Scholar]
  38. Fortuin, A. R., & Krijgsman, W. (2003). The Messinian of the Nijar Basin (SE Spain): Sedimentation, depositional environments and paleogeographic evolution. Sedimentary Geology, 160, 213–242. https://doi.org/10.1016/S0037‐0738(02)00377‐9
    [Google Scholar]
  39. Gennari, R., Iaccarino, S. M., Di Stefano, A., Sturiale, G., Cipollari, P., Manzi, V., Roveri, M., & Cosentino, D. (2008). The messinian‐zanclean boundary in the northern Apennine. Stratigraphy, 5(3–4), 307–322.
    [Google Scholar]
  40. Gennari, R., Manzi, V., Angeletti, L., Bertini, A., Biffi, U., Ceregato, A., Faranda, C., Gliozzi, E., Lugli, S., Menichetti, E., Rosso, A., Roveri, M., & Taviani, M. (2013). A shallow water record of the onset of the Messinian salinity crisis in the Adriatic foredeep (Legnagnone section, Northern Apennines). Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 145–164. https://doi.org/10.1016/j.palaeo.2013.05.015
    [Google Scholar]
  41. Guido, A., Jacob, J., Gautret, P., Laggoun‐Défarge, F., Mastandrea, A., & Russo, F. (2007). Molecular fossils and other organic markers as palaeoenvironmental indicators of the Messinian Calcare di Base Formation: normal versus stressed marine deposition (Rossano Basin, northern Calabria, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 255, 265–283. https://doi.org/10.1016/j.palaeo.2007.07.015
    [Google Scholar]
  42. Hardie, L. A. (1967). The Gypsum‐Anhydrite equilibrium at one atmosphere pressure. American Mineralogist, 52, 171–200.
    [Google Scholar]
  43. Hsü, K. J., Cita, M. B., & Ryan, W. B. F. (1973). The origin of the Mediterranean evaporites. In W. B. F.Ryan, K. J.Hsü, P.Dumitrica, J. M.Lort, W.Maync, W. D.Nesteroff, G.Pautot, H.Stradner & F. C.Wezel (Eds.), Initial reports of the deep sea drilling project, Vol. XIII (pp. 1203–1231). Government Printing Office.
    [Google Scholar]
  44. Hunt, J. M. (1995). Petroleum geochemistry and geology (p. 743). Freeman.
  45. Iaccarino, S. M., & Bossio, A. (1999). Paleoenvironment of uppermost Messinian sequences in the western Mediterranean (sites 974, 975 and 978). In R.Zahn, M. C.Comas & A.Klaus (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results (Vol. 161, pp. 529–540). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.sr.161.246.1999
    [Google Scholar]
  46. Iaccarino, S., Castradori, D., Cita, M. B., Di Stefano, E., Gaboardi, S., McKenzie, J. A., Spezzaferri, S., & Sprovieri, R. (1999). The Miocene/Pliocene boundary and the significance of the earliest Pliocene flooding in the Mediterranean. Memorie della Società Geologica Italiana, 54, 109–131.
    [Google Scholar]
  47. International Committee for Coal Petrology (ICCP)
    International Committee for Coal Petrology (ICCP) . (1971). International Handbook of Coal Petrography, 1st Supplement to ss CNRS.
