1887
Volume 33, Issue 4
  • E-ISSN: 1365-2117
PDF

Abstract

[

The rheological properties, locations, orientations and interaction of the Timanian and Caledonian structures together with two subsequent extensional phases strongly influenced the presalt rift architecture and gave rise to seven subbasins in the Nordkapp Basin. The relative depth of each subbasin in contrast to the margin, cross‐cutting master faults, structural highs arrangement and depositional paleo‐environment controlled the thickness and facies of the synrift to early postrift layered evaporite sequence.

, Abstract

Potential field data, reprocessed regional 2D seismic reflection profiles and 3D seismic tied to wells were used to study the late Devonian‐Permian development of the Nordkapp Basin in Barents Sea. The composite basin can be subdivided into the northeastern, central and southwestern segments that developed above a basement that contains elements of the Timanian and Caledonian regimes. The transition between the Timanian and Caledonian structures is positioned below the central basin segment. The rheological properties, locations, orientations and interaction of inherited structures together with two subsequent extensional phases, defined the presalt rift architecture and gave rise to seven subbasins within Nordkapp Basin. During the late Devonian‐early Carboniferous NE‐SW oriented extension, the basin consisted of two regional half‐grabens (northern and southern) separated by an interbasin ridge. During the late Carboniferous, the shift of extension direction to NW‐SE orientation reshaped the two regional half‐grabens. In particular, an interbasin transfer zone divided the northern regional half‐graben by separating its hinged‐margin portion (incipient northeastern segment) from the deeper part (incipient central segment). At the same time, the elevated interbasin ridge separated the incipient central and southwestern segments. Internally within the seven subbasins, the evolving structural elements including cross‐cutting master faults and structural highs have influenced the deposition and character of the Pennsylvanian‐lower Permian layered evaporite sequence and the distribution of subsequent salt structures. We suggest that the synrift to early postrift processes, relative depth of each subbasin, arrangement of the structural highs and depositional palaeo‐environment all controlled the thickness and facies of the layered evaporite sequence. The latter in combination with the presalt architecture comprised a laterally varying in thickness and character substratum that during the earliest Triassic influenced the sediment routings and deposition of the progradational system arriving in Nordkapp Basin. The study outcomes are pertinent and applicable to other salt‐influenced rift basins worldwide.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12565
2021-07-17
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/4/bre12565.html?itemId=/content/journals/10.1111/bre.12565&mimeType=html&fmt=ahah

References

  1. Allen, J., & Beaumont, C. (2016). Continental margin syn‐rift salt tectonics at intermediate width margins. Basin Research, 28(5), 598–633. https://doi.org/10.1111/bre.12123
    [Google Scholar]
  2. Baig, I., Faleide, J. I., Jahren, J., & Mondol, N. H. (2016). Cenozoic exhumation on the southwestern Barents Shelf: Estimates and uncertainties constrained from compaction and thermal maturity analyses. Marine and Petroleum Geology, 73, 105–130. https://doi.org/10.1016/j.marpetgeo.2016.02.024
    [Google Scholar]
  3. Barrère, C., Ebbing, J., & Gernigon, L. (2009). Offshore prolongation of Caledonian structures and basement characterisation in the western Barents Sea from geophysical modelling. Tectonophysics, 470(1–2), 71–88. https://doi.org/10.1016/j.tecto.2008.07.012
    [Google Scholar]
  4. Barrère, C., Ebbing, J., & Gernigon, L. (2011). 3‐D density and magnetic crustal characterization of the southwestern Barents Shelf: Implications for the offshore prolongation of the Norwegian Caledonides. Geophysical Journal International, 184(3), 1147–1166. https://doi.org/10.1111/j.1365‐246X.2010.04888.x
    [Google Scholar]
  5. Beauchamp, B. (1994). Permian climatic cooling in the Canadian Arctic. Geological Society of America Special Paper, 288, 229–246.
    [Google Scholar]
  6. Breivik, A. J., Gudlaugsson, S. T., & Faleide, J. I. (1995). Ottar Basin, SW Barents Sea: A major Upper Palaeozoic rift basin containing large volumes of deeply buried salt. Basin Research, 7, 299–312. https://doi.org/10.1111/j.1365‐2117.1995.tb00119.x
    [Google Scholar]
  7. Bugge, T., Mangerud, G., Elvebakk, G., Mørk, A., Nilsson, I., Fanavoll, S., & Vigran, J. O. (1995). The upper palaeozoic succession on the Finnmark platform, Barents Sea. Norsk Geologisk Tidsskrift, 75(1), 3–30.
