1887
Volume 34, Issue 6
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

This paper presents a semi‐quantitative analysis of gravity‐driven deformation along the Namibian margin using extensive 2D depth converted seismic data. The geometries, internal characters and distribution of gravity‐driven systems were investigated through regional and detailed seismic studies. The research shows that surficial slumps are typically ca. 50 m thick and are characterised by contorted seismic facies commonly occurring along the slopes of the margin. They commonly funnel and cluster within high relief areas such as canyons and pre‐existing landslide scars. These contrast with coherent slides that are up to 2 km thick which extend laterally along the margin for tens to hundreds of kilometres. Slides preferentially occur in the proximal part of the margin and are constrained within the main margin depocenters. Here, high sedimentation rates and loading promote the generation of distinct, weak, overpressured layers that favour initiation of sliding of relatively coherent sediment masses. This research also shows that one‐third of volume of the post‐rift sediments on the Namibian margin were affected by slides and slumps. This demonstrates that gravity‐driven deformation is a key geological process that can strongly modify the evolution of rifted passive margins.

,

Schematic diagram illustrating the range of gravity‐driven processes and the factors controlling their distribution along a margin,

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12694
2022-11-18
2022-11-30
Loading full text...

Full text loading...

/deliver/fulltext/bre/34/6/bre12694.html?itemId=/content/journals/10.1111/bre.12694&mimeType=html&fmt=ahah

References

  1. Adams, E. W., & Schlager, W. (2000). Basic types of submarine slope curvature. Journal of Sedimentary Research, 70(4), 814–828.
    [Google Scholar]
  2. Adams, E. W., Schlager, W., & Wattel, E. (1998). Submarine slopes with an exponential curvature. Sedimentary Geology, 117(4), 135–141.
    [Google Scholar]
  3. Ahmed, B., McClay, K., Scarselli, N., & Bilal, A. (2022). New insights on the gravity‐driven deformation of late Albian–early Turonian stacked delta collapse systems in the Ceduna sub‐basin, Bight Basin, southern margin of Australia. Tectonophysics, 823, 229184. https://doi.org/10.1016/j.tecto.2021.229184
    [Google Scholar]
  4. Alsop, G. I., Marco, S., Levi, T., & Weinberger, R. (2017). Fold and thrust systems in mass transport deposits. Journal of Structural Geology, 94, 98–115. https://doi.org/10.1016/j.jsg.2016.11.008
    [Google Scholar]
  5. Alsop, G. I., Weinberger, R., Marco, S., & Levi, T. (2020). Distinguishing coeval patterns of contraction and collapse around flow lobes in mass transport deposits. Journal of Structural Geology, 134, 104013.
    [Google Scholar]
  6. Alves, T. M. (2015). Submarine slide blocks and associated soft‐sediment deformation in deep‐water basins: A review. Marine and Petroleum Geology, 67, 262–285. https://doi.org/10.1016/j.marpetgeo.2015.05.010
    [Google Scholar]
  7. Alves, T. M., & Lourenco, S. D. N. (2010). Geomorphologic features related to gravitational collapse: Submarine landsliding to lateral spreading on a Late Miocene‐Quaternary slope (SE Crete, eastern Mediterranean). Geomorphology, 123(1), 13–33.
    [Google Scholar]
  8. Amante, C., & Eakins, B. W. (2009). ETOP01 1 Arc‐ minute global relief model: Procedures, data sources and analysis. National Geophysical Data Centre, NESDIS, NOAA, US Department of Commerce.
    [Google Scholar]
  9. Austin, J. A., & Uchupi, E. (1982). Continental‐oceanic crustal transition off Southwest Africa. AAPG Bulletin, 66(9), 1328–1347.
    [Google Scholar]
  10. Baby, G., Guillocheau, F., Morin, J., Ressouche, J., Robin, C., Broucke, O., & Dall'Asta, M. (2018). Post‐rift stratigraphic evolution of the Atlantic margin of Namibia and South Africa: Implications for the vertical movements of the margin and the uplift history of the South African Plateau. Marine and Petroleum Geology, 97, 169–191. https://doi.org/10.1016/j.marpetgeo.2018.06.030
    [Google Scholar]
  11. Bagguley, J., & Prosser, S. (1999). The interpretation of passive margin depositional processes using seismic stratigraphy: Examples from offshore Namibia. Geological Society, London, Special Publications, 153, 321–344. https://doi.org/10.1144/GSL.SP.1999.153.01.20
    [Google Scholar]
  12. Bauer, K., Neben, S., Schreckenberger, B., Emmermann, R., Hinz, K., Fechner, N., Gohl, K., Schulze, A., Trumbull, R. B., & Weber, K. (2000). Deep structure of the Namibia continental margin as derived from integrated geophysical studies. Journal of Geophysical Research, 105(B11), 25829–25854.
    [Google Scholar]
  13. Biscontin, G., Pestana, J. M., & Nadim, F. (2004). Seismic triggering of submarine slides in soft cohesive soil deposits. Marine Geology, 203, 341–354. https://doi.org/10.1016/S0025‐3227(03)00314‐1
    [Google Scholar]
  14. Booth, J. S., O'Connell, S., Popenoe, P., & Danforth, W. W. (1993). US Atlantic continental slope landslides: Their distribution, general attributes, and implications. In W. C.Schwab, H. J.Lee, & D. C.Twichell (Eds.), Submarine landslides: Selected studies in the US exclusive economic zone (Vol. 2002, pp. 14–22). US Geological Survey Bulletin.
