1887
Volume 33 Number 6
  • E-ISSN: 1365-2117

Abstract

[

The Mio‐Pliocene fluvial systems in the Calchaquí region changed their location and geometry, associated with pro‐ and retrograding gravel wedges in response to intrabasin structural growth of ranges.

, Abstract

Foreland basins are sensitive recorders of spatiotemporal variations in tectonic and climatic forcing associated with an approaching orogenic front. Thus, analysis of foreland deposits and their associated deformation patterns and provenance signals allows assessment of tectonic and sedimentary processes during orogeny, providing clues to past environmental conditions. The Calchaquí region in the southern part of the northwest Argentinian Eastern Cordillera (ca. 25–26°S lat) structurally evolved from a contiguous Paleogene foreland of the Andes into a broken foreland and finally an intermontane basin landscape. This history is recorded in the sedimentary sequences of the Mio‐Pliocene Angastaco and Palo Pintado Formations. We combine sedimentological methods, U‐Pb zircon and K‐Ar glass geochronology, clay mineralogy, and geochemical weathering indices with apatite fission track and (U‐Th‐Sm)/He thermochronology, structural data, and fault modelling to document the stratigraphic response to the fluvial and tectonic processes that followed the formation of the broken foreland. Our observations suggest that fluvial systems in the Calchaquí region repeatedly changed their location and geometry. These fluvial systems were associated with pro‐ and retrograding gravel wedges that most likely formed in response to the structural growth of the Aguas de Castilla and Altos de Viñaco ranges that bound the basin to the east. A compartmentalisation of the foreland with restricted fluvial networks must have occurred by ca. 9 Ma. Our results demonstrate that the reconstruction of stratigraphic architectures constitutes a powerful means to better understand intrabasin tectonics and surface uplift in foreland basins.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12589
2021-11-11
2024-04-26
Loading full text...

Full text loading...

References

  1. Acevedo, T. L., Mautino, R. L., Anzótegui, L. M., & Cuadrado, G. A. (1997). Estudio palinológico de la Formación Palo Pintado (Mioceno superior), Provincia de Salta, Argentina. Parte II: Esporas: Geociencias, 2, 112–120.
    [Google Scholar]
  2. Allmendinger, R. W., Jordan, T. E., Kay, S., & Isacks, B. L. (1997). The evolution of the Altiplano‐Puna plateau. Annual Review of Earth and Planetary Sciences, 25, 139–174. https://doi.org/10.1146/annurev.earth.25.1.139
    [Google Scholar]
  3. Allmendinger, R. W., Ramos, V. A., Jordan, T. E., Palma, M., & Isacks, B. L. (1983). Paleogeography and Andean structural geometry, northwest Argentina. Tectonics, 2, 1–16. https://doi.org/10.1029/TC002i001p00001
    [Google Scholar]
  4. Anzótegui, L. M. (2007). Paleofloras del Mioceno en los Valles Calchaquíes, Noroeste de Argentina. PhD diss. Facultad Ciencias Exactas Nat. Agr., Univ. Nacional Nordeste.
    [Google Scholar]
  5. Anzótegui, L. M., Mautino, L. R., Garralla, S. S., Herbst, R., Robledo, J. M., & Horn, M. Y. (2017). Paleovegetación Cenozoica del Noroeste Argentino. In C. M.Muruaga & P.Grosse (Eds.), Ciencias de la Tierra y Recursos Naturales del NOA, 20º Congr. Geol. Arg., San Miguel de Tucumán, 767–781. ISBN 978‐987‐42‐6666‐8
    [Google Scholar]
  6. Aramayo, A. (2015). Migraciones espacial y temporal de las deformación y sedimentación cenozoicas en el tramo medio de los valles calchaquíes (Hualfín‐Pucará‐Angastaco‐San Lucas), provincia de Salta (pp. 347). Unpublished PhD thesis, Universidad Nacional de Salta.
    [Google Scholar]
  7. Aramayo, A., Guzmán, S., Hongn, F., del Papa, C., Montero, C., & Sudo, M. (2017). A Middle Miocene (13.5–12 Ma) deformational event constrained by volcanism along the Puna‐Eastern Cordillera border, NW Argentina. Tectonophysics, 703–704, 9–22. https://doi.org/10.1016/j.tecto.2017.02.018
    [Google Scholar]
  8. Armitage, J. J., Allen, P. A., Burgess, P. M., Hampson, G. J., Whittaker, A. C., Duller, R. A., & Michael, N. A. (2015). Sediment transport model for the Eocene Escanilla sediment‐routing system: Implications for the uniqueness of sequence stratigraphic architectures. Journal of Sedimentary Research, 85, 1510–1524. https://doi.org/10.2110/jsr.2015.97
    [Google Scholar]
  9. Ballato, P., & Strecker, M. R. (2014). Assessing tectonic and climatic causal mechanisms in foreland‐basin stratal architecture: Insights from the Alborz Mountains, northern Iran. Earth Surface Processes and Landforms, 39, 110–125. https://doi.org/10.1002/esp.3480
    [Google Scholar]
  10. Beaumont, C. (1981). Foreland basins. Geophysical Journal of the Royal Astronomical Society, 65(2), 291–329. https://doi.org/10.1111/j.1365‐246X.1981.tb02715.x
    [Google Scholar]
  11. Bilmes, A., D’Elia, L., Franzese, J. R., Veiga, G. D., & Hernández, M. (2013). Miocene block uplift and basin formation in the Patagonian foreland: The Gastre Basin, Argentina. Tectonophysics, 601, 98–111. https://doi.org/10.1016/j.tecto.2013.05.001
    [Google Scholar]
  12. Bona, P., Starck, D., Galli, C., Gasparini, Z., & Reguero, M. (2014). Caiman cf. latirostris (Alligatoridae, Caimaninae) in the Late Miocene PPFm, Salta province, Argentina: Paleogeographic and paleoenvironmental considerations. Ameghiniana, 51, 26–36.