    [Google Scholar]
  8. Cedeño, A., Rojo, L. A., Cardozo, N., Centeno, L., & Escalona, A. (2019). The impact of salt tectonics on the thermal evolution and the petroleum system of confined rift basins: insights from basin modeling of the Nordkapp Basin, Norwegian Barents Sea. Geosciences, 9(7), 316. https://doi.org/10.3390/geosciences9070316
    [Google Scholar]
  9. Dengo, C. A., & Røssland, K. G. (1992). Extensional tectonic history of the western Barents Sea. In R. M.Larsen, H.Brekke, B. T.Larsen & E.Talleraas (Eds.), Structural and tectonic modelling and its application to petroleum geology (pp. 91–107). Oslo, Norway: Norwegian Petroleum Society Special Publication 1. https://doi.org/10.1016/B978‐0‐444‐88607‐1.50011‐5
    [Google Scholar]
  10. Ebinger, C. J., Rosendahl, B., & Reynolds, D. (1987). Tectonic model of the Malaŵi rift, Africa. Tectonophysics, 141(1–3), 215–235. https://doi.org/10.1016/0040‐1951(87)90187‐9
    [Google Scholar]
  11. Eide, C. H., Klausen, T. G., Katkov, D., Suslova, A. A., & Helland‐Hansen, W. (2018). Linking an Early Triassic delta to antecedent topography: Source‐to‐sink study of the southwestern Barents Sea margin. GSA Bulletin, 130(1–2), 263–283. https://doi.org/10.1130/B31639.1
    [Google Scholar]
  12. Faleide, J. I., Pease, V., Curtis, M., Klitzke, P., Minakov, A., Scheck‐Wenderoth, M., Kostyuchenko, S., & Zayonchek, A. (2018). Tectonic implications of the lithospheric structure across the Barents and Kara shelves. Geological Society, London, Special Publications, 460(1), 285–314. https://doi.org/10.1144/SP460.18
    [Google Scholar]
  13. Faleide, J. I., Tsikalas, F., Breivik, A. J., Mjelde, R., Ritzmann, O., Engen, Ø., Wilson, J., & Eldholm, O. (2008). Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes, 31(1), 82–91. https://doi.org/10.18814/epiiugs/2008/v31i1/012
    [Google Scholar]
  14. Faleide, J. I., Vågnes, E., & Gudlaugsson, S. T. (1993). Late Mesozoic‐Cenozoic evolution of the south‐western Barents Sea in a regional rift‐shear tectonic setting. Marine and Petroleum Geology, 10(3), 186–214. https://doi.org/10.1016/0264‐8172(93)90104‐Z
    [Google Scholar]
  15. Fernandez, N., Hudec, M. R., Jackson, C.‐A.‐L., Dooley, T. P., & Duffy, O. B. (2020). The competition for salt and kinematic interactions between minibasins during density‐driven subsidence: Observations from numerical models. Petroleum Geoscience, 26(1), 3–15. https://doi.org/10.1144/petgeo2019‐051
    [Google Scholar]
  16. Gabrielsen, R. (1984). Long‐lived fault zones and their influence on the tectonic development of the southwestern Barents Sea. Journal of the Geological Society, 141(4), 651–662. https://doi.org/10.1144/gsjgs.141.4.0651
    [Google Scholar]
  17. Gabrielsen, R. H., Faerseth, R. B., & Jensen, L. N. (1990). Structural elements of the Norwegian Continental Shelf. Pt. 1. The Barents Sea Region. Norwegian Petroleum Directorate.