    [Google Scholar]
  15. Boyd, D., Anka, Z., Di Primio, R., Kuhlmann, G., & De Wit, M. J. (2011). Passive margin evolution and controls on natural gas leakage in the Orange Basin, South Africa. South African Journal of Geology, 114, 415–432. https://doi.org/10.2113/gssajg.114.3‐4.415
    [Google Scholar]
  16. Broad, D. S., Jungslager, E. H. A., McLachlan, I. R., & Roux, J. (2006). Offshore Mesozoic Basins. In M. R.Jonson, C. R.Anhaeusser, & R. J.Thomas (Eds.), The geology of South Africa (pp. 553–571). Geological Society of South Africa/Council for GeoScience.
    [Google Scholar]
  17. Broad, D. S., & Mills, S. R. (1993). South Africa offers exploratory potential in variety of basins. Oil and Gas Journal, 9, 38–44.
    [Google Scholar]
  18. Brothers, D. S., ten Brink, U. S., Andrews, B. D., & Chaytor, J. D. (2013). Geomorphic characterization of the U.S. Atlantic continental margin. Marine Geology, 338, 46–63.
    [Google Scholar]
  19. Brown, L. F. (1995). Sequence stratigraphy in Offshore South African divergent basins. American Association of Petroleum Geologists, Studies in Geology, 41 182 p.
    [Google Scholar]
  20. Brown, L. F., Benson, J. M., Brink, G. J., Doherty, S., Jollands, A., Jungslager, E. H. A., Keenan, J. H. G., Muntingh, A., & Van Wyk, N. J. S. (1995). Sequence stratigraphy in offshore South African divergent basins: An Atlas on exploration for cretaceous lowstand traps by Soekor (Pty) Ltd AAPG studies in geology. American Association of Petroleum Geologists.
    [Google Scholar]
  21. Bull, S., Cartwright, J., & Huuse, M. (2009). A review of kinematic indicators from mass‐transport complexes using 3D seismic data. Marine and Petroleum Geology, 26, 1132–1151. https://doi.org/10.1016/j.marpetgeo.2008.09.011
    [Google Scholar]
  22. Butler, R. W. H., & McCaffrey, W. D. (2010). Structural evolution and sediment entrainment in mass‐transport complexes: Outcrop studies from Italy. Journal of the Geological Society, 167(3), 617–631.
    [Google Scholar]
  23. Butler, R. W. H., & Paton, D. A. (2010). Evaluating lateral compaction in deepwater fold and thrust belts: How much are we missing from “nature's sandbox”?GSA Today, 20, 4–10.
    [Google Scholar]
  24. Butler, R. W. H., & Turner, J. P. (2010). Gravitational collapse at continental margins: Products and processes; an introduction. Journal of the Geological Society, 167, 569–570. https://doi.org/10.1144/0016‐76492010‐003
    [Google Scholar]
  25. Cai, J., He, Y., Liang, J., Qiu, C., & Zhang, C. (2020). Differential deformation of gravity‐driven deep‐water fold‐and‐thrust belts along the passive continental margin of East Africa and their impact on petroleum migration and accumulation. Marine and Petroleum Geology, 112, 104053. https://doi.org/10.1016/j.marpetgeo.2019.104053
    [Google Scholar]
  26. Canals, M., Lastras, G., Urgeles, R., Casamor, J. L., Mienert, J., Cattaneo, A., De Batist, M., Haflidason, H., Imbo, Y., Laberg, J. S., Locat, J., Long, D., Longva, O., Masson, D. G., Sultan, N., Trincardi, F., & Bryn, P. (2004). Slope failure dynamics and impacts from seafloor and shallow sub‐seafloor geophysical data: Case studies from the COSTA project. Marine Geology, 213(1), 9–72.
    [Google Scholar]
  27. Chassefière, B., Aloisi, J. C., & Monaco, A. (1985). Geotechnical properties of shelf and slope deposits off the Rhône Delta. Geo‐Marine Letters, 5(2), 121–126.
    [Google Scholar]
  28. Chauvet, F., Sapin, F., Geoffroy, L., Ringenbach, J. C., & Ferry, J. N. (2021). Conjugate volcanic passive margins in the austral segment of the South Atlantic–Architecture and development. Earth‐Science Reviews, 212, 103461.
    [Google Scholar]
  29. Clare, M., Chaytor, J., Dabson, O., Gamboa, D., Georgiopoulou, A., Eady, H., Hunt, J., Jackson, C., Katz, O., Krastel, S., León, R., Micallef, A., Moernaut, J., Moriconi, R., Moscardelli, L., Mueller, C., Normandeau, A., Patacci, M., Steventon, M., … Jobe, Z. (2019). A consistent global approach for the morphometric characterization of subaqueous landslides. Geological Society London Special Publications, 477(1), 455–477. https://doi.org/10.1144/SP477.15
    [Google Scholar]
  30. Cobbold, P. R., Clarke, B. J., & Loseth, H. (2009). Structural consequences of fluid overpressure and seepage forces in the outer thrust belt of the Niger Delta. Petroleum Geoscience, 15, 3–15.
    [Google Scholar]
  31. Cobbold, P. R., Mourgues, R., & Boyd, K. (2004). Mechanism of thin‐skinned detachment in the Amazon Fan: Assessing the importance of fluid overpressure and hydrocarbon generation. Marine and Petroleum Geology, 21(8), 1013–1025.
    [Google Scholar]
  32. Corredor, F., Shaw, J. H., & Bilotti, F. (2005). Structural styles in the deep‐water fold and thrust belts of the Niger Delta. AAPG Bulletin, 89(6), 753–780.
    [Google Scholar]
  33. Coward, M. P., Purdy, E. G., Ries, A. C., & Smith, D. G. (1999). The distribution of petroleum reserves in basins of the South Atlantic margins. In N. R.Cameron, R. H.Bate, & V. S.Clure (Eds.), The oil and gas habitats of the South Atlantic (Vol. 153, pp. 101–131). Geological Society London, Special Publications.
    [Google Scholar]
  34. Damuth, J. E. (1994). Neogene gravity tectonics and depositional processes on the deep Niger Delta continental margin. Marine and Petroleum Geology, 11(3), 320–346.