    [Google Scholar]
  13. Bookhagen, B., & Strecker, M. R. (2008). Orographic barriers, high‐resolution TRMM rainfall, and relief variations along the eastern Andes. Geophysical Research Letters, 35(L06403), 1–6. https://doi.org/10.1029/2007GL032011
    [Google Scholar]
  14. Bookhagen, B., & Strecker, M. R. (2012). Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: Examples from the southern Central Andes. Earth Planetary Science Letters, 327–328, 97–110. https://doi.org/10.1016/j.epsl.2012.02.005
    [Google Scholar]
  15. Bridge, J. S., & Lunt, I. A. (2006). Depositional Models of Braided Rivers. In G. H.Sambrook‐Smith, J. L.Best, C. S.Bristow, & G. E.Petts (Eds.), Braided rivers: Process, deposits, ecology and management (pp. 11–49). Blackwell Publishing.
    [Google Scholar]
  16. Burbank, D. W., & Johnson, G. (1983). The Late Cenozoic chronologic and stratigraphic development of the Kashmir intermontane basin, northwestern Himalaya. Palaeogeography, Palaeoclimatology, Palaeoecology, 43, 205–235. https://doi.org/10.1016/0031‐0182(83)90012‐3
    [Google Scholar]
  17. Burbank, D., Meigs, A., & Brozović, N. (1996). Interactions of growing folds and coeval depositional systems. Basin Research, 8, 199–223. https://doi.org/10.1046/j.1365‐2117.1996.00181.x
    [Google Scholar]
  18. Burtman, V. S. (1975). Structural geology of the Variscan Tien Shan. American Journal of Science, 280, 725–744.
    [Google Scholar]
  19. Bywater‐Reyes, S., Carrapa, B., Clementz, M., & Schoenbohm, L. (2010). Effect of late Cenozoic aridification on sedimentation in the Eastern Cordillera of northwest Argentina (Angastaco basin). Geology, 38, 235–238. https://doi.org/10.1130/G30532.1
    [Google Scholar]
  20. Cabrera, A. (1976). Regiones Fitogeográficas de Argentina. Enciclopedia Argentina de Agricultura y Jardinería. Tomo II (pp. 135). ACME S.A.C.I.
    [Google Scholar]
  21. Carrapa, B., Bywater‐Reyes, S., DeCelles, P. G., Mortimer, E., & Gehrels, G. E. (2012). Late Eocene‐Pliocene basin evolution in the Eastern Cordillera of northwestern Argentina (25°–26°S): Regional implications for Andean orogenic wedge development. Basin Research, 4, 249–268. https://doi.org/10.1111/j.1365‐2117.2011.00519.x
    [Google Scholar]
  22. Carrapa, B., Huntington, K. W., Clementz, M., Quade, J., Bywater‐Reyes, S., Schoenbohm, L. M., & Canavan, R. R. (2014). Uplift of the Central Andes of NW Argentina associated with upper crustal shortening, revealed by multiproxy isotopic analyses. Tectonics, 33(6), 1039–1054. https://doi.org/10.1002/2013TC003461
    [Google Scholar]
  23. Carrapa, B., Trimble, J., & Stockli, D. (2011). Patterns and timing of exhumation and deformation in the Eastern Cordillera of NW Argentina revealed by (U‐Th)/He thermochronology. Tectonics, 30, TC3003. https://doi.org/10.1029/2010TC002707
    [Google Scholar]
  24. Carrera, N., & Muñoz, J. (2008). Thrusting evolution in the southern Cordillera Oriental (northern Argentine Andes): Constraints from growth strata. Tectonophysics, 459, 107–122. https://doi.org/10.1016/j.tecto.2007.11.068
    [Google Scholar]
  25. Carrera, N., & Muñoz, J. A. (2013). Thick‐skinned tectonic style resulting from the inversion of previous structures in the southern Cordillera Oriental (NW Argentine Andes). Geological Society of London, 377, 77–100. https://doi.org/10.1144/SP377.2
    [Google Scholar]
  26. Carrera, N., Muñoz, J., Sàbat, F., Mon, R., & Roca, E. (2006). The role of inversion tectonics in the structure of Cordillera Oriental (NW Argentinean Andes). Journal of Structural Geology, 28, 21–1932. https://doi.org/10.1016/j.jsg.2006.07.006
    [Google Scholar]
  27. Catuneanu, O. (2017). Sequence stratigraphy: guidelines for a standard methodology. In M.Montenari (Ed.), Stratigraphy & timescales (Vol. 2, pp. 1─57). Academic Press.