    [Google Scholar]
  48. Jaworska, J. (2012). Crystallization, alternation and recrystallization of sulphates. In advances in crystallization processes. 1st ed. crystallization, alternation and recrystalization of sulphates. INTECH. Y. Mastai. https://doi.org/10.13140/2.1.4282.4322
  49. Jorgensen, B. B., Findlay, A. J., & Pellerin, A. (2019). The biogeochemical sulfur cycle of marine sediments. Frontier in Microbiology, 10, 549. https://doi.org/10.3389/fmicb.2019.00849
    [Google Scholar]
  50. Jowett, E. C., Cathles, L. M.III, & Davis, B. W. (1993). Predicting depths of gypsum dehydration in evaporitic sedimentary basin. AAPG Bulletin V, 3, 402–413. https://doi.org/10.1306/BDFF8C22‐1718‐11D7‐8645000102C1865D
    [Google Scholar]
  51. Klimchouk, A. (1996). The dissolution and conversion of gypsum and anhydrite. International Journal of Speleology, 25, 21–36. https://doi.org/10.5038/1827‐806X.25.3.2
    [Google Scholar]
  52. Kontopoulos, N., Zelilidis, A., Piper, D. J. W., & Mudie, P. J. (1997). Messinian evaporites in Zakynthos, Greece. Palaeogeography, Palaeoclimatology and Palaeoecology, 129, 361–367. https://doi.org/10.1016/S0031‐0182(96)00117‐4
    [Google Scholar]
  53. Krijgsman, W., Fortuin, Ar, Hilgen, Fj, & Sierro, Fj (2001). Astrochronology for the Messinian Sorbas basin (SE Spain) and orbital (precessional) forcing for evaporite cyclicity. Sedimentary Geology, 140(1‐2), 43–60. https://doi.org/10.1016/S0037‐0738(00)00171‐8
    [Google Scholar]
  54. Krijgsman, W., Hilgen, F. J., Marabini, S., & Vai, G. B. (1999). New paleomagnetic and cyclostratigraphic age constraints on the Messinian of the Northern Apennines (Vena del Gesso Basin, Italy). Memorie della Società Geologica Italiana, 54, 25–33.
    [Google Scholar]
  55. Landuzzi, A. (1994). Relationships between the Marnoso‐arenacea Formation of the Inner Romagna units and the Ligurids (Italy). Memorie della Socieà Geologica Italiana, 48, 523–534.
    [Google Scholar]
  56. Landuzzi, A., & Castellari, M. (1988). A new vertebrate site from late Messinian karst holes, Santerno Valley, W Romagna. In C.De Giuli & G. B.Vai (Eds.), Fossil vertebrates in the Lamone valley, Romagna Apennines, International Workshop: Continental Faunas at the Mio‐Pliocene Boundary (pp. 28–31). Field Trip Guidebook, Faenza Litografica, 70‐74.
    [Google Scholar]
  57. Lucca, A., Storti, F., Molli, G., Muchez, P., Schito, A., Artoni, A., Balsamo, F., Corrado, S., & Mariani, E. S. (2018). Seismically enhanced hydrothermal plume advection through the process zone of the Compione extensional Fault, Northern Apennines, Italy. Bulletin, 131(3–4), 547–571. https://doi.org/10.1130/B32029.1
    [Google Scholar]
  58. Lucente, C. C., Manzi, V., Ricci Lucchi, F., & Roveri, M. (2002). Did the Ligurian sheet cover the whole thrust belt in Tuscany and Romagna Appennines? Some evidence from gravity emplaced deposits. Memorie della Societa` Geologica Italiana, Volume Speciale, 1, 393–398.
    [Google Scholar]
  59. Lugli, S., Gennari, S., Gvirtzman, Z., Manzi, V., Roveri, M., & Schreiber, C. B. (2013). Evidence of clastic evaporites in the canyons of the Levant Basin (Israel): Implications for the Messinian salinity crisis. Journal of Sedimentary Research, 83, 942–954. https://doi.org/10.2110/jsr.2013.72
    [Google Scholar]
  60. Lugli, S., Manzi, V., Roveri, M., & Schreiber, C. B. (2010). The Primary Lower Gypsum in the Mediterranean: A new facies interpretation first stage of the Messinian salinity crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 297, 83–99. https://doi.org/10.1016/j.palaeo.2010.07.017
    [Google Scholar]
  61. Machel, H. G. (1992). Low‐temperature and high‐temperature origins of elemental sulfur in diagenetic environments. In G. R.Wessel & B. H.Wimberly (Eds.), Native sulfur – Developments in geology and exploration (pp. 3‐22). Society for Mining, Metallurgy and Exploration, Inc.