    [Google Scholar]
  35. de Vera, J., Granado, P., & McClay, K. (2010). Structural evolution of the Orange Basin gravity‐driven system, offshore Namibia. Marine and Petroleum Geology, 27(1), 223–237.
    [Google Scholar]
  36. Dupont, L. M., Donner, B., Vidal, L., Pérez, E. M., & Wefer, G. (2005). Linking desert evolution and coastal upwelling: Pliocene climate change in Namibia. Geology, 33(6), 461–464.
    [Google Scholar]
  37. Eagles, G. (2007). New angles on South Atlantic opening. Geophysical Journal International, 168, 353–361.
    [Google Scholar]
  38. Elliott, G. M., Berndt, C., & Parson, L. M. (2009). The SW African volcanic rifted margin and the initiation of the Walvis Ridge, South Atlantic. Marine Geophysical Researches, 30(3), 207–214.
    [Google Scholar]
  39. Emery, K. O., Uchupi, E., Bowin, C. O., Phillips, J., & Simpson, E. S. W. (1975). Continental margin off western Africa: Cape St Francis (South Africa) to Walvis Ridge (South West Africa). AAPG Bulletin, 59(1), 3–59.
    [Google Scholar]
  40. Farrell, S. G., & Eaton, S. (1987). Slump strain in the Tertiary of Cyprus and the Spanish Pyrenees. Definition of palaeoslopes and models of soft‐sediment deformation. In M. F.Jones & R. M. F.Preston (Eds.), Deformation of Sediments and Sedimentary Rocks (Vol. 29, pp. 181–196). Geological Society, London, Special Publications.
    [Google Scholar]
  41. Figueiredo, J., Hoorn, C., Van der Ven, P., & Soares, E. (2009). Late Miocene onset of the Amazon River and the Amazon deep‐sea fan: Evidence from the Foz do Amazonas Basin. Geology, 37(7), 619–622.
    [Google Scholar]
  42. Frey‐Martínez, J., Bertoni, C., Gerard, J., & Matías, H. (2011). Processes of submarine slope failure and fluid migration on the Ebro continental margin: Implications for offshore exploration and development. In R. C.Shipp & H. W.Posamentier (Eds.), Mass‐transport deposits in deepwater settings (Vol. 96, pp. 181–198). SEPM Special Publications.
    [Google Scholar]
  43. Frey‐Martínez, J., Cartwright, J., & Hall, B. (2005). 3D seismic interpretation of slump complexes: Examples from the continental margin of Israel. Basin Research, 17, 83–108. https://doi.org/10.1111/j.1365‐2117.2005.00255.x
    [Google Scholar]
  44. Gallagher, K., & Brown, R. (1999). Denudation and uplift at passive margins: The record on the Atlantic Margin of southern Africa. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 357(1753), 835–859.
    [Google Scholar]
  45. Garzanti, E., Vermeesch, P., Andò, S., Lustrino, M., Padoan, M., & Vezzoli, G. (2014). Ultra‐long distance littoral transport of Orange sand and provenance of the Skeleton Coast Erg (Namibia). Marine Geology, 357, 25–36. https://doi.org/10.1016/j.margeo.2014.07.005
    [Google Scholar]
  46. Gee, M. J. R., Gawthorpe, R. L., & Friedmann, S. J. (2006). Triggering and evolution of a giant submarine landslide, offshore Angola, revealed by 3D seismic stratigraphy and geomorphology. Journal of Sedimentary Research, 76, 9–19.
    [Google Scholar]
  47. Gerrard, I., & Smith, G. C. (1982). Post‐Paleozoic succession and structure of the Southwestern African continental margin. In J. S.Watkins & C. L.Drake (Eds.), Studies in continental margin geology (Vol. 34, pp. 49–74). AAPG Memoir.
    [Google Scholar]
  48. Gladczenko, T. P., Skogseid, J., & Eldhom, O. (1998). Namibia volcanic margin. Marine Geophysical Researches, 20(4), 313–341.
    [Google Scholar]
  49. Hartwig, A., Anka, Z., & di Primio, R. (2012). Evidence of a widespread paleo‐pockmarked field in the Orange Basin: An indication of an early Eocene massive fluid escape event offshore South Africa. Marine Geology, 332–334, 222–234. https://doi.org/10.1016/j.margeo.2012.07.012
    [Google Scholar]
  50. Heine, C., Zoethout, J., & Müller, R. D. (2013). Kinematics of the South Atlantic rift. Solid Earth, 4, 215–253. https://doi.org/10.5194/se‐4‐215‐2013
    [Google Scholar]
  51. Hirsch, K. K., Scheck‐Wenderoth, M., van Wees, J. D., & Kuhlmann, G. (2010). Tectonic subsidence history and thermal evolution of the Orange Basin. Marine and Petroleum Geology, 27(3), 565–584.
    [Google Scholar]
  52. Horozal, S., Bahk, J.‐J., Urgeles, R., Kim, G. Y., Cukur, D., Kim, S.‐P., Lee, G. H., Lee, S. H., Ryu, B.‐J., & Kim, J.‐H. (2017). Mapping gas hydrate and fluid flow indicators and modeling gas hydrate stability zone (GHSZ) in the Ulleung Basin, East (Japan) Sea: Potential linkage between the occurrence of mass failures and gas hydrate dissociation. Marine and Petroleum Geology, 80, 171–191. https://doi.org/10.1016/j.marpetgeo.2016.12.001
    [Google Scholar]
  53. Huhnerbach, V., Masson, D. G., & partners of the COSTA‐Project . (2004). Landslides in the North Atlantic and its adjacent seas: An analysis of their morphology, setting and behaviour. Marine Geology, 213(1–4), 343–362.