  18. Gabrielsen, R. H., Grunnaleite, I., & Rasmussen, E. (1997). Cretaceous and tertiary inversion in the Bjørnøyrenna Fault Complex, south‐western Barents Sea. Marine and Petroleum Geology, 14, 165–178. https://doi.org/10.1016/S0264‐8172(96)00064‐5
    [Google Scholar]
  19. Gac, S., Minakov, A., Shephard, G. E., Faleide, J. I., & Planke, S. (2020). Deformation analysis in the Barents Sea in relation to Paleogene transpression along the Greenland‐Eurasia plate boundary. Tectonics, 39, 6172. https://doi.org/10.1029/2020TC006172
    [Google Scholar]
  20. Gawthorpe, R., & Hurst, J. M. (1993). Transfer zones in extensional basins: Their structural style and influence on drainage development and stratigraphy. Journal of the Geological Society, 150(6), 1137–1152. https://doi.org/10.1144/gsjgs.150.6.1137
    [Google Scholar]
  21. Gee, D., Bogolepova, O., & Lorenz, H. (2006). The Timanide, Caledonide and Uralide orogens in the Eurasian high Arctic, and relationships to the palaeo‐continents Laurentia, Baltica and Siberia. Geological Society, London, Memoirs, 32(1), 507–520. https://doi.org/10.1144/GSL.MEM.2006.032.01.31
    [Google Scholar]
  22. Gernigon, L., & Brönner, M. (2012). Late Palaeozoic architecture and evolution of the southwestern Barents Sea: Insights from a new generation of aeromagnetic data. Journal of the Geological Society, 169(4), 449–459. https://doi.org/10.1144/0016‐76492011‐131
    [Google Scholar]
  23. Gernigon, L., Brönner, M., Dumais, M.‐A., Gradmann, S., Grønlie, A., Nasuti, A., & Roberts, D. (2018). Basement inheritance and salt structures in the SE Barents Sea: Insights from new potential field data. Journal of Geodynamics, 119, 82–106. https://doi.org/10.1016/j.jog.2018.03.008
    [Google Scholar]
  24. Gernigon, L., Brönner, M., Roberts, D., Olesen, O., Nasuti, A., & Yamasaki, T. (2014). Crustal and basin evolution of the southwestern Barents Sea: From Caledonian orogeny to continental breakup. Tectonics, 33(4), 347–373. https://doi.org/10.1002/2013TC003439
    [Google Scholar]
  25. Glørstad‐Clark, E., Faleide, J. I., Lundschien, B. A., & Nystuen, J. P. (2010). Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area. Marine and Petroleum Geology, 27(7), 1448–1475. https://doi.org/10.1016/j.marpetgeo.2010.02.008
    [Google Scholar]
  26. Gradstein, F. M., & Ogg, J. G. (2020). The chronostratigraphic scale. In Geologic Time Scale 2020 (pp. 21–32). Elsevier. https://doi.org/10.1016/B978‐0‐12‐824360‐2.00002‐4.
    [Google Scholar]
  27. Grimstad, S. (2016). Salt tectonics in the central and northeastern Nordkapp Basin, Barents Sea. Master Thesis, University of Oslo, Norway, 1–127.
  28. Gudlaugsson, S., Faleide, J., Johansen, S., & Breivik, A. (1998). Late Palaeozoic structural development of the south‐western Barents Sea. Marine and Petroleum Geology, 15(1), 73–102. https://doi.org/10.1016/S0264‐8172(97)00048‐2
    [Google Scholar]
  29. Hassaan, M., Faleide, J. I., Gabrielsen, R. H., & Tsikalas, F. (2020). Carboniferous graben structures, evaporite accumulations and tectonic inversion in the southeastern Norwegian Barents Sea. Marine and Petroleum Geology, 112, 104038. https://doi.org/10.1016/j.marpetgeo.2019.104038
    [Google Scholar]
  30. Hassaan, M., Faleide, J. I., Gabrielsen, R. H., & Tsikalas, F. (2021). Architecture of the evaporite accumulation and salt structures dynamics in Tiddlybanken Basin, southeastern Norwegian Barents Sea. Basin Research, 33(1), 91–117. https://doi.org/10.1111/bre.12456
    [Google Scholar]
  31. Hassaan, M., Faleide, J. I., Gabrielsen, R. H., Tsikalas, F., & Grimstad, S. (in review). Interplay between base‐salt relief, progradational sediment loading and salt tectonics in the Nordkapp basin, Barents Sea–Part II.
  32. Henriksen, E., Bjørnseth, H., Hals, T., Heide, T., Kiryukhina, T., Kløvjan, O., & Sollid, K. (2011). Uplift and erosion of the greater Barents Sea: Impact on prospectivity and petroleum systems. Geological Society, London, Memoirs, 35(1), 271–281.
    [Google Scholar]
  33. Hudec, M. R., Jackson, M. P., & Schultz‐Ela, D. D. (2009). The paradox of minibasin subsidence into salt: Clues to the evolution of crustal basins. Geological Society of America Bulletin, 121(1–2), 201–221.
