1887
Volume 34, Issue 1
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

The recognition of linear trails of fluid escape pipes that have been deformed by salt flow have recently been suggested to offer a novel approach to reconstructing the internal kinematics of thick salt sequences deforming under gravity. These deformed pipes constrain a number of key parameters for salt tectonic analysis including the salt flow direction, translation distance of the top salt and overburden, the internal flow profile and from the flow velocity, the bulk viscosity of the salt. Here we interpret and characterise two previously unrecognised large‐scale strain markers within a salt sequence that may be equally as valuable as the deformed pipes for constraining salt flow. This study is based on the interpretation of a ca. 4,600 km2 3D seismic survey from the outer slope of the Nile Cone, offshore Egypt, located at the boundary between the extensional and translational domains of the deformed marginal region of the Messinian salt basin. We mapped five deformed pipe trails that allow us to constrain the average flow velocity of the top salt, at ca. 2 mm/yr over the past 2–3 Myrs. The salt flowed in a basinward NW/NNW direction away from the basin margin. In addition, we mapped two large (ca. 2 km diameter) salt dissolution depressions formed by subjacent dissolution of the evaporites. These are presently located down the salt flow direction of a large remnant erosional high at the base of the salt, and in the general alignment of one of the pipe trails. We therefore argue that this dissolution structure most likely formed by fluid venting from the base salt high, and as such can be used to measure translation direction, distance and average velocity. The second of the two novel kinematic indicators requires mapping of genetically connected mud volcanoes and their depletion zones. The study area contains over 400 individual mud volcanoes that are sourced from beneath the salt and erupted from the Early Pliocene to Recent. A subset of these, extruded at or near to the present day seafloor, have well imaged pre‐salt depletion zones vertically beneath the erupted volcanic cones. A smaller subset, typically buried Early Pliocene extrusions, is found to have volcanic cones that are systematically offset laterally from their corresponding depletion zones, with an offset direction and distances closely matched with other kinematic markers. Hence we suggest that mud volcanic plumbing systems can provide another independent kinematic marker from which to infer salt flow regime.

,

Mud volcano plumbing systems and dissolution structures present novel kinematic markers during salt tectonic deformation. The offset of their genetically connected pre‐salt and post‐salt components records the translation direction, distance, average velocity and allows the salt flow regime to be inferred. The widespread distribution of these kinematic markers in the Western Nile provides calibration of salt flow over an area > 3000 km2. Mud volcano systems and dissolution structures can be added to deformed fluid escape pipes, salt‐detached ramp syncline basins and deformed intra‐salt structures as part of a growing suite of kinematic markers for reconstructing salt flow.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12612
2022-01-17
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/bre/34/1/bre12612.html?itemId=/content/journals/10.1111/bre.12612&mimeType=html&fmt=ahah

References

  1. Albertz, M., & Ings, S. J. (2012). Some consequences of mechanical stratification in basin‐scale numerical models of passive‐margin salt tectonics. Geological Society, London, Special Publications, 363, 303–330. https://doi.org/10.1144/SP363.14
    [Google Scholar]
  2. Allen, H., Jackson, C.‐A.‐L., & Fraser, A. J. (2016). Gravity‐driven deformation of a youthful saline giant: The interplay between gliding and spreading in the Messinian basins of the Eastern Mediterranean. Petroleum Geoscience, 22, 340–356. https://doi.org/10.1144/petgeo2016‐034
    [Google Scholar]
  3. Anderson, J., Cartwright, J., Drysdall, S., & Vivian, N. (2000). Controls on turbidite sand deposition during gravity‐driven extension of a passive margin: Examples from Miocene sediments in Block 4, Angola. Marine and Petroleum Geology, 17, 1165–1203. https://doi.org/10.1016/S0264‐8172(00)00059‐3
    [Google Scholar]