    [Google Scholar]
  54. Intawong, A., Esestime, P., & Rodriguez, K. (2019). Observed link between folded Seaward Dipping Reflectors (SDRs) and large‐scale morphology and architecture of the Early Cretaceous carbonate build‐up and platform in the Orange Basin. First Break, 37(2), 63–68.
    [Google Scholar]
  55. Jackson, C. A.‐L. (2011). Three‐dimensional seismic analysis of megaclast deformation within a mass transport deposit; implications for debris flow kinematics. Geology, 39, 203–206. https://doi.org/10.1130/G31767.1
    [Google Scholar]
  56. Jackson, M., Cramez, C., & Fonck, J. M. (2000). Role of subaerial volcanic rocks and mantle plumes in creation of South Atlantic margins: Implications for salt tectonics and source rocks. Marine and Petroleum Geology, 17(4), 477–498.
    [Google Scholar]
  57. Jungslager, E. H. A. (1999). Petroleum habitats of the Atlantic margin of South Africa. In N. R.Cameron, R. H.Bate, & V. S.Clure (Eds.), The oil and gas habitats of the South Atlantic (Vol. 153, pp. 153–168). Geological Society, London, Snecial Publications.
    [Google Scholar]
  58. Keller, G. H. (1974). Marine geotechnical properties: Interrelationships and relationships to depth of burial. In A. L.Inderbitzen (Ed.), Deep‐sea sediments (Vol. 2, pp. 77–100). Springer.
    [Google Scholar]
  59. Kirkpatrick, L. H., Green, A. N., & Pether, J. (2019). The seismic stratigraphy of the inner shelf of southern Namibia: The development of an unusual nearshore shelf stratigraphy. Marine Geology, 408, 18–35. https://doi.org/10.1016/j.margeo.2018.11.016
    [Google Scholar]
  60. Koopmann, H., Franke, D., Schreckenberger, B., Schulz, H., Hartwig, A., Stollhofen, H., & di Primio, R. (2014). Segmentation and volcano‐tectonic characteristics along the SW African continental margin, South Atlantic, as derived from multichannel seismic and potential field data. Marine and Petroleum Geology, 50, 22–39.
    [Google Scholar]
  61. Kounov, A., Viola, G., de Wit, M., & Andreoli, M. A. G. (2009). Denudation along the Atlantic passive margin: New insights from apatite fission‐track analysis on the western coast of South Africa. In F.Lisker, B.Ventura, & I. A.Glasmacher (Eds.), Thermochronological methods (Vol. 324, pp. 287–306). Geological Society, London, Special Publications.
    [Google Scholar]
  62. Kuhlmann, G., Adams, S., Anka, Z., Campher, C., di Primio, R., & Horsfield, B. (2011). 3D petroleum systems modelling within a passive margin setting, Orange Basin, blocks 3/4, offshore South Africa‐Implications for gas generation, migration and leakage. South African Journal of Geology, 114(3–4), 387–414.
    [Google Scholar]
  63. Kuhlmann, G., Adams, S., Campher, C., van der Spuy, D., di Primio, R., & Horsfield, B. (2010). Passive margin evolution and its controls on natural gas leakage in the southern Orange Basin, blocks 3/4, offshore South Africa. Marine and Petroleum Geology, 27, 973–992. https://doi.org/10.1016/j.marpetgeo.2010.01.010
    [Google Scholar]
  64. Kvenvolden, K. A. (1993). Gas hydrates geological perspective and global change. Reviews of Geophysics, 31(2), 173–187.
    [Google Scholar]
  65. Laberg, J. S., & Camerlenghi, A. (2008). The significance of contourites for submarine slope stability. Developments in Sedimentology, 60, 537–556.
    [Google Scholar]
  66. Lawrence, S. R., Munday, S., & Bray, R. (2002). Regional geology and geophysics of the eastern Gulf of Guinea (Niger Delta to Rio Muni). The Leading Edge, 21(11), 1112–1117.
    [Google Scholar]
  67. Lee, H. J., Locat, J., Desgagnés, P., Parsons, J. D., McAdoo, B. G., Orange, D. L., Puig, P., Wong, F. L., Dartnell, P., & Boulanger, E. (2007). Submarine mass movements on continental margins. In C. A.Nittrouer, J. A.Austin, M. E.Field, J. H.Kravitz, J. P. M.Syvitski, & P. L.Wiberg (Eds.), Continental margin sedimentation: From sediment transport to sequence stratigraphy (Vol. 37, pp. 213–274). Special Publication of the International Association of Sedimentologists, Wiley‐Blackwell.
    [Google Scholar]
  68. Li, A., Davies, R. J., & Yang, J. (2016). Gas trapped below hydrate as a primer for submarine slope failures. Marine Geology, 380, 264–271. https://doi.org/10.1016/j.margeo.2016.04.010
    [Google Scholar]
  69. Light, M. P. R., Maslanyj, M. P., Greenwood, R. J., & Banks, N. L. (1993). Seismic sequence stratigraphy and tectonics offshore Namibia. In G.Willams & A.Dobb (Eds.), Tectonic and seismic sequence stratigraphy (Vol. 71, pp. 163–191). Geological Society, London, Special Publications.
    [Google Scholar]
  70. Locat, J., & Lee, H. J. (2002). Submarine landslides: Advances and challenges. Canadian Geotechnical Journal, 39(1), 193–212.
    [Google Scholar]
  71. Løvholt, F., Pedersen, G., Harbitz, C. B., Glimsdal, S., & Kim, J. (2015). On the characteristics of landslide tsunamis. Philosophical Transactions of the Royal Society A, 373, 20140376. https://doi.org/10.1098/rsta.2014.0376
    [Google Scholar]
  72. Lu, H., & Shipp, C. (2011). Impact of a large mass‐transport deposit on a field development in the upper slope of Southwestern Sabah, Malaysia, offshore northwest Borneo. In R. G.Shipp, P.Weimer, & H. R.Posamentier (Eds.), Mass‐transport deposits in deepwater settings (Vol. 96, pp. 199–218). SEPM Special Publications Editors, SEPM Special Publication.