    [Google Scholar]
  28. Chamley, H. (1989). Clay sedimentology (pp. 116). Springer‐Verlag. https://doi.org/10.1016/bs.sats.2017.07.003
    [Google Scholar]
  29. Coira, B., Galli, C. I., Mahlburg Kay, S., Kay, R. W., & Flores, P. (2014). Niveles piroclásticos como herramientas de correlación en los depósitos cenozoicos del Grupo Payogastilla, Valles Calchaqui, Tonco y Amblayo, en el noroeste de Argentina. Revista Asociación Geológica Argentina, 71, 147–160.
    [Google Scholar]
  30. Coutand, I., Carrapa, B., Deeken, A., Schmitt, A., Sobel, E., & Strecker, M. R. (2006). Propagation of orographic barriers along an active range front: Insights from sandstone petrography and detrital apatite fission‐track thermochronology in the intramontane Angastaco basin, NW‐Argentina. Basin Research, 18, 1–26. https://doi.org/10.1111/j.1365‐2117.2006.00283.x
    [Google Scholar]
  31. Coutand, I., Strecker, M. R., Arrowsmith, J. R., Hilley, G., Thiede, R. C., Korjenkov, A., & Omuraliev, M. (2002). Late Cenozoic tectonic development of the intramontane Alai Valley, (Pamir‐Tien Shan region, central Asia): An example of intracontinental deformation due to the Indo‐Eurasia collision. Tectonics, 21, 1053. https://doi.org/10.1029/2002TC001358
    [Google Scholar]
  32. Cristallini, E., Cominguez, A. H., & Ramos, V. A. (1997). Deep structure of the Metán‐Guachipas region: Tectonic inversion in Northwestern Argentina. Journal of South American Earth Sciences, 110, 403–421. https://doi.org/10.1016/S0895‐9811(97)00026‐6
    [Google Scholar]
  33. DeCelles, P. G. (2004). Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western USA. American Journal of Science, 304, 105–168. https://doi.org/10.2475/ajs.304.2.105
    [Google Scholar]
  34. DeCelles, P. G., Carrapa, B., Horton, B. K., & Gehrels, G. E. (2011). Cenozoic foreland basin system in the central Andes of northwestern Argentina: Implications for Andean geodynamics and modes of deformation. Tectonics, 30(TC6013). https://doi.org/10.1029/2011TC002948
    [Google Scholar]
  35. DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8, 105–123. https://doi.org/10.1046/j.1365‐2117.1996.01491.x
    [Google Scholar]
  36. Deeken, A., Sobel, E. R., Coutand, I., Haschke, M., Riller, U., & Strecker, M. R. (2006). Development of the southern Eastern Cordillera, NW Argentina, constrained by apatite fission track thermochronology: From Early Cretaceous extension to middle Miocene shortening. Tectonics, 25(TC6003), https://doi.org/10.1029/2005TC001894
    [Google Scholar]
  37. del Papa, C. E., Hongn, F., Payrola, P., Powell, J., Deraco, V., & Herrera, C. (2013). Relaciones estratigráficas de las Formaciones Quebrada de los Colorados y Angastaco (Paleógeno‐Neógeno), valles Calchaquíes, Salta (Argentina): Significado en el análisis de la cuenca del Grupo Payogastilla. Latin American Journal of Sedimentology and Basin Analysis, 20, 51–64.
    [Google Scholar]
  38. del Papa, C. E., Hongn, F., Powell, J., Payrola, P., Do Campo, M., Strecker, M. R., Petrinovic, I., Schmitt, A. K., & Pereyra, R. (2013). Middle Eocene‐Oligocene broken foreland evolution in the Andean Calchaquí Valley, NW Argentina: Insights from stratigraphic, structural and provenances studies. Basin Research, 25, 574–593. https://doi.org/10.1111/bre.12018
    [Google Scholar]
  39. Díaz, J. I. (1987). Estratigrafía y sedimentología del Terciario Superior de la región comprendida por los valles de los ríos Calchaquí y Guachipas (Provincia de Salta) (pp. 122). Unpublished PhD thesis, Universidad Nacional de Tucumán.
    [Google Scholar]
  40. Díaz, J. I., & Malizia, D. (1983). Estudio geológico y sedimentológico del Terciario Superior del valle Calchaquí, Salta. Boletín Sedimentológico, 2, 8–28.