    [Google Scholar]
  62. Machel, H. G. (2001). Bacterial and thermochemical sulfate reduction in diagenetic settings – old and new insights. Sedimentary Geology, 140, 143–175. https://doi.org/10.1016/S0037‐0738(00)00176‐7
    [Google Scholar]
  63. Manzi, V. (2001). Stratigrafia fisica, analisi sedimentologica microscopica e caratteri magnetostratigrafici dei depositi connessi all’evento evaporitico del Messiniano (F.ne Gessoso‐solfifera) [Ph.D. thesis], Bologna,Italy, University of Bologna, 1–72.
  64. Manzi, V., Gennari, R., Hilgen, F., Krijgsman, W., Lugli, S., Roveri, M., & Sierro, F. J. (2013). Age refinement of the Messinina salinity crisis onset in the Mediterranean. Terra Nova, 25, 315–322. https://doi.org/10.1111/ter.12038
    [Google Scholar]
  65. Manzi, V., Gennari, R., Lugli, S., Persico, D., Reghizzi, M., Roveri, M., Schreiber, B. C., Calvo, R., Gavrieli, I., & Gvirtzman, Z. (2018). The onset of the Messinian salinity crisis in the deep Eastern Mediterranean basin. Terra Nova, 30(3), 189–198. https://doi.org/10.1111/ter.12325
    [Google Scholar]
  66. Manzi, V., Gennari, R., Lugli, S., Roveri, M., Scafetta, N., & Schreiber, B. C. (2012). High frequency cyclicity in the Mediterranean Messinian evaporites: evidence for solar‐lunar climate forcing. Journal of Sedimentary Research, 82, 991–1005. https://doi.org/10.2110/jsr.2012.81
    [Google Scholar]
  67. Manzi, V., Lugli, S., Ricci Lucchi, F., & Roveri, M. (2005). Deep‐water clastic evaporites deposition in the Messinian Adriatic foredeep (northern Apennines, Italy): did the Mediterranean ever dry out?Sedimentology, 52, 875–902. https://doi.org/10.1111/j.1365‐3091.2005.00722.x
    [Google Scholar]
  68. Manzi, V., Lugli, S., Roveri, M., Schreiber, B. C., & Gennari, R. (2011). The Messinian “Calcare di Base” (Sicily, Italy) revisited. Geological Society of America Bulletin, 123, 347–370. https://doi.org/10.1130/B30262.1
    [Google Scholar]
  69. Manzi, V., Lugli, S., Roveri, M., Dela Pierre, F., Gennari, R., Lozar, F., Natalicchio, M., Chalotte Schreiber, B., Taviani, M. & Turco, E. (2016). The Messinian Salinity Crisis in Cyprus: A further step toward a new stratigraphic framework for Eastern Mediterranean. Basin Research, 28, 207–236. https://doi.org/10.1111/bre.12107
    [Google Scholar]
  70. Manzi, V., Roveri, M., Gennari, R., Bertini, A., Biffi, U., Giunta, S., Iaccarino, S. M., Lanci, L., Lugli, S., Negri, A., Riva, A., Rossi, M. E., & Taviani, M. (2007). The deep‐water counterpart of the Messinian Lower Evaporites in the Apennine foredeep: The Fanantello section (Northern Apennines, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 251, 470–499. https://doi.org/10.1016/j.palaeo.2007.04.012
    [Google Scholar]
  71. Marabini, S., & Vai, G. B. (1988). Geology of the Monticino Quarry (Brisighella, Italy) stratigraphic implication of its late Messinian Mammal Fauna. In C.De Giuli & G. B.Vai (Eds.), Fossil vertebrates in the Lamone valley, Romagna Apennines, International Workshop: Continental Faunas at the Mio‐Pliocene Boundary (pp. 39–52). Field Trip Guidebook, Faenza Litografica.
    [Google Scholar]
  72. McKenzie, J. A. (1985). Stable‐isotope mapping in Messinian evaporative carbonates of central Sicily. Geology, 13, 851–854.