  4. Baer, S., Lie, Ø., & Almorshedy, A. (2016). New opportunities offshore West Egypt. GEO ExPro Magazine.
    [Google Scholar]
  5. Barber, P. M. (1981). Messinian subaerial erosion of the proto‐Nile Delta. Marine Geology, 44(3–4), 253–272. https://doi.org/10.1016/0025‐3227(81)90053‐0
    [Google Scholar]
  6. Bertoni, C., & Cartwright, J. (2005). 3D seismic analysis of circular evaporite dissolution structures, Eastern Mediterranean. Journal of the Geological Society, 162, 909–926. https://doi.org/10.1144/0016‐764904‐126
    [Google Scholar]
  7. Brown, A. R. (2004). Interpretation of three‐dimensional seismic data. AAPG memoir 42, SEG investigations in geophysics 9. Society of Exploration Geophysicists and American Association of Petroleum Geologists. 31–60. https://doi.org/10.1190/1.9781560802884.ch2
  8. Brun, J.‐P., & Fort, X. (2011). Salt tectonics at passive margins: Geology versus models. Marine and Petroleum Geology, 28, 1123–1145. https://doi.org/10.1016/j.marpetgeo.2011.03.004
    [Google Scholar]
  9. Brun, J. P., & Merle, O. (1985). Strain patterns in models of spreading‐gliding Nappes. Tectonics, 4, 705–719. https://doi.org/10.1029/TC004i007p00705
    [Google Scholar]
  10. Cartwright, J. A., & Jackson, M. P. A. (2008). Initiation of gravitational collapse of an evaporite basin margin: The Messinian saline giant, Levant Basin, eastern Mediterranean. Geological Society of America Bulletin, 120, 399–413. https://doi.org/10.1130/B26081X.1
    [Google Scholar]
  11. Cartwright, J., Jackson, M., Dooley, T., & Higgins, S. (2012). Strain partitioning in gravity‐driven shortening of a thick, multilayered evaporite sequence. Geological Society, London, Special Publications, 363, 449–470. https://doi.org/10.1144/SP363.21
    [Google Scholar]
  12. Cartwright, J., Kirkham, C., Bertoni, C., Hodgson, N., & Rodriguez, K. (2018). Direct calibration of salt sheet kinematics during gravity‐driven deformation. Geology, 46, 623–626. https://doi.org/10.1130/G40219.1
    [Google Scholar]
  13. Cartwright, J., Kirkham, C., Foschi, M., Hodgson, N., Rodriguez, K., & James, D. (2021). Quantitative reconstruction of pore pressure history in sedimentary basins using fluid escape pipes. Geology, 49(5), 576–580. https://doi.org/10.1130/G48406.1
    [Google Scholar]
  14. Cartwright, J., & Santamarina, C. (2015). Seismic characteristics of fluid escape pipes in sedimentary basins: Implications for pipe genesis. Marine and Petroleum Geology, 65, 126–140. https://doi.org/10.1016/j.marpetgeo.2015.03.023
    [Google Scholar]
  15. Davison, I., Alsop, I., & Blundell, D. (1996). Salt tectonics: Some aspects of deformation mechanics. Geological Society, London, Special Publications, 100, 1–10. https://doi.org/10.1144/GSL.SP.1996.100.01.01
    [Google Scholar]
  16. Davison, I., Anderson, L., & Nuttall, P. (2012). Salt deposition, loading and gravity drainage in the Campos and Santos salt basins. Geological Society, London, Special Publications, 363, 159–174. https://doi.org/10.1144/SP363.8
    [Google Scholar]
  17. Dolson, J., Boucher, P., Siok, J., & Heppard, P. (2005). Key challenges to realizing full potential in an emerging giant gas province: Nile Delta/Mediterranean offshore, deep water, Egypt. Geological Society, London, Petroleum Geology Conference Series, 6, 607–624. https://doi.org/10.1144/0060607
    [Google Scholar]
  18. Dooley, T. P., Jackson, M. P., & Hudec, M. R. (2007). Initiation and growth of salt‐based thrust belts on passive margins: Results from physical models. Basin Research, 19, 165–177. https://doi.org/10.1111/j.1365‐2117.2007.00317.x
    [Google Scholar]
  19. Dupré, S., Mascle, J., Foucher, J.‐P., Harmegnies, F., Woodside, J., & Pierre, C. (2014). Warm brine lakes in craters of active mud volcanoes, Menes caldera off NW Egypt: Evidence for deep‐rooted thermogenic processes. Geo‐Marine Letters, 34, 153–168. https://doi.org/10.1007/s00367‐014‐0367‐1
    [Google Scholar]
  20. Dupuis, M., Imbert, P., Odonne, F., & Vendeville, B. (2019). Mud volcanism by repeated roof collapse: 3D architecture and evolution of a mud volcano cluster offshore Nigeria. Marine and Petroleum Geology, 110, 368–387. https://doi.org/10.1016/j.marpetgeo.2019.07.033
    [Google Scholar]
  21. Elfassi, Y., Gvirtzman, Z., Katz, O., & Aharonov, E. (2019). Chronology of post‐Messinian faulting along the Levant continental margin and its implications for salt tectonics. Marine and Petroleum Geology, 109, 574–588.