    [Google Scholar]
  41. Do Campo, M., Collo, G., & Nieto, F. (2013). Geothermobarometry of very low‐grade metamorphic pelites of the vendian–early cambrian Puncoviscana formation (NW Argentina). European Journal of Mineralogy, 25, 429–451. https://doi.org/10.1127/0935‐1221/2013/0025‐2284
    [Google Scholar]
  42. Do Campo, M., del Papa, C., Nieto, F., Hongn, F., & Petrinovic, I. (2010). Integrated analysis for constraining palaeoclimatic and volcanic influences on clay–mineral assemblages in orogenic basins (Paleogene Andean foreland, Northwestern Argentina). Sedimentary Geology, 228, 98–112. https://doi.org/10.1016/j.sedgeo.2010.04.002
    [Google Scholar]
  43. Dodson, M. H. (1973). Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40, 259–274. https://doi.org/10.1007/BF00373790
    [Google Scholar]
  44. Erslev, E. A. (1991). Trishear fault‐propagation folding. Geology, 19, 617–620. https://doi.org/10.1130/0091‐7613
    [Google Scholar]
  45. Farley, K. A., Wolf, R. A., & Silver, L. T. (1996). The effects of long alpha‐stopping distances on (U‐Th)/He ages. Geochimica Et Cosmochimica Acta, 60(21), 4223–4229. https://doi.org/10.1016/S0016‐7037(96)00193‐7
    [Google Scholar]
  46. Flowers, R. M., Ketcham, R. A., Shuster, D. L., & Farley, K. A. (2009). Apatite (U‐Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica Et Cosmochimica Acta, 73, 2347–2365. https://doi.org/10.1016/j.gca.2009.01.015
    [Google Scholar]
  47. Gallagher, K. (2012). Transdimensional inverse thermal history modeling for quantitative thermochronology. Journal Geophysical Research: Solid Earth, 117, 1–16. https://doi.org/10.1029/2011JB008825
    [Google Scholar]
  48. Galli, C., Coira, B., Alonso, R., Reynolds, J., Matteini, M., & Hauser, N. (2014). Tectonic controls on the evolution of the Andean Cenozoic foreland basin: Evidence from fluvial system variations in the Payogastilla Group, in the Calchaquí, Tonco and Amblayo Valleys, NW Argentina. Journal of South American Earth Sciences, 52, 234–259. https://doi.org/10.1016/j.jsames.2014.03.003
    [Google Scholar]
  49. Galli, C., Ramírez, A., Reynolds, J., Viramonte, J., Idleman, B., & Barrientos, C. (2011). Procedencia de los depósitos del Grupo Payogastilla (Cenozoico), río Calchaquí, provincia de Salta. Revista Asociación Geológica Argentina, 68, 261–276.
    [Google Scholar]
  50. García‐ Castellanos, D. (2002). Interplay between lithospheric flexure and river transport in foreland basins. Basin Research, 14, 89–104. https://doi.org/10.1046/j.1365‐2117.2002.00174.x
    [Google Scholar]
  51. Gómez, E., Jordan, E. T., Allmendinger, W., Hegarty, K., Kelley, S., & Heizler, M. (2003). Controls on architecture of the Late Cretaceous to Cenozoic Southern Middle Magdalena Valley Basin. Geological Society of America Bulletin, 115, 131–147. https://doi.org/10.1130/0016‐7606(2003)
    [Google Scholar]
  52. Gónzalez Villa, R. (2002). El Subgrupo Jujuy (Neógeno) entre los 24°‐26° LS y 64°‐66° LO, tramo centro‐austral de la cadena subandina argentina, provincias de Salta y Jujuy (pp. 136). Unpublished PhD thesis. Universidad Nacional de Salta.
    [Google Scholar]
  53. Goswami, P. K., & Kshetrimayum, A. S. (2018). Depositional processes and sedimentation pattern in an intermontane basin: Insights from the Imphal Basin, Indo‐Myanmar Range, NE India. Geological Journal, 53(6), 3051–3063. https://doi.org/10.1002/gj.3142
    [Google Scholar]
  54. Graviña, E. G., Kafino, C. V., Brod, J. A., Ventura, G. R., Santos, R. V., Guimarães, E. M., & Jost, H. (2002). Proveniência de arenitos das Formações Uberaba e Marília (Grupo Bauru) e do Garimpo do Bandeira: implicações para a controvérsia sobre a fonte do diamante do Triângulo Mineiro. Revista Brasileira De Geociências, 32, 545–558. https://doi.org/10.25249/0375‐7536.2002324545558
    [Google Scholar]