    [Google Scholar]
  73. Mahlalela, V., Manzi, M. S. D., Jinnah, Z., Bourdeau, J. E., & Durrheim, R. J. (2021). Structural characteristics and 3D seismic detection of gas migration pathways in the deep‐water Orange Basin, South Africa. Marine Geophysical Research, 42, 8. https://doi.org/10.1007/s11001‐021‐09428‐y
    [Google Scholar]
  74. Mangano, G., Zecchin, M., & Civile, D. (2020). Large‐scale gravity‐driven phenomena in the Crotone Basin, southern Italy. Marine and Petroleum Geology, 117, 104386. https://doi.org/10.1016/j.marpetgeo.2020.104386
    [Google Scholar]
  75. Mangololo, A., & Hutchins, D. G. (2008). Seismicity of Namibia from 1910 to 2006. In R. M.Miller (Ed.), The geology of Namibia (Vol. 3, pp. 1–7). Geological Survey of Namibia.
    [Google Scholar]
  76. Martinsen, O. J. (1989). Styles of soft‐sediment deformation on a Namurian (Carboniferous) delta slope, Western Irish Namurian Basin, Ireland. In M.Whateley & K. T.Pickering (Eds.), Deltas: Sites and traps for fossil fuels (Vol. 41, pp. 167–177). Geological Society, London, Special Publications.
    [Google Scholar]
  77. Masson, D. G., Harbitz, C. B., Wynn, R. B., Pedersen, G., & Løvholt, F. (2006). Submarine landslides: Processes, triggers and hazard prediction. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364, 2009–2039.
    [Google Scholar]
  78. Masson, D. G., Wynn, R. B., & Talling, P. J. (2010). Large landslides on passive continental margins: Processes, hypotheses and outstanding questions. In D. C.Mosher, R. C.Shipp, L.Moscardelli, J. D.Chaytor, C. D. P.Baxter, H. J.Lee, & R.Urgeles (Eds.), Submarine mass movements and their consequences (Vol. 28, pp. 153–165). Springer.
    [Google Scholar]
  79. McAdoo, B. G., Pratson, L. F., & Orange, D. L. (2000). Submarine landslide geomorphology, US continental slope. Marine Geology, 169(1), 103–136.
    [Google Scholar]
  80. McArthur, A. D., & McCaffrey, W. D. (2019). Sedimentary architecture of detached deep‐marine canyons: Examples from the East Coast Basin of New Zealand. Sedimentology, 66(3), 1067–1101.
    [Google Scholar]
  81. McDermott, K., Gillbard, E., & Clarke, N. (2015). From Basalt to Skeletons—The 200 million‐year history of the Namibian margin uncovered by new seismic data. First Break, 33, 77–85. https://doi.org/10.3997/1365‐2397.33.12.83748
    [Google Scholar]
  82. McMillan, I. K. (2003). Foraminiferally defined biostratigraphic episodes and sedimentation pattern of the Cretaceous drift succession (Eearly Barremlan to Late Maastrichtian) in seven basins on the South African and southern Namibian continental margin. South African Journal of Science, 99(11–12), 537–576.
    [Google Scholar]
  83. Milkov, A. V., Sassen, R., Novikova, I., & Mikhailov, E. (2000). Gas hydrates at minimum stability water depth in the Gulf of Mexico: Significance to geohazard assessment. Transactions Gulf Coast Association of Geological Societies, 50(2000), 17–224.
    [Google Scholar]
  84. Moernaut, J., & De Batist, M. (2011). Frontal emplacement and mobility of sublacustrine landslides: Results from morphometric and seismostratigraphic analysis. Marine Geology, 285, 29–45. https://doi.org/10.1016/j.margeo.2011.05.001
    [Google Scholar]
  85. Mohammed, M., Paton, D., Collier, R. E. L., Hodgson, N., & Negonga, M. (2017). Interaction of crustal heterogeneity and lithospheric processes in determining passive margin architecture on the southern Namibian margin. Geological Society, London, Special Publications, 438, 177–193. https://doi.org/10.1144/SP438.9
    [Google Scholar]
  86. Moore, D. G. (1961). Submarine slumps. Journal of Sedimentary Research, 31(3), 343–357.
    [Google Scholar]
  87. Morelock, J. (1969). Shear strength and stability of continental slope deposits, western Gulf of Mexico. Journal of Geophysical Research, 74(2), 465–482.
    [Google Scholar]
  88. Moscardelli, L., & Wood, L. (2008). New classification system for mass transport complexes in offshore Trinidad. Basin Research, 20(1), 73–98.
    [Google Scholar]
  89. Moscardelli, L., & Wood, L. (2016). Morphometry of mass‐transport deposits as a predictive tool. GSA Bulletin, 128(1–2), 47–80. https://doi.org/10.1130/B31221.1
    [Google Scholar]
  90. Moscardelli, L., Wood, L., & Mann, P. (2006). Mass‐transport complexes and associated processes in the offshore area of Trinidad and Venezuela. AAPG Bulletin, 90(7), 1059–1088.
    [Google Scholar]
  91. Moss, J. L., & Cartwright, J. (2010). 3D seismic expression of km‐scale fluid escape pipes from offshore Namibia: 3D seismic expression of km‐scale fluid escape pipes. Basin Research, 22, 481–501. https://doi.org/10.1111/j.1365‐2117.2010.00461.x
    [Google Scholar]
  92. Mountjoy, J. J., Barnes, P. M., & Pettinga, J. R. (2009). Morphostructure and evolution of submarine canyons across an active margin: Cook Strait sector of the Hikurangi Margin, New Zealand. Marine Geology, 260(1), 45–68.
    [Google Scholar]
  93. Mulder, T., & Syvitski, J. P. M. (1995). Turbidity currents generated at river mouths during exceptional discharges to the world oceans. The Journal of Geology, 103(3), 285–299.