    [Google Scholar]
  34. Indrevær, K., Gac, S., Gabrielsen, R. H., & Faleide, J. I. (2018). Crustal‐scale subsidence and uplift caused by metamorphic phase changes in the lower crust: A model for the evolution of the Loppa High area, SW Barents Sea from late Paleozoic to Present. Journal of the Geological Society, 175(3), 497–508. https://doi.org/10.1144/jgs2017‐063
    [Google Scholar]
  35. Jensen, L. N., & Sørensen, K. (1992). Tectonic framework and halokinesis of the Nordkapp Basin, Barents Sea. In R. M.Larsen, H.Brekke, B. T.Larsen, & E.Talleraas, Structural and tectonic modelling and its application to petroleum geology (pp. 109–120). Oslo, Norway, Norwegian: Petroleum Society Special Publication 1. https://doi.org/10.1016/B978‐0‐444‐88607‐1.50012‐7
    [Google Scholar]
  36. Klausen, T. G., Ryseth, A. E., Helland‐Hansen, W., Gawthorpe, R., & Laursen, I. (2015). Regional development and sequence stratigraphy of the Middle to Late Triassic Snadd formation, Norwegian Barents Sea. Marine and Petroleum Geology, 62, 102–122. https://doi.org/10.1016/j.marpetgeo.2015.02.004
    [Google Scholar]
  37. Klitzke, P., Franke, D., Ehrhardt, A., Lutz, R., Reinhardt, L., Heyde, I., & Faleide, J. (2019). The Paleozoic evolution of the Olga Basin region, northern Barents Sea–A link to the Timanian Orogeny. Geochemistry, Geophysics, Geosystems, 20(2), 614–629. https://doi.org/10.1029/2018GC007814
    [Google Scholar]
  38. Koyi, H., Talbot, C. J., & Tørudbakken, B. O. (1993). Salt diapirs of the southwest Nordkapp Basin: Analogue modelling. Tectonophysics, 228(3–4), 167–187. https://doi.org/10.1016/0040‐1951(93)90339‐L
    [Google Scholar]
  39. Koyi, H., Talbot, C. J., & Tørudbakken, B. O. (1995). Salt tectonics in the Northeastern Nordkapp Basin, Southwestern Barents sea. AAPG Memoir, 65, 437–447.
    [Google Scholar]
  40. Larssen, G., Elvebakk, G., Henriksen, L. B., Kristensen, S., Nilsson, I., Samuelsberg, T., & Worsley, D. (2002). Upper Palaeozoic lithostratigraphy of the Southern Norwegian Barents Sea. Norwegian Petroleum Directorate Bulletin, 9, 76.
    [Google Scholar]
  41. Lasabuda, A., Laberg, J. S., Knutsen, S.‐M., & Høgseth, G. (2018). Early to middle Cenozoic paleoenvironment and erosion estimates of the southwestern Barents Sea: Insights from a regional mass‐balance approach. Marine and Petroleum Geology, 96, 501–521. https://doi.org/10.1016/j.marpetgeo.2018.05.039
    [Google Scholar]
  42. Lasabuda, A., Laberg, J. S., Knutsen, S.‐M., & Safronova, P. (2018). Cenozoic tectonostratigraphy and pre‐glacial erosion: A mass‐balance study of the northwestern Barents Sea margin, Norwegian Arctic. Journal of Geodynamics, 119, 149–166. https://doi.org/10.1016/j.jog.2018.03.004
    [Google Scholar]
  43. Marello, L., Ebbing, J., & Gernigon, L. (2013). Basement inhomogeneities and crustal setting in the Barents Sea from a combined 3D gravity and magnetic model. Geophysical Journal International, 193(2), 557–584. https://doi.org/10.1093/gji/ggt018
    [Google Scholar]
  44. Mattingsdal, R., Høy, T., Simonstad, E., & Brekke, H. (2015). An updated map of structural elements in the southern Barents Sea. Paper presented at the 31st Geological Winter Meeting
  45. Midtkandal, I., Faleide, T. S., Faleide, J. I., Planke, S., Anell, I., & Nystuen, J. P. (2020). Nested intrashelf platform clinoforms—Evidence of shelf platform growth exemplified by Lower Cretaceous strata in the Barents Sea. Basin Research, 32(2), 216–223. https://doi.org/10.1111/bre.1237
    [Google Scholar]
  46. Müller, R., Klausen, T., Faleide, J., Olaussen, S., Eide, C., & Suslova, A. (2019). Linking regional unconformities in the Barents Sea to compression‐induced forebulge uplift at the Triassic‐Jurassic transition. Tectonophysics, 765, 35–51. https://doi.org/10.1016/j.tecto.2019.04.006
    [Google Scholar]
  47. Nilsen, K. T., Vendeville, B. C., & Johansen, J.‐T. (1995). Influence of regional tectonics on halokinesis in the Nordkapp Basin, Barents Sea.