  55. Grier, M. E., & Dallmeyer, R. D. (1990). Age of the Payogastilla Group: Implication for foreland basin development, NW Argentina. Journal of South American Earth Sciences, 3, 269–278. https://doi.org/10.1016/0895‐9811(90)90008‐O
    [Google Scholar]
  56. Grier, M. E., Salfity, J. A., & Allmendinger, R. W. (1991). Andean reactivation of the Cretaceous Salta Rift, northwestern Argentina. Journal of South American Earth Sciences, 4, 351–372. https://doi.org/10.1016/0895‐9811(91)90007‐8
    [Google Scholar]
  57. Hain, M. P., Strecker, M. R., Bookhagen, B., Alonso, R. N., Pingel, H., & Schmitt, A. K. (2011). Neogene to Quaternary broken foreland formation and sedimentation dynamics in the Andes of NW Argentina (25°S). Tectonics, 30(TC2006). https://doi.org/10.1029/2010TC002703
    [Google Scholar]
  58. Hajek, E. A., Heller, P. L., & Schur, E. L. (2012). Field test of autogenic control on alluvial stratigraphy (Ferris Formation, Upper Cretaceous‐Paleogene, Wyoming). Geological Society of America Bulletin, 124, 1898–1912. https://doi.org/10.1130/B30526.1
    [Google Scholar]
  59. Heller, P. L., Angevine, C. L., & Winslow, N. S. (1988). Two‐phase stratigraphic model of foreland‐basin sequences. Geology, 16, 501–504. https://doi.org/10.1130/0091‐7613(1988)016<0501:TPSMOF>2.3.CO;2
    [Google Scholar]
  60. Hilley, G. E., & Strecker, M. R. (2005). Processes of oscillatory basin filling and excavation in a tectonically active orogen: Quebrada del Toro Basin, NW Argentina. Geological Society of America Bulletin, 117, 887–901. https://doi.org/10.1130/B25602.1
    [Google Scholar]
  61. Hongn, F., del Papa, C., Powell, J., Petrinovic, I., Mon, R., & Deraco, V. (2007). Middle Eocene deformation and sedimentation in the Puna‐Eastern Cordillera transition (23º‐26ºS): Control by preexisting heterogeneities on the pattern of initial Andean shortening. Geology, 35, 271–274. https://doi.org/10.1130/G23189A.1
    [Google Scholar]
  62. Hongn, F., Mon, R., Petrinovic, I., del Papa, C., & Powell, J. (2010). Inversión y reactivación tectónicas cretácico‐cenozoicas en el noroeste argentino: Influencia de las heterogeneidades del basamento neoproterozoico‐paleozoico inferior. Revista Asociación Geológica Argentina, 66, 38–53.
    [Google Scholar]
  63. Hongn, F., & Seggiaro, R. E. (2001). Hoja Geológica 2566‐III, Cachi, Map scale 1:250,000 (pp. 96). Instituto de Recursos Minerales. Servicio Geológico Minero Argentino Boletín.
    [Google Scholar]
  64. Huerta, P., Armenteros, I., & Silva, P. G. (2011). Large‐scale architecture in non‐marine basins: The response to the interplay between accommodation space and sediment supply. Sedimentology, 58, 1716–1736. https://doi.org/10.1111/j.1365‐3091.2011.01231.x
    [Google Scholar]
  65. Hurford, A. J., & Green, P. F. (1983). The zeta age calibration of fission‐track dating. Isotope Geoscience, 1, 285–317. https://doi.org/10.1016/S0009‐2541(83)80026‐6
    [Google Scholar]
  66. Iaffa, D. N., Sabat, F., Muñoz, J. A., & Carrera, N. (2013). Basin fragmentation controlled by tectonic inversion and basement uplift in Sierras Pampeanas and Santa Barbara System, northwest Argentina. In M.Nemčok, A.Mora & J. W.Cosgrove (Eds.), Orogens: From initial inversion to full accretion (pp. 101–117). Geological Society. https://doi.org/10.1144/SP377.13
    [Google Scholar]
  67. Jerolmack, D. J., & Paola, C. (2010). Shredding of environmental signals by sediment transport. Geophysical Research Letters, 37, L19401. https://doi.org/10.1029/2010GL044638
    [Google Scholar]
  68. Jordan, T. E. (1981). Thrust loads and foreland basin evolution, Cretaceous, western United States. American Association Petroleum Geologist Bulletin, 65, 2506–2520. https://doi.org/10.1306/03B599F4‐16D1‐11D7‐8645000102C1865D
    [Google Scholar]
  69. Jordan, T. E. (1995). Retroarc foreland and related basins. In D. J.Busby & R. V.Ingersoll (Eds.), Tectonics of Sedimentary Basins (pp. 331–362). Blackwell Science.