    [Google Scholar]
  22. Feng, Y. E., Steinberg, J., & Reshef, M. (2017). Intra‐salt deformation: Implications for the evolution of the Messinian evaporites in the Levant Basin, eastern Mediterranean. Marine and Petroleum Geology, 88, 251–267. https://doi.org/10.1016/j.marpetgeo.2017.08.027
    [Google Scholar]
  23. Flecker, R., Krijgsman, W., Capella, W., de Castro Martíns, C., Dmitrieva, E., Mayser, J. P., Marzocchi, A., Modestou, S., Ochoa, D., Simon, D., Tulbure, M., van den Berg, B., van der Schee, M., de Lange, G., Ellam, R., Govers, R., Gutjahr, M., Hilgen, F., Kouwenhoven, T., … Yousfi, M. Z. (2015). Evolution of the Late Miocene Mediterranean‐Atlantic gateways and their impact on regional and global environmental change. Earth‐Science Reviews, 150, 365–392. https://doi.org/10.1016/j.earscirev.2015.08.007
    [Google Scholar]
  24. Garcia‐Castellanos, D., Estrada, F., Jiménez‐Munt, I., Gorini, C., Fernández, M., Vergés, J., & de Vicente, R. (2009). Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature, 462, 778–781. https://doi.org/10.1038/nature08555
    [Google Scholar]
  25. Garziglia, S., Migeon, S., Ducassou, E., Loncke, L., & Mascle, J. (2008). Mass‐transport deposits on the Rosetta province (NW Nile deep‐sea turbidite system, Egyptian margin): Characteristics, distribution, and potential causal processes. Marine Geology, 250, 180–198. https://doi.org/10.1016/j.margeo.2008.01.016
    [Google Scholar]
  26. Gemmer, L., Beaumont, C., & Ings, S. J. (2005). Dynamic modelling of passive margin salt tectonics: Effects of water loading, sediment properties and sedimentation patterns. Basin Research, 17, 383–402. https://doi.org/10.1111/j.1365‐2117.2005.00274.x
    [Google Scholar]
  27. Gemmer, L., Ings, S. J., Medvedev, S., & Beaumont, C. (2004). Salt tectonics driven by differential sediment loading: Stability analysis and finite‐element experiments. Basin Research, 16, 199–218. https://doi.org/10.1111/j.1365‐2117.2004.00229.x
    [Google Scholar]
  28. Giresse, P., Loncke, L., Huguen, C., Muller, C., & Mascle, J. (2010). Nature and origin of sedimentary clasts associated with mud volcanoes in the Nile deep‐sea fan. Relationships with fluid venting. Sedimentary Geology, 228, 229–245. https://doi.org/10.1016/j.sedgeo.2010.04.014
    [Google Scholar]
  29. Graue, K. (2000). Mud volcanoes in deepwater Nigeria. Marine and Petroleum Geology, 17, 959–974. https://doi.org/10.1016/S0264‐8172(00)00016‐7
    [Google Scholar]
  30. Gulmammadov, R. (2017). Seismic geomechanics of mud volcanoes. The University of Manchester.
    [Google Scholar]
  31. Hsü, K., Kj, H., Mb, C., & Wbf, R. (1973). The origin of the Mediterranean evaporites. Initial Reports of the Deep Sea Drilling Project, 13, 1203–1231.