    [Google Scholar]
  94. Mulder, T., Syvitski, J. P. M., Migeon, S., & Faugères, J. C. (2003). Marine hyperpycnal flows: Initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 20(6), 861–882.
    [Google Scholar]
  95. Naranjo‐Vesga, J., Ortiz‐Karpf, A., Wood, L., Jobe, Z., Paniagua‐Arroyave, J. F., Shumaker, L., Mateus‐Tarazona, D., & Galindo, P. (2020). Regional controls in the distribution and morphometry of deep‐water gravitational deposits along a convergent tectonic margin. Southern Caribbean of Colombia. Marine and Petroleum Geology, 121, 104639.
    [Google Scholar]
  96. Nittrouer, C. A., Austin, J. A., Field, M. E., Kravitz, J. H., Syvitski, J. P., & Wiberg, P. L. (2009). Continental margin sedimentation: From sediment transport to sequence stratigraphy. International Association of Sedimentologists, Special Publication, 37 549 p.
    [Google Scholar]
  97. Nugraha, H. D., Jackson, C. A.‐L., Johnson, H. D., & Hodgson, D. M. (2020). Lateral variability in strain along the toewall of a mass transport deposit: A case study from the Makassar Strait, offshore Indonesia. Journal of the Geological Society, 177, 1261–1279. https://doi.org/10.1144/jgs2020‐071
    [Google Scholar]
  98. Ogata, K., Festa, A., & Pini, G. A. (2019). Submarine landslides: Subaqueous mass transport deposits from outcrops to seismic profiles (1st ed., Geophysical Monograph Series). Wiley, 384 p. https://doi.org/10.1002/9781119500513
    [Google Scholar]
  99. Ogata, K., Mutti, E., Pini, G. A., & Tinterri, R. (2012). Mass transport‐related stratal disruption within sedimentary melanges: Examples from the northern Apennines (Italy) and south‐central Pyrenees (Spain). Tectonophysics, 568, 185–199.
    [Google Scholar]
  100. Osborne, M. J., & Swarbrick, R. E. (1997). Mechanisms for generating overpressure in sedimentary basins: A reevaluation. AAPG Bulletin, 81, 1023–1041.
    [Google Scholar]
  101. Paton, D. A., van der Spuy, D., di Primio, R., & Horsfield, B. (2008). Tectonically induced adjustment of passive‐margin accommodation space; influence on the hydrocarbon potential of the Orange Basin, South Africa. AAPG Bulletin, 92(5), 589–609.
    [Google Scholar]
  102. Paton, D. A., Pindell, J., McDermott, K., Bellingham, P., & Horn, B. (2017). Evolution of seaward‐dipping reflectors at the onset of oceanic crust formation at volcanic passive margins: Insights from the South Atlantic. Geology, 45(5), 439–442.
    [Google Scholar]
  103. Paull, C. K., Caress, D. W., Lundsten, E., Gwiazda, R., Anderson, K., McGann, M., Conrad, J., Edwards, B., & Sumner, E. J. (2013). Anatomy of the La Jolla Submarine Canyon system; offshore southern California. Marine Geology, 335, 16–34. https://doi.org/10.1016/j.margeo.2012.10.003
    [Google Scholar]
  104. Pérez‐Díaz, L., & Eagles, G. (2014). Constraining South Atlantic growth with seafloor spreading data. Tectonics, 33, 1848–1873. https://doi.org/10.1002/2014TC003644
    [Google Scholar]
  105. Planert, L., Behrmann, J., Jokat, W., Fromm, T., Ryberg, T., Weber, M., & Haberland, C. (2017). The wide‐angle seismic image of a complex rifted margin, offshore North Namibia: Implications for the tectonics of continental breakup. Tectonophysics, Progress in Understanding Passive Continental Margins, 716, 130–148. https://doi.org/10.1016/j.tecto.2016.06.024
    [Google Scholar]
  106. Poprawski, Y., Basile, C., Cumberpatch, Z., & Eude, A. (2021). Mass transport deposits in deep‐water minibasins: Outcropping examples from the minibasins adjacent to the Bakio salt wall (Basque Country, Northern Spain). Marine and Petroleum Geology, 132, 105194. https://doi.org/10.1016/j.marpetgeo.2021.105194
    [Google Scholar]
  107. Posamentier, H. W., & Martinsen, O. J. (2011). The character and genesis of submarine mass‐transport deposits: Insights from outcrop and 3D seismic data. In R. C.Shipp & H. W.Posamentier (Eds.), Mass‐transport deposits in deepwater settings (Vol. 96, pp. 7–38). SEPM Special Publications.
    [Google Scholar]
  108. Puga‐Bernabéu, A., Webster, J. M., Beaman, R. J., & Guilbaud, V. (2011). Morphology and controls on the evolution of a mixed carbonate‐siliciclastic submarine canyon system, Great Barrier Reef margin, north‐eastern Australia. Marine Geology, 289(1), 100–116.
    [Google Scholar]
  109. Reagan, M. T., & Moridis, G. J. (2007). Oceanic gas hydrate instability and dissociation under climate change scenarios. Geophysical Research Letters, 34, 22.
    [Google Scholar]
  110. Reis, A. T., Perovano, R., Silva, C. G., Vendeville, B. C., Araujo, E., Gorini, C., & Oliveira, V. (2010). Two‐scale gravitational collapse in the Amazon Fan: A coupled system of gravity tectonics and mass‐transport processes. Journal of the Geological Society, 167(3), 593–604.
    [Google Scholar]
  111. Rowan, M. G. (2020). Salt‐and shale‐detached gravity‐driven failure of continental margins. In N.Scarselli, J.Adam, & D.Chiarella (Eds.), Regional geology and tectonics: Principles of geologic analysis (2nd ed., pp. 205–234). Elsevier.