    [Google Scholar]
  73. Merla, G. (1951). Geologia dell’Appennino Settentrionale: Bollettino della Società Geologica Italiana, 70, 95–382.
    [Google Scholar]
  74. Murray, R. C. (1964). Origin and diagenesis of gypsum and anhydrite. Journal of Sedimentary Petroleum, 34, 512–523. https://doi.org/10.1306/74D710D2‐2B21‐11D7‐8648000102C1865D
    [Google Scholar]
  75. Odin, G. S., Deino, A., Cosca, M., Laurenzi, M. A., & Montanari, A. (1997). Miocene geochronology: methods, techniques, results. In A.Montanari, G. S.Odin & R.Coccioni (Eds.), Miocene stratigraphy: an integrated approach (pp. 583–596). Elsevier. https://doi.org/10.1016/S0920‐5446(06)80043‐9
    [Google Scholar]
  76. Ogniben, L. (1957). Secondary gypsum of the sulphur series, Sicily, and the so‐called integration. Journal of Sedimentary Geology, 27, 64–79. https://doi.org/10.1306/74D7065F‐2B21‐11D7‐8648000102C1865D
    [Google Scholar]
  77. Omodeo‐Sale', S., Gennari, R., Lugli, S., Manzi, V., & Roveri, M. (2012). Tectonic and climatic control on the Late Messininan sedimentary evolution of the Nijar Basin (Betic Cordillera, Southern Spain). Basin Research, 24, 314–337. https://doi.org/10.1111/j.1365‐2117.2011.00527.x
    [Google Scholar]
  78. Orszag‐Sperber, F. (2006). Changing perspectives in the concept of “Lago‐Mare” in Mediterranean Late Miocene evolution. Sedimentary Geology, 188–189, 259–277. https://doi.org/10.1016/j.sedgeo.2006.03.008
    [Google Scholar]
  79. Parea, G. C., & Ricci Lucchi, F. (1972). Resedimented evaporites in the Periadriatic trough (upper Miocene, Italy). Israel Journal of Earth‐Sciences, 21, 125–141.
    [Google Scholar]
  80. Pauselli, C., Gola, G., Mancinelli, P., Trumpy, E., Saccone, M., Manzella, A., & Ranalli, G. (2019). A new surface heat flow map of the Northern Apennines between latitudes 42.5 and 44.5 N. Geothermics, 81, 39–52.
    [Google Scholar]
  81. Peckmann, J., Paul, J., & Thiel, V. (1999). Bacterially mediated formation of diagenetic aragonite and native sulfur in Zechstein carbonates (Upper Permian, Central Germany). Sedimentary Geology, 126, 205–222. https://doi.org/10.1016/S0037‐0738(99)00041‐X
    [Google Scholar]
  82. Postgate, J. R. (1984). The sulfate‐reducing bacteria (2nd ed, p. 208). Cambridge University Press.
    [Google Scholar]
  83. Rabus, R., Hansen, T. A., & Widdel, F. (2006). Dissimilatory sulfate‐ and sulfur‐reducing prokaryotes. Prokaryotes, 2, 659–768. https://doi.org/10.1007/0‐387‐30742‐7_22
    [Google Scholar]
  84. Ricci Lucchi, F. (1973). Resedimented evaporites: Indicators of slope instability and deep‐basins conditions in Periadriatic Messinian (Apennines foredeep, Italy). In Messinian events in the Mediterranean: Koninklijke Nederlandse Akademie van Wetenschappen, Geodynamics Scientific Report no. 7, 142‐149.
  85. Ricci Lucchi, F. (1975). Miocene palaeogeography and basin analysis in the Periadriatic Apennines. In C.Squyres (Ed.), Geology of Italy (Vol. 2, pp. 129–236). P.E.S.L.
    [Google Scholar]
  86. Ricci Lucchi, F. (1981). The Miocene Marnoso‐arenacea turbidites, Romagna and Umbria Apennines. In Ricci Lucchi, F. (Ed.), Excursion guidebook: Bologna, Italy, 2nd International Association of Sedimentologists Regional Meeting, 229–303.
  87. Ricci Lucchi, F. (1986). The Oligocene to Holocene foreland basins of the northern Apennines. In Allen, P.A. & Homewood, P. (Eds.), Foreland basins: International Association of Sedimentologists Special Publication 8, 105–139.
  88. Ricci Lucchi, F., & Ori, G. G. (1985). Field excursion D: Syn‐orogenic deposits of a migrating basin systems in the northwest Adriatic foreland. In P. A.Allen (Ed.), Foreland basins, Excursion guidebook: Fribourg (pp. 137–176). International Association of Sedimentologists.