    [Google Scholar]
  32. Huguen, C., Foucher, J. P., Mascle, J., Ondréas, H., Thouement, M., Gontharet, S., Stadnitskaia, A., Pierre, C., Bayon, G., Loncke, L., Boetius, A., Bouloubassi, I., de Lange, G., Caprais, J. C., Fouquet, Y., Woodside, J., & Dupré, S. (2009). Menes caldera, a highly active site of brine seepage in the Eastern Mediterranean sea: “In situ” observations from the NAUTINIL expedition (2003). Marine Geology, 261, 138–152. https://doi.org/10.1016/j.margeo.2009.02.005
    [Google Scholar]
  33. Ings, S., Beaumont, C., & Gemmer, L. (2004). Numerical modeling of salt tectonics on passive continental margins: Preliminary assessment of the effects of sediment loading, buoyancy, margin tilt, and isostasy. In 24th Annual GCSSEPM Foundation, Bob F. Perkins Research Conference Proceedings (Vol. 36, p. 69). https://doi.org/10.5724/gcs.04.24.0036
    [Google Scholar]
  34. Jackson, M. P., & Hudec, M. R. (2005). Stratigraphic record of translation down ramps in a passive‐margin salt detachment. Journal of Structural Geology, 27, 889–911. https://doi.org/10.1016/j.jsg.2005.01.010
    [Google Scholar]
  35. Jackson, M. P., & Hudec, M. R. (2017). Salt tectonics: Principles and practice (pp. 28–60). Cambridge University Press. https://doi.org/10.1017/9781139003988
    [Google Scholar]
  36. Kirkham, C. (2016). A 3D seismic interpretation of mud volcanoes within the western slope of the Nile Cone. Cardiff University.
    [Google Scholar]
  37. Kirkham, C., Bertoni, C., Cartwright, J., Lensky, N. G., Sirota, I., Rodriguez, K., & Hodgson, N. (2020). The demise of a ‘salt giant’ driven by uplift and thermal dissolution. Earth and Planetary Science Letters, 531, 115933. https://doi.org/10.1016/j.epsl.2019.115933
    [Google Scholar]
  38. Kirkham, C., & Cartwright, J. (2021). Restoration of multi‐phase salt tectonic deformation using passive strain markers. Basin Research, 33(4), 2453–2473. https://doi.org/10.1111/bre.12564
    [Google Scholar]
  39. Kirkham, C., Cartwright, J., Bertoni, C., Rodriguez, K., & Hodgson, N. (2019). 3D kinematics of a thick salt layer during gravity‐driven deformation. Marine and Petroleum Geology, 110, 434–449. https://doi.org/10.1016/j.marpetgeo.2019.07.036
    [Google Scholar]
  40. Kirkham, C., Cartwright, J., Bertoni, C., & van Rensbergen, P. (2020). The genesis of a giant mud canopy by catastrophic failure of a thick evaporite sealing layer. Geology, https://doi.org/10.1130/G47430.1
    [Google Scholar]
  41. Kirkham, C., Cartwright, J., Hermanrud, C., & Jebsen, C. (2017). The spatial, temporal and volumetric analysis of a large mud volcano province within the Eastern Mediterranean. Marine and Petroleum Geology, 81, 1–16. https://doi.org/10.1016/j.marpetgeo.2016.12.026
    [Google Scholar]
  42. Kirkham, C., Cartwright, J., Hermanrud, C., & Jebsen, C. (2018a). The formation of giant clastic extrusions at the end of the Messinian salinity crisis. Earth and Planetary Science Letters, 482, 434–445. https://doi.org/10.1016/j.epsl.2017.11.001
    [Google Scholar]
  43. Kirkham, C., Cartwright, J., Hermanrud, C., & Jebsen, C. (2018b). The genesis of mud volcano conduits through thick evaporite sequences. Basin Research, 30, 217–236. https://doi.org/10.1111/bre.12250
    [Google Scholar]