  48. Pease, V., Scarrow, J., Silva, I. N., & Cambeses, A. (2016). Devonian magmatism in the Timan Range, Arctic Russia—Subduction, post‐orogenic extension, or rifting?Tectonophysics, 691, 185–197. https://doi.org/10.1016/j.tecto.2016.02.002
    [Google Scholar]
  49. Rice, A., Gayer, R., Robinson, D., & Bevins, R. (1989). Strike‐slip restoration of the Barents Sea Caledonides Terrane, Finnmark, north Norway. Tectonics, 8(2), 247–264. https://doi.org/10.1029/TC008i002p00247
    [Google Scholar]
  50. Ritzmann, O., & Faleide, J. I. (2007). Caledonian basement of the western Barents Sea. Tectonics, 26(5). https://doi.org/10.1029/2006TC002059
    [Google Scholar]
  51. Roberts, D. (1972). Tectonic deformation in the Barents Sea region of Varanger peninsula, Finnmark. Universitetsforlaget.
    [Google Scholar]
  52. Roberts, D., & Gee, D. G. (1985). An introduction to the structure of the Scandinavian Caledonides. The Caledonide Orogen–Scandinavia and Related Areas, 1, 55–68.
    [Google Scholar]
  53. Rojo, L. A., Cardozo, N., Escalona, A., & Koyi, H. (2019). Structural style and evolution of the Nordkapp Basin, Norwegian Barents Sea. AAPG Bulletin, 103(9), 2177–2217. https://doi.org/10.1306/01301918028
    [Google Scholar]
  54. Rojo, L. A., & Escalona, A. (2018). Controls on minibasin infill in the Nordkapp Basin: Evidence of complex Triassic synsedimentary deposition influenced by salt tectonics. AAPG Bulletin, 102(7), 1239–1272. https://doi.org/10.1306/0926171524316523
    [Google Scholar]
  55. Rosendahl, B. R. (1987). Architecture of continental rifts with special reference to East africa. Annual Review of Earth and Planetary Sciences, 15, 445. https://doi.org/10.1146/annurev.ea.15.050187.002305
    [Google Scholar]
  56. Rosendahl, B., Reynolds, D., Lorber, P., Burgess, C., McGill, J., Scott, D., Lambiase, J., & Derksen, S. (1986). Structural expressions of rifting: Lessons from Lake Tanganyika, Africa. Geological Society, London, Special Publications, 25(1), 29–43. https://doi.org/10.1144/GSL.SP.1986.025.01.04
    [Google Scholar]
  57. Rowan, M. G., & Lindsø, S. (2017). Salt Tectonics of the Norwegian Barents sea and northeast Greenland shelf. In J. I.Soto, J. F.Flinch & G.Tari (Eds.), Permo‐Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (pp. 265–286). London: Elsevier. https://doi.org/10.1016/B978‐0‐12‐809417‐4.00013‐6
    [Google Scholar]
  58. Rowan, M. G., Urai, J. L., Fiduk, J. C., & Kukla, P. A. (2019). Deformation of intrasalt competent layers in different modes of salt tectonics. Solid Earth, 10(3), 987–1013. https://doi.org/10.5194/se‐10‐987‐2019
    [Google Scholar]
  59. Stemmerik, L. (2000). Late Palaeozoic evolution of the North Atlantic margin of Pangea. Palaeogeography, Palaeoclimatology, Palaeoecology, 161(1–2), 95–126. https://doi.org/10.1016/S0031‐0182(00)00119‐X
    [Google Scholar]
  60. Stoupakova, A., Henriksen, E., Burlin, Y. K., Larsen, G., Milne, J., Kiryukhina, T., Golynchik, P., Bordunov, S., Ogarkova, M., & Suslova, A. (2011). The geological evolution and hydrocarbon potential of the Barents and Kara shelves. Geological Society, London, Memoirs, 35(1), 325–344.
    [Google Scholar]
  61. Tsikalas, F., Blaich, O. A., Faleide, J. I., & Olaussen, S. (2021). Stappen High‐Bjørnøya tectono‐sedimentary element, Barents Sea. In S. S.Drachev, H.Brekke, E.Henriksen & T.Moore (Eds.), Sedimentary successions of the Arctic Region and their hydrocarbon prospectivity. Geological Society, London, Memoirs (Vol. 57). https://doi.org/10.1144/M57‐2016‐24
    [Google Scholar]
  62. Tsikalas, F., Faleide, J. I., Eldholm, O., & Blaich, O. A. (2012). The NE Atlantic conjugate margins. In D. G.Roberts, & A. W.Bally (Eds.), Regional geology and tectonics: phanerozoic passive margins, Cratonic basins and global tectonic maps (pp. 141–200). Elsevier.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12565
Loading
/content/journals/10.1111/bre.12565
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error