    [Google Scholar]
  89. Robertson, A. H. F., Eaton, S., Follows, E. J., & Payne, A. S. (1995). Depositional processes and basin analysis of Messinian evaporites in Cyprus. Terra Nova, 7, 233–253. https://doi.org/10.1111/j.1365‐3121.1995.tb00692.x
    [Google Scholar]
  90. Rossi, M., Minervini, M., Ghielmi, M., & Rogledi, S. (2015). Messinian and Pliocene erosional surfaces in the Po Plain‐Adriatic Basin: Insights from allostratigraphy and sequenza stratigraphy in assessing play concepts related to accomodation and gateway turnarounds in tectonically margins. Marine and Petroleum Geology, 66(2015), 192–216. https://doi.org/10.1016/j.marpetgeo.2014.12.012
    [Google Scholar]
  91. Rossi, M., & Rogledi, S. (1988). Relative sea‐level changes, local tectonic setting and basin margin sedimentation in the interference zone between two orogenic belts: seismic stratigraphic examples from Padan foreland basin, northern Italy. In W.Nemec & R. J.Steel (Eds.), Fan deltas: Sedimentology and tectonic settings (p. 368–384). Blackie and Son.
    [Google Scholar]
  92. Rossi, M., Rogledi, S., Barbacini, G., Casadei, D., Iaccarino, S., & Papani, G. (2002). Tectono‐stratigraphic aschitecture of Messinian piggyback basins of Northern Apenines: The Emilia folds in the Reggio‐Modena area and comparison with the Lombardia and Romagna sectors. Bollettino‐Societa Geologica Italiana, 1, 437–447.
    [Google Scholar]
  93. Rouchy, J. M., & Caruso, A. (2006). The Messinian salinity crisis in the Mediterranean Basin: A reassessment of the data and an integrated scenario. Sedimentary Geology, 188–189, 35–67. https://doi.org/10.1016/j.sedgeo.2006.02.005
    [Google Scholar]
  94. Rouchy, J. M., Taberner, C., Blanc‐Valleron, M. M., Sprovieri, R., Russell, M., Pierre, C., Di Stefano, E., Pueyo, J. J., Caruso, A., Dinares‐Turell, J., Gomis‐Coll, E., Wolff, G. A., Cespuglio, G., Ditchfielde, P., Pestrea, S., Combourieu‐Nebout, N., Santisteban, C., & Grimalt, J. O. (1998). Sedimentary and diagenetic markers of the restriction in a marine basin: the Lorca Basin (SE Spain) during the Messinian. Sedimentary Geology, 121, 23–55. https://doi.org/10.1016/S0037‐0738(98)00071‐2
    [Google Scholar]
  95. Roveri, M., Bassetti, M. A., & Ricci Lucchi, F. (2001). The Mediterranean Messinian salinity crisis: An Apennine foredeep perspective. Sedimentary Geology, 140, 201–214. https://doi.org/10.1016/S0037‐0738(00)00183‐4
    [Google Scholar]
  96. Roveri, M., Bertini, A., Cosentino, D., Di Stefano, A., Gennari, R., Gliozzi, E., Grossi, F., Iaccarino, S. M., Lugli, S., Manzi, V., & Taviani, M. (2008). A high‐resolution stratigraphic framework for the latest Messinian events in the Mediterranean area. Stratigraphy, 5, 323–342.
    [Google Scholar]
  97. Roveri, M., Gennari, R., Lugli, S., & Manzi, V. (2009). The Terminal Carbonate Complex: the record of sea‐level changes during the Messinian salinity crisis. GeoActa, 8, 57–71.