  44. Krijgsman, W., Hilgen, F., Raffi, I., Sierro, F., & Wilson, D. (1999). Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, 652–655. https://doi.org/10.1038/23231
    [Google Scholar]
  45. Letouzey, J., Colletta, B., Vially, R. A., & Chermette, J. (1995). Evolution of salt‐related structures in compressional settings. In M. P. A.Jackson, D. G.Roberts, & S.Snelson (Eds.), Salt tectonics: A global perspective (Vol. 65, pp. 41–60). AAPG Memoir. https://doi.org/10.1306/M65604C3
    [Google Scholar]
  46. Li, S., Abe, S., Reuning, L., Becker, S., Urai, J. L., & Kukla, P. A. (2012). Numerical modelling of the displacement and deformation of embedded rock bodies during salt tectonics: A case study from the South Oman Salt Basin. Geological Society, London, Special Publications, 363, 503–520. https://doi.org/10.1144/SP363.24
    [Google Scholar]
  47. Lofi, J., Sage, F., Déverchère, J., Loncke, L., Maillard, A., Gaullier, V., Thinon, I., Gillet, H., Guennoc, P., & Gorini, C. (2011). Refining our knowledge of the Messinian salinity crisis records in the offshore domain through multi‐site seismic analysis. Bulletin De La Société Géologique De France, 182, 163–180. https://doi.org/10.2113/gssgfbull.182.2.163
    [Google Scholar]
  48. Loncke, L., Gaullier, V., Mascle, J., Vendeville, B., & Camera, L. (2006). The Nile deep‐sea fan: An example of interacting sedimentation, salt tectonics, and inherited subsalt paleotopographic features. Marine and Petroleum Geology, 23, 297–315. https://doi.org/10.1016/j.marpetgeo.2006.01.001
    [Google Scholar]
  49. Loncke, L., Mascle, J., & Parties, F. S. (2004). Mud volcanoes, gas chimneys, pockmarks and mounds in the Nile deep‐sea fan (Eastern Mediterranean): Geophysical evidences. Marine and Petroleum Geology, 21, 669–689. https://doi.org/10.1016/j.marpetgeo.2004.02.004
    [Google Scholar]
  50. Løseth, H., Wensaas, L., Arntsen, B., Hanken, N.‐M., Basire, C., & Graue, K. (2011). 1000 m long gas blow‐out pipes. Marine and Petroleum Geology, 28, 1047–1060. https://doi.org/10.1016/j.marpetgeo.2010.10.001
    [Google Scholar]
  51. Manzi, V., Gennari, R., Hilgen, F., Krijgsman, W., Lugli, S., Roveri, M., & Sierro, F. J. (2013). Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova, 25, 315–322. https://doi.org/10.1111/ter.12038
    [Google Scholar]
  52. Mascle, J., Mary, F., Praeg, D., Brosolo, L., Camera, L., Ceramicola, S., & Dupré, S. (2014). Distribution and geological control of mud volcanoes and other fluid/free gas seepage features in the Mediterranean Sea and nearby Gulf of Cadiz. Geo‐Marine Letters, 34, 89–110. https://doi.org/10.1007/s00367‐014‐0356‐4
    [Google Scholar]
  53. Meilijson, A., Hilgen, F., Sepúlveda, J., Steinberg, J., Fairbank, V., Flecker, R., Waldmann, N. D., Spaulding, S. A., Bialik, O. M., Boudinot, F. G., Illner, P., & Makovsky, Y. (2019). Chronology with a pinch of salt: Integrated stratigraphy of Messinian evaporites in the deep Eastern Mediterranean reveals long‐lasting halite deposition during Atlantic connectivity. Earth‐Science Reviews, 194, 374–398. https://doi.org/10.1016/j.earscirev.2019.05.011
    [Google Scholar]
  54. Oppo, D., Evans, S., Iacopini, D., Kabir, S. M., Maselli, V., & Jackson, C.‐A.‐L. (2020). Leaky salt: Pipe trails record the history of cross‐evaporite fluid escape in the northern Levant Basin, Eastern Mediterranean. Basin Research. 33(3), 1798–1819. https://doi.org/10.1111/bre.12536