    [Google Scholar]
  70. Jordan, T., & Allmendinger, R. W. (1986). The Sierras Pampeanas of Argentina: A modern analogue of rocky mountain foreland deformation. American Journal of Science, 286, 737–764. https://doi.org/10.2475/ajs.286.10.737
    [Google Scholar]
  71. Kortyna, C., DeCelles, P. G., & Carrapa, B. (2019). Structural and thermochronologic constraints on kinematics and timing of inversion of the Salta rift in the Tonco‐Amblayo sector of the Andean retroarc fold‐thrust belt, northwestern Argentina. In B.Horton & A.Folgueras (Eds.), Andean tectonics. Elsevier. https://doi.org/10.1016/B978‐0‐12‐816009‐1.00018‐6
    [Google Scholar]
  72. Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A., & Davis, C. C. (2016). The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytologist, 210, 1430–1442. https://doi.org/10.1111/nph.13920
    [Google Scholar]
  73. Marenssi, S. A., Ciccioli, P. L., Limarino, C. O., Schencman, L. J., & Diaz, M. Y. (2015). Using fluvial cyclicity to decipher the interaction of basement‐ and fold‐thrust belt tectonics in a broken foreland basin: Vinchina Formation (Miocene), Northwestern Argentina. Journal of Sedimentary Research, 85, 361–380. https://doi.org/10.2110/jsr.2015.27
    [Google Scholar]
  74. Marr, J. G., Swenson, J. B., Paola, C., & Vollerv, R. (2000). A two‐diffusion model of fluvial stratigraphy in closed depositional basins. Basin Research, 12, 381–398. https://doi.org/10.1111/j.1365‐2117.2000.00134.x
    [Google Scholar]
  75. Martinez, C. A. (2014). Fossil legume woods from the Late Miocene, Chiquimil Formation (Santa María Basin), Argentina. Review of Palaeobotany and Palynology, 201, 1–11. https://doi.org/10.1016/j.revpalbo.2013.10.001
    [Google Scholar]
  76. Martinsen, O. J., Ryseth, A., Helland‐Hansen, W., Flesche, H., Torkildsen, G., & Idil, S. (1999). Stratigraphic base level and fluvial architecture: Ericson Sandstone (Campanian), Rock Spring Uplift, SW Wyoming, USA. Sedimentology, 46, 235–259. https://doi.org/10.1046/j.1365‐3091.1999.00208.x
    [Google Scholar]
  77. McLennan, S. M., Hemming, S. R., Taylor, S. R., & Eriksson, K. A. (1995). Early Proterozoic crustal evolution: Geochemical and NdPb isotopic evidence from metasedimentary rocks, southwestern North America. Geochimica Et Cosmochimica Acta, 59(6), 1153–1177. https://doi.org/10.1016/0016‐7037(95)00032‐U
    [Google Scholar]
  78. Miall, A. D. (1996). The geology of fluvial deposits: Sedimentary facies, basin analysis, and petroleum geology (pp. 582). Springer Verlag.
    [Google Scholar]
  79. Miall, A. D. (2014). Fluvial depositional systems (pp. 316). Springer Cham, Springer Geology Series. https://doi.org/10.1007/978‐3‐319‐00666‐6
    [Google Scholar]
  80. Mon, R., & Salfity, J. A. (1995). Tectonic evolution of the Andes of northern Argentina. In A. J.Tankard, R.Suarez Soruco, & H. J.Welsink (Eds.), Petroleum basins of South America (pp. 269–283). American Association of Petroleum Geologists, Memoir 62.
    [Google Scholar]
  81. Moore, D. M., & Reynolds, R. C. (1997). X‐ray diffraction and the identification and analysis of clay minerals (pp. 378). Oxford University Press.
    [Google Scholar]
  82. Mulch, A., Uba, C. E., Strecker, M. R., Schoenberg, R., & Chamberlain, C. P. (2010). Late Miocene climate variability and surface elevation in the central Andes. Earth Planetary Science Letters, 290, 173–182. https://doi.org/10.1016/j.epsl.2009.12.019
    [Google Scholar]
  83. Nanson, G. C., & Croke, J. C. (1992). A genetic classification of floodplains. Geomorphology, 4, 459–486. https://doi.org/10.1016/0169‐555X(92)90039‐Q
    [Google Scholar]
  84. Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717. https://doi.org/10.1038/299715a0
    [Google Scholar]
  85. Nichols, G., & Thompson, B. (2005). Bedrock lithology control on contemporaneous alluvial fan facies, Oligo‐Miocene, southern Pyrenees, Spain. Sedimentology, 52, 571–585. https://doi.org/10.1111/j.1365‐3091.2005.00711.x
    [Google Scholar]
  86. Nieto‐Moreno, V., Rohrmann, A., van der Meer, M. T. J., Sinninghe Damsté, J. S., Sachse, D., Tofelde, S., Niedermeyer, E. M., Strecker, M. R., & Mulch, A. (2016). Elevation‐dependent changes in n‐alkane δD and soil GDGTs across the South Central Andes. Earth and Planetary Science Letters, 453, 234–242. https://doi.org/10.1016/j.epsl.2016.07.049
    [Google Scholar]
  87. North, C. P., & Davidson, S. K. (2012). Unconfined alluvial flow processes: Recognition and interpretation of their deposits, and the significance for palaeogeographic reconstructions. Earth‐Science Reviews, 111, 199–223. https://doi.org/10.1016/j.earscirev.2011.11.008
    [Google Scholar]
  88. Paola, C., Heller, P. L., & Angevine, C. L. (1992). The large‐ scale dynamics of grain‐size variation in alluvial basins, 1: Theory. Basin Research, 4, 73–90. https://doi.org/10.1111/j.1365‐2117.1992.tb00145.x