    [Google Scholar]
  98. Roveri, M., Gennari, R., Lugli, S., Manzi, V., Minelli, N., Reghizzi, M., Riva, A., Rossi, M. E., & Chreiber, B. C. (2016). The Messinina salinity crisis: open problems and possible implications for Mediterranean petroleum system. Petroleum Geoscience, 22(4), 89. https://doi.org/10.1144/petgeo2015‐089
    [Google Scholar]
  99. Roveri, M., & Manzi, V. (2006). The Messinian salinity crisis: looking for a new paradygm?Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 386–398. https://doi.org/10.1016/j.palaeo.2006.03.036
    [Google Scholar]
  100. Roveri, M., Manzi, V., Bassetti, M. A., Merini, M., & Ricci Lucchi, F. (1998). Stratigraphy of the Messinian post‐evaporitic stage in eastern Romagna (northern Apennines, Italy). Giornale di Geologia, 60, 119–142.
    [Google Scholar]
  101. Roveri, M., Manzi, V., Ricci Lucchi, F., & Rogledi, S. (2003). Sedimentary and tectonic evolution of the Vena del Gesso Basin (Northern Apennines, Italy): implications for the onset of the Messinian salinity crisis. Geological Society of America Bulletin, 115(4), 387–405. https://doi.org/10.1130/0016‐7606(2003)115<0387:SATEOT>2.0.CO;2
    [Google Scholar]
  102. Roveri, R., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., Sierro, F. J., Bertini, A., Camerlenghi, A., De Lange, G., Govers, R., Hilgen, F. J., Hübscher, C., Meijer, P. T. H., & Stoica, M. (2014). The Messinian salinity crisis: Past and future of a great challenge for marine sciences. Marine Geology, 352, 25–58. https://doi.org/10.1016/j.margeo.2014.02.002
    [Google Scholar]
  103. Ruggieri, G. (1967). The Miocene and later evolution of the Mediterranean Sea. In Ager, A. V. & Adams, C. G. (Eds.). Aspects of Tethyan Biogeography, 7, 283‐290.
    [Google Scholar]
  104. Sagui, C. L. (1923). The sulphur mines of Sicily. Economic Geology, 18.
    [Google Scholar]
  105. Savelli, D., & Wezel, F. C. (1978). Schema geologico del Messiniano nel Pesarese. Bollettino Società Geologica Italiana, 97, 165–188.
    [Google Scholar]
  106. Schito, A., Corrado, S., Aldega, L., & Grigo, D. (2016). Overcoming pitfalls of vitrinite reflectance measurements in the assessment of thermal maturity: the case history of the lower Congo basin. Marine and Petroleum Geology, 74, 59–70. https://doi.org/10.1016/j.marpetgeo.2016.04.002
    [Google Scholar]
  107. Schlager, W., & Bolz, H. (1977). Clastic accumulation of sulphate evaporites in deep water. Journal of Sedimentary Petrology, 47, 600–609. https://doi.org/10.1306/212F71F3‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  108. Sclater, J. G., & Christie, P. A. F. (1980). Continental stretching: An explanation of the post‐mid‐Cretaceous subsidence of the central North Sea basin. Journal of Geophysical Research: Solid Earth, 85, 3711–3739.
    [Google Scholar]
  109. Selli, R. (1973). An outline of the Italian Messinian. Koninklijke Nederlandse Akademie Van Wetenshappen: Messinian Events in the Mediterranean Geodynamics , Scientific Report 7 of the Colloquium held in Utrecht. 150‐171
  110. Stach, E., Mackowsky, M. T., Teichmüller, M., Taylor, G. H., Chandra, D., & Teichmuller, R. (1982). Stach's textbook of coal petrology. Gebrüder Borntraeger.
    [Google Scholar]
  111. Stoica, M., Lazǎr, I., Krijgsman, W., Vasiliev, I., Jipa, D., & Floroiu, A. (2013). Paleoenvironmental evolution of the East Carpathian foredeep during the late Miocene‐early Pliocene (Dacian Basin; Romania). Global and Planetary Change, 103, 135–148. https://doi.org/10.1016/j.gloplacha.2012.04.004
    [Google Scholar]
  112. Stoica, M., Lazar, I., Vasiliev, I., & Krijgsman, W. (2007). Mollusc assemblages of the Pontian and Dacian deposits from the Topolog‐Arges area (southern Carpathian foredeep – Romania). Geobios, 40, 391–405. https://doi.org/10.1016/j.geobios.2006.11.004
    [Google Scholar]
  113. Sweeney, J. J., & Burnham, A. K. (1990). Evaluation of the Simple Model of Vitrinite Reflectance Base on Chemical Kinetics. The American Association of Petroleum Geologists Bulletin, 74, 1559–1570. https://doi.org/10.1306/0C9B251F‐1710‐11D7‐8645000102C1865D
    [Google Scholar]
  114. Taylor, G. H., Teichmuller, M., Davis, A., Diessel, C. F. K., Littke, R., & Robert, P. (1998). Organic Petrology (p. 704). Gebrüder Borntraeger.