    [Google Scholar]
  55. Peel, F. J. (2014). The engines of gravity‐driven movement on passive margins: Quantifying the relative contribution of spreading vs. gravity sliding mechanisms. Tectonophysics, 633, 126–142. https://doi.org/10.1016/j.tecto.2014.06.023
    [Google Scholar]
  56. Pichel, L. M., Peel, F., Jackson, C. A., & Huuse, M. (2018). Geometry and kinematics of salt‐detached ramp syncline basins. Journal of Structural Geology, 115, 208–230. https://doi.org/10.1016/j.jsg.2018.07.016
    [Google Scholar]
  57. Pierre, C., Bayon, G., Blanc‐Valleron, M.‐M., Mascle, J., & Dupré, S. (2014). Authigenic carbonates related to active seepage of methane‐rich hot brines at the Cheops mud volcano, Menes caldera (Nile deep‐sea fan, eastern Mediterranean Sea). Geo‐Marine Letters, 34, 253–267. https://doi.org/10.1016/j.jsg.2018.07.016
    [Google Scholar]
  58. Prinzhofer, A., & Deville, E. (2013). Origins of hydrocarbon gas seeping out from offshore mud volcanoes in the Nile delta. Tectonophysics, 591, 52–61. https://doi.org/10.1016/j.tecto.2011.06.028
    [Google Scholar]
  59. Quirk, D. G., Schødt, N., Lassen, B., Ings, S. J., Hsu, D., Hirsch, K. K., & von Nicolai, C. (2012). Salt tectonics on passive margins: Examples from Santos, Campos and Kwanza basins. Geological Society, London, Special Publications, 363, 207–244. https://doi.org/10.1144/SP363.10
    [Google Scholar]
  60. Rowan, M. G., Peel, F. J., & Vendeville, B. C. (2004). Gravity‐driven fold belts on passive margins. AAPG Memoir, 82, 157–182. https://doi.org/10.1306/M82813C9
    [Google Scholar]
  61. Said, R. (1962). The geology of Egypt. Elsevier.
    [Google Scholar]
  62. Salem, R. (1976). Evolution of Eocene‐Miocene sedimentation patterns in parts of northern Egypt. AAPG Bulletin, 60, 34–64. https://doi.org/10.1306/83D92280‐16C7‐11D7‐8645000102C1865D
    [Google Scholar]
  63. Schultz‐ELA, D. (2001). Excursus on gravity gliding and gravity spreading. Journal of Structural Geology, 23, 725–731. https://doi.org/10.1016/S0191‐8141(01)00004‐9
    [Google Scholar]
  64. Stewart, S. (2007). Salt tectonics in the North Sea Basin: A structural style template for seismic interpreters. Special Publication‐Geological Society of London, 272, 361–396. https://doi.org/10.1144/GSL.SP.2007.272.01.19
    [Google Scholar]
  65. Stewart, S. A., & Davies, R. J. (2006). Structure and emplacement of mud volcano systems in the South Caspian Basin. AAPG Bulletin, 90, 771–786. https://doi.org/10.1306/11220505045
    [Google Scholar]
  66. Worrall, D., & Snelson, S. (1989). Evolution of the northern Gulf of Mexico, with emphasis on Cenozoic growth faulting and the role of salt. In A. W.Bally & A. R.Palmer (Eds.), The geology of North America—An overview (pp. 97–138). The geology of North America; an overview: Geological Society of America. https://doi.org/10.1130/DNAG‐GNA‐A.97
    [Google Scholar]
  67. Zucker, E., Gvirtzman, Z., Steinberg, J., & Enzel, Y. (2020). Salt tectonics in the Eastern Mediterranean Sea: Where a giant delta meets a salt giant. Geology, 48, 134–138. https://doi.org/10.1130/G47031.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12612
Loading
/content/journals/10.1111/bre.12612
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error