    [Google Scholar]
  89. Payrola Bosio, P. A., Powell, J., del Papa, C., & Hongn, F. (2009). Middle Eocene deformation‐sedimentation in the Luracatao Valley: Tracking the beginning of the foreland basin of northwestern Argentina. Journal South American Earth Science, 28, 142–154. https://doi.org/10.1016/j.jsames.2009.06.002
    [Google Scholar]
  90. Payrola, P., del Papa, C., Aramayo, A., Pingel, H., Hongn, F., Sobel, E., Zeilinger, G., Strecker, M. R., Zapata, S., Cottle, J., Salado Paz, N., & Glodny, J. (2020). Episodic out‐of‐sequence deformation promoted by Cenozoic fault reactivation in NW Argentina. Tectonophysics, 776, 228276. https://doi.org/10.1016/j.tecto.2019.228276
    [Google Scholar]
  91. Payrola, P., Zapata, S., Sobel, E., del Papa, C., Pingel, H., Glodny, J., & Ledesma, J. (2020). Exhumation and structural evolution of the high‐elevation Malcante Range, Eastern Cordillera, NW Argentina. Journal South American Earth Science, 105, 102990. https://doi.org/10.1016/j.jsames.2020.102990
    [Google Scholar]
  92. Pearson, D. M., Kapp, P., DeCelles, P. G., Reiners, P. W., Gehrels, G. E., Ducea, M. N., & Pullen, A. (2013). Influence of pre‐Andean crustal structure on Cenozoic thrust belt kinematics and shortening magnitude: Northwestern Argentina. Geosphere, 9, 1766–1782. https://doi.org/10.1130/GES00923.1
    [Google Scholar]
  93. Pearson, D., Kapp, P., Reiners, P., Gehrels, G., Ducea, M., Pullen, A., Otamendi, J., & Alonso, R. (2012). Major Miocene exhumation by fault‐propagation folding within a metamorphosed, early Paleozoic thrust belt: Northwestern Argentina. Tectonics, 31, TC4023. https://doi.org/10.1029/2011TC003043
    [Google Scholar]
  94. Pingel, H., Mulch, A., Alonso, R., Cottle, J., Hynek, S. A., Poletti, J., Rohrmann, A., Schmitt, A. K., Stockli, D. F., & Strecker, M. R. (2016). Surface uplift and convective rainfall along the southern Central Andes (Angastaco Basin, NW Argentina). Earth Planetary Science Letters, 440, 33–42. https://doi.org/10.1016/j.epsl.2016.02.009
    [Google Scholar]
  95. Pingel, H., Strecker, M. R., Mulch, A., Alonso, R. N., Cottle, J., & Rohrmann, A. (2020). Late Cenozoic topographic evolution of the Eastern Cordillera and Puna Plateau margin in the southern Central Andes (NW Argentina). Earth and Planetary Science Letters, 535, 116–112. https://doi.org/10.1016/j.epsl.2020.116112
    [Google Scholar]
  96. Pizzuto, J. E. (1987). Sediment diffusion during overbank flows. Sedimentology, 34, 301–317. https://doi.org/10.1111/j.1365‐3091.1987.tb00779.x
    [Google Scholar]
  97. Reiners, P. W., & Brandon, M. K. (2006). Using thermochronology to understand orogenic erosion. Annual Review of Earth Planetary Sciences, 34, 419–466. https://doi.org/10.1146/annurev.earth.34.031405.125202
    [Google Scholar]
  98. Retallack, G. J. (1990). Soils of the past, an introduction to paleopedology (pp. 520). Urwin Hyman Inc.
    [Google Scholar]
  99. Reynolds, J. H., Galli, C. I., Hernández, R. M., Idleman, B. D., Kotila, J. M., Hillard, R., & Naeser, C. W. (2000). Middle Miocene tectonic development of the transition zone, Salta Province, northwest Argentina: Magnetic stratigraphy from the Metan Subgroup, Sierra de Gonzalez. Geological Society America Bulletin, 112, 1736–1751. https://doi.org/10.1130/0016‐7606(2000)112<1736:MMTDOT>2.0.CO;2
    [Google Scholar]
  100. Robledo, J. M., Anzótegui, L. M., Olga, G., Martínez, O. G., & Alonso, R. N. (2020). Flora and insect trace fossils from the Mio‐Pliocene Quebrada del Toro locality (Gobernador Solá, Salta, Argentina). Journal of South American Earth Sciences, 100, https://doi.org/10.1016/j.jsames.2020.102544
    [Google Scholar]
  101. Robledo, J. M., Horn, M. Y., Galli, C. I., & Anzótegui, L. M. (2020). Inferencias paleoclimáticas para el Mioceno tardío en la cuenca de Angastaco basadas en el análisis fisionómico foliar: Formación Palo Pintado, Salta, Argentina. Andean Geology, 47, 418–429. https://doi.org/10.5027/andgeoV47n2‐3231
    [Google Scholar]
  102. Rohrmann, A., Sachse, D., Mulch, A., Pingel, H., Tofelde, S., Alonso, R. N., & Strecker, M. R. (2016). Miocene orographic uplift forces rapid hydrological change in the southern central Andes. Scientific Reports, 6, 35678. https://doi.org/10.1038/srep35678
    [Google Scholar]
  103. Ruetenik, G. A., Hoke, G. D., Moucha, R., & Val, P. (2018). Regional landscape response to thrust belt dynamics: The Iglesia basin, Argentina. Basin Research, 30(6), 1141–1154. https://doi.org/10.1111/bre.12295
    [Google Scholar]
  104. Salfity, J. A., & Marquillas, R. A. (1994). Tectonic and sedimentary evolution of Cretaceous‐Eocene Salta Group basin, Argentina. In J. A.Salfity (Ed.), Cretaceous tectonics of the Andes (pp. 266–315). Earth Evolution Sciences, Friedr. Vieweg & Sohn.