    [Google Scholar]
  112. Rowan, M. G., Peel, F. J., & Vendeville, B. C. (2004). Gravity‐driven fold belts on passive margins. In K. R.McClay (Ed.), Thrust tectonics and hydrocarbon systems (Vol. 82, pp. 157–182). AAPG Memoir.
    [Google Scholar]
  113. Ruddiman, W., Sarnthein, M., & Expedition 108 Scientists (1989). Late Miocene to Pleistocene evolution of climate in Africa and low‐latitude Atlantic: Overview of Leg 108 results. Proceeding of the Ocean Drilling Program, Scientific Results, 108, 463–484.
    [Google Scholar]
  114. Sawyer, D. E., Flemings, P. B., Dugan, B., & Germaine, J. T. (2009). Retrogressive failures recorded in mass transport deposits in the Ursa Basin, Northern Gulf of Mexico. Journal of Geophysical Research, 114, B10102.
    [Google Scholar]
  115. Sayago‐Gil, M., Long, D., Fernandez‐Salas, L. M., Hitchen, K., Lopez‐Gonzalez, N., Diaz‐del‐Rio, V., & Duran, M. (2010). Geomorphology of the Talisman Slide (Western slope of Hatton Bank, NE Atlantic Ocean). In D. C.Mosher, R. C.Shipp, L.Moscardelli, J. D.Chaytor, C. D. P.Baxter, H. J.Lee, & R.Urgeles (Eds.), Submarine mass movements and their consequences (Vol. 28, pp. 277–288). Springer.
    [Google Scholar]
  116. Scarselli, N. (2014). Seismic analysis of gravity‐driven deformation at passive margins. (Unpublished PhD thesis). Royal Holloway, University of London 423 p.
    [Google Scholar]
  117. Scarselli, N. (2020). Submarine landslides—Architecture, controlling factors and environments. A summary. In N.Scarselli, J.Adam, & D.Chiarella (Eds.), Regional geology and tectonics: Principles of geologic analysis (2nd ed., pp. 417–439). Elsevier.
    [Google Scholar]
  118. Scarselli, N., McClay, K., & Elders, C. (2016). Seismic geomorphology of cretaceous megaslides offshore Namibia (Orange Basin): Insights into segmentation and degradation of gravity‐driven linked systems. Marine and Petroleum Geology, 75, 151–180. https://doi.org/10.1016/j.marpetgeo.2016.03.012
    [Google Scholar]
  119. Scarselli, N., McClay, K., & Elders, C. (2020). Composite slope failures: Seismic examples from the NW shelf of Australia. In K.Ogata, A.Festa, & G. A.Pini (Eds.), Submarine Landslides: Subaqueous Mass‐Transport Deposits from Outcrops to Seismic Profiles, American Geophysical Union, Geophysical Monograph (pp. 261–276). John Wiley & Sons, Inc.
    [Google Scholar]
  120. Schlager, W., & Adams, E. W. (2001). Model for the sigmoidal curvature of submarine slopes. Geology, 29(10), 883–886.
    [Google Scholar]
  121. Séranne, M., & Anka, Z. (2005). South Atlantic continental margins of Africa: A comparison of the tectonic vs climate interplay on the evolution of equatorial west Africa and SW Africa margins. Journal of African Earth Sciences, 43(1–3), 283–300. https://doi.org/10.1016/j.jafrearsci.2005.07.010
    [Google Scholar]
  122. Silva, S. R. P., Maciel, R. R., & Severino, M. C. G. (1998). Cenozoic tectonics of Amazon Mouth Basin. Geo‐Marine Letters, 18(3), 256–262.
    [Google Scholar]
  123. Smit, F. W. H., & Stemmerik, L. (2022). Seismic geomorphology of submarine landslides in the Chalk Group of the Danish Central Graben: Implications for reservoir potential. Geological Society of London. https://doi.org/10.6084/m9.figshare.c.5830839.v1
    [Google Scholar]
  124. Souza, J. M. G., Cubas, N., Rabe, C., Letouzey, J., Divies, R., Praeg, D. B., Granjeon, D., Cruz, A. M., Silva, C. G., dos Reis, A. T., & Gorini, C. (2020). Controls on overpressure evolution during the gravitational collapse of the Amazon deep‐sea fan. Marine and Petroleum Geology, 121, 104576. https://doi.org/10.1016/j.marpetgeo.2020.104576
    [Google Scholar]
  125. Stone, A. E. C. (2013). Age and dynamics of the Namib Sand Sea: A review of chronological evidence and possible landscape development models. Journal of African Earth Sciences, 82, 70–87.
    [Google Scholar]
  126. Stow, D. A. V., & Mayall, M. (2000). Deep‐water sedimentary systems: New models for the 21st century. Marine and Petroleum Geology, 17(2), 125–135.
    [Google Scholar]
  127. Strachan, L. J. (2002). Slump‐initiated and controlled syndepositional sandstone remobilization: An example from the Namurian of County Clare, Ireland. Sedimentology, 49(1), 25–41.
    [Google Scholar]
  128. Swarbrick, E., & Osborne, M. J. (1998). Mechanisms that generate abnormal pressures: An overview. In B. E.Law, G. F.Ulmishek, & V. I.Slavin (Eds.), Abnormal pressures in hydrocarbon environments (Vol. 70, pp. 13–34). AAPG Memoir.
    [Google Scholar]
  129. Tingay, M. R. P., Hillis, R. R., Swarbrick, R. E., Morley, C. K., & Damit, A. R. (2009). Origin of overpressure and pore‐pressure prediction in the Baram province, Brunei. AAPG Bulletin, 93(1), 51–74.
    [Google Scholar]
  130. Tinker, J., de Wit, M., & Brown, R. (2008a). Mesozoic exhumation of the southern Cape, South Africa, quantified using apatite fission track thermochronology. Tectonophysics, 455(1), 77–93.