    [Google Scholar]
  115. Thomson, S. N., Brandon, M. T., Reiners, P. W., Zattin, M., Isaacson, P. J., & Balestrieri, M. L. (2010). Thermochronologic evidence for orogen‐parallel variability in wedge kinematics during extending convergent orogenesis of the northern Apennines, Italy. GSA Bulletin, 122(7/8), 1160–1179. https://doi.org/10.1130/B26573.1
    [Google Scholar]
  116. Tissot, B. P., & Welte, D. H. (1984). Petroleum formation and occurrence (2nd ed, p. 699). Springer‐Verlag.
    [Google Scholar]
  117. Vai, G. B. (1988). The Lamone Valley: a field trip guide to the Romagna Apennines. In C.De Giuli & G. B.Vai (Eds.), Fossil vertebrates in the Lamone Valley, Romagna Apennines, field trip guide‐book International workshop: Continental faunas at the Mio‐Pliocene boundary (pp. 7–37).
    [Google Scholar]
  118. Vai, G. B. (1997). Cyclostratigraphic estimate of the Messinian stage duration. In A.Montanari, G. S.Odin & R.Coccioni (Eds.), Miocene stratigraphy – An integrated approach: Amsterdam (pp. 463–476). Elsevier.
    [Google Scholar]
  119. Vai, G. B., & Ricci Lucchi, F. (1977). Algal crusts autochthonous and clastic gypsum in a cannibalistic evaporite basin: A case history from the Messinian of Northern Apennines. Sedimentology, 24, 211–244.
    [Google Scholar]
  120. Van Couvering, J. A., Castradori, D., Cita, M. B., Hilgen, F. J., & Rio, D. (2000). The base of the Zanclean Stage and of the Pliocene Series. Episodes, 23, 179–187. https://doi.org/10.18814/epiiugs/2000/v23i3/005
    [Google Scholar]
  121. Vasiliev, I., Iosifidi, A. G., Khramov, A. N., Krijgsman, W., Kuiper, K. F., Langereis, C. G., Popov, V. V., Stoica, M., Tomsha, V. A., & Yudin, S. V. (2011). Magnetostratigraphy and radiometric dating of upper Miocene‐lower Pliocene sedimentary successions of the Black Sea Basin (Taman Peninsula, Russia). Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 163–175.
    [Google Scholar]
  122. Vasiliev, I., Krijgsman, W., Langereis, C. G., Panaiotu, C. E., Matenco, L., & Bertotti, G. (2004). Towards an astrochronological framework for the eastern Paratethys Mio‐Pliocene sedimentary sequences of the Focsani basin (Romania). Earth and Planetary Science Letters, 227, 231–247. https://doi.org/10.1016/j.epsl.2004.09.012
    [Google Scholar]
  123. Zattin, M., Picotti, V., & Zuffa, G. G. (2002). Fission‐track reconstruction of the front of the Northern Apennine thrust wedge and overlying Ligurian unit. American Journal of Science, 302, 346–379. https://doi.org/10.2475/ajs.302.4.346
    [Google Scholar]
  124. Ziegenbalg, S. B., Brunner, B., Rouchy, J. M., Birgel, D., Pierre, C., Böttcher, M. E., Caruso, A., Immenhauser, A., & Peckmann, J. (2010). Formation of secondary carbonates and native sulphur in sulphate‐rich Messinian strata, Sicily. Sedimentary Geology, 227, 37–50. https://doi.org/10.1016/j.sedgeo.2010.03.007
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12566
Loading
/content/journals/10.1111/bre.12566
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error