    [Google Scholar]
  105. Salfity, J. A., & Monaldi, C. R. (2006). Hoja Geológica 2566‐IV, Metán, escala 1:250.000 (pp. 74). Instituto de Recursos Minerales. Servicio Geológico Minero Argentino.
    [Google Scholar]
  106. Schumm, S. A., Dumont, J. F., & Holbrook, J. (2000). Active tectonics and Alluvial rivers (pp. 276). Cambridge University Press.
    [Google Scholar]
  107. Sobel, E. R., Oskin, M., Burbank, D., & Mikolaichuk, A. (2006). Exhumation of basement‐cored uplifts: Example of the Kyrgyz Range quantified with apatite fission‐track thermochronology. Tectonics, 25, 17. https://doi.org/10.1029/2005TC001809
    [Google Scholar]
  108. Starck, D., & Anzótegui, L. M. (2001). The late climatic change persistence of a climatic signal through the orogenic stratigraphic record in northwestern of Argentina. Journal of South American Earth Sciences, 14, 763–774. https://doi.org/10.1016/S0895‐9811(01)00066‐9
    [Google Scholar]
  109. Starck, D., & Vergani, G. (1996). Desarrollo tecto‐sedimentario del Cenozoico en el sur de la provincia de Salta – Argentina. In 13º Congreso Geológico Argentino and 3º Congreso de Exploración de Hidrocarburos, Vol. 1 (pp. 433–452). Asociación Geológica Argentina.
    [Google Scholar]
  110. Strecker, M. R., Alonso, R., Bookhagen, B., Carrapa, B., Hilley, G., Sobel, E., & Trauth, M. (2007). Tectonics and climate of the Southern Central Andes. Annual Review Earth Planetary Sciences, 35, 747–787. https://doi.org/10.1146/annurev.earth.35.031306.140158
    [Google Scholar]
  111. Strecker, M. R., Hilley, G. E., Bookhagen, B., & Sobel, E. R. (2012). Structural, geomorphic and depositional characteristics of contiguous and broken foreland basins: Examples from the eastern flanks of the central Andes in Bolivia and NW Argentina. In C.Busby & A.Azor (Eds.), Tectonics of Sedimentary Basins: Recent Advance (pp. 508–521). Wiley.
    [Google Scholar]
  112. Tettamanti, C., Moyano Paz, D., Varela, A. N., Gómez‐Peral, L., Poirè, D. G., Cereceda, A., & Odin, L. A. (2019). Sedimentology and stratigraphy of the Uppermost Cretaceous Continental Deposits of the Austral‐Magallanes Basin, Patagonia, Argentina. Latin American Journal of Sedimentology and Basin Analysis, 25, 32–48.
    [Google Scholar]
  113. Uba, C. E., Strecker, M. R., & Schmitt, A. K. (2007). Increased sediment accumulation rates and climatic forcing in the central Andes during the late Miocene. Geology, 35, 979–982. https://doi.org/10.1130/G224025A.1
    [Google Scholar]
  114. Varela, A. (2015). Tectonic control of accommodation space and sediment supply within the Mata Amarilla Formation (lower Upper Cretaceous) Patagonia, Argentina. Sedimentology, 62, 867–896. https://doi.org/10.1111/sed.12164
    [Google Scholar]
  115. Vergani, G., & Starck, D. (1989). Estratigrafía y Evolución Tectosedimentaria del Cenozoico, entre el Valle Calchaquí y Metán. Y.P.F. report, part II, 67 p. Yacimientos Petrolíferos Fiscales.
    [Google Scholar]
  116. Viseras, C., & Fernández, J. (1994). Channel migration patterns and related sequences in some alluvial fan systems. Sedimentary Geology, 88, 201–217. https://doi.org/10.1016/0037‐0738(94)90062‐0
    [Google Scholar]
  117. Zhang, Y., Pe‐Piper, G., & Piper, D. J. W. (2014). Sediment geochemistry as a provenance indicator: Unravelling the cryptic signatures of polycyclic sources, climate change, tectonism and volcanism. Sedimentology, 61, 383–410. https://doi.org/10.1111/sed.12066
    [Google Scholar]
  118. Zhou, R., Schoenbohm, L. M., Sobel, E. R., Davis, D. W., & Glodny, J. (2017). New constraints on orogenic models of the southern Central Andean Plateau: Cenozoic basin evolution and bedrock exhumation. Geological Society of America Bulletin, 29, 152–170. https://doi.org/10.1130/B31384.1
    [Google Scholar]
  119. Zimicz, N., Payrola, P., & del Papa, C. (2018). New, Late Miocene mammalian assemblage from the PPFm (Salta Province), Northwestern Argentina. Journal of South American Earth Sciences, 81, 31–44. https://doi.org/10.1016/j.jsames.2017.11.003
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12589
Loading
/content/journals/10.1111/bre.12589
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error