    [Google Scholar]
  131. Tinker, J., de Wit, M., & Brown, R. (2008b). Linking source and sink: Evaluating the balance between onshore erosion and offshore sediment accumulation since Gondwana break‐up, South Africa. Tectonophysics, 455(1), 94–103.
    [Google Scholar]
  132. Torsvik, T. H., Rousse, S., Labails, C., & Smethurst, M. A. (2009). A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophysical Journal International, 177, 1315–1333.
    [Google Scholar]
  133. Tournadour, E., Mulder, T., Borgomano, J., Hanquiez, V., Ducassou, E., & Gillet, H. (2015). Origin and architecture of a Mass Transport Complex on the northwest slope of Little Bahama Bank (Bahamas): Relations between off‐bank transport, bottom current sedimentation and submarine landslides. Sedimentary Geology, 317, 9–26. https://doi.org/10.1016/j.sedgeo.2014.10.003
    [Google Scholar]
  134. Trincardi, F., & Argnani, A. (1990). Gela submarine slide: A major basin‐wide event in the plio‐quaternary foredeep of Sicily. Geo‐Marine Letters, 10(1), 13–21.
    [Google Scholar]
  135. Trincardi, F., & Field, M. E. (1992). Collapse and flow of lowstand shelf‐margin deposits: An example from the eastern Tyrrhenian Sea, Italy. Marine Geology, 105(1), 77–94.
    [Google Scholar]
  136. Trincardi, F., & Normark, W. R. (1989). Pleistocene Suvero slide, Paola basin, southern Italy. Marine and Petroleum Geology, 6(4), 324–335.
    [Google Scholar]
  137. Twichell, D. C., Chaytor, J. D., ten Brink, U. S., & Buczkowski, B. (2009). Morphology of late Quaternary submarine landslides along the US Atlantic continental margin. Marine Geology, 264(1), 4–15.
    [Google Scholar]
  138. Uenzelmann‐Neben, G., Schlüter, P., & Weigelt, E. (2007). Cenozoic oceanic circulation within the South African gateway: Indications from seismic stratigraphy. South African Journal of Geology, 110(2–3), 275–294.
    [Google Scholar]
  139. Urgeles, R., Bahk, J.‐J., Lee, S.‐H., Horozal, S., Cukur, D., Kim, S.‐P., Kim, G.‐Y., Jeong, S.‐W., & Um, I.‐K. (2019). Tsunami hazard from submarine landslides: Scenario‐based assessment in the Ulleung Basin, East Sea (Japan Sea). Geosciences Journal, 23, 439–460. https://doi.org/10.1007/s12303‐018‐0044‐x
    [Google Scholar]
  140. U.S. Geological Survey . (2009). Shuttle Radar Topography Mission (SRTM). https://doi.org/10.3133/fs20093087
    [Google Scholar]
  141. van Weering, T. C. E., Nielsen, T., Kenyon, N. H., Akentieva, K., & Kuijpers, A. H. (1998). Sediments and sedimentation at the NE Faeroe continental margin; contourites and large‐scale sliding. Marine Geology, 152(1), 159–176.
    [Google Scholar]
  142. Völker, D., Geersen, J., Behrmann, J. H., & Weinrebe, W. R. (2012). Submarine mass wasting off Southern Central Chile: Distribution and possible mechanisms of slope failure at an active continental margin. In Y.Yamada, K.Kawamura, K.Ikehara, Y.Ogawa, R.Urgeles, D.Mosher, J.Chaytor, & M.Strasser (Eds.), Submarine mass movements and their consequences. Advances in Natural and Technological Hazards Research (Vol. 31 pp. 379–389). Springer. https://doi.org/10.1007/978‐94‐007‐2162‐3_34
    [Google Scholar]
  143. Ward, N., Seely, M., & Lancaster, N. (1983). On the antiquity of the Namib. South African Journal of Science, 79, 175–183.
    [Google Scholar]
  144. Watson, S. J., Mountjoy, J. J., & Crutchley, G. J. (2020). Tectonic and geomorphic controls on the distribution of submarine landslides across active and passive margins, eastern New Zealand. Geological Society, London, Special Publications, 500(1), 477–494.
    [Google Scholar]
  145. Welbon, A. I. F., Brockbank, P. J., Brunsden, D., & Olsen, T. S. (2007). Characterizing and producing from reservoirs in landslides: Challenges and opportunities. In S. J.Jolley, D.Barr, J. J.Walsh, & R. J.Knipe (Eds.), Structurally complex reservoirs (Vol. 292, pp. 49–74). Geological Society, London, Special Publications.
    [Google Scholar]
  146. Woodcock, N. H. (1979). The use of slump structures as palaeoslope orientation estimators. Sedimentology, 26(1), 83–99.
    [Google Scholar]
  147. Wu, N., Jackson, C. A.‐L., Johnson, H. D., Hodgson, D. M., Clare, M. A., Nugraha, H. D., & Li, W. (2021). The formation and implications of giant blocks and fluid escape structures in submarine lateral spreads. Basin Research, 33, 1711–1730. https://doi.org/10.1111/bre.12532
    [Google Scholar]
  148. Xu, W., & Germanovich, L. N. (2006). Excess pore pressure resulting from methane hydrate dissociation in marine sediments: A theoretical approach. Journal of Geophysical Research, 111, B1.
    [Google Scholar]
  149. Zhang, J., Wu, S., Hu, G., Yue, D., Xu, Z., Chen, C., Zhang, K., Wang, J., & Wen, S. (2021). Role of shale deformation in the structural development of a deepwater gravitational system in the Niger Delta. Tectonics, 40, e2020TC006491. https://doi.org/10.1029/2020TC006491
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12694
Loading
/content/journals/10.1111/bre.12694
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): deepwater; Namibia; offshore; passive margin; slides; slumps
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error