1887
Volume 35, Issue 2
  • E-ISSN: 1365-2117

Abstract

[

Integration of detrital zircon core–rim ages from syn‐ to post‐orogenic intervals from the Alleghenian–Ouachita–Marathon foreland and vicinity. The presence and absence of core–rim age clusters A, B and C can be used to reconstruct complicated sediment dispersal and recycling processes during the post‐orogenic stage.

, Abstract

Detrital zircon (DZ) geochronology has become a popular tool in provenance studies during the past two decades. However, similar zircon crystallization ages from different source regions greatly hamper the interpretation of sediment dispersal and recycling processes. The Alleghenian–Ouachita–Marathon (AOM) foreland and vicinity in North America is a region where some dominant DZ age groups could come from both the southern Appalachians in the eastern United States and the Gondwanan terranes in Mexico. In this study, we present 1045 new DZ U–Pb ages and 81 DZ core–rim age pairs in lower Permian sandstone in the Permian Basin and Miocene sandstone in the eastern Gulf of Mexico (GOM). These new data were integrated with published DZ single U–Pb age and core–rim ages from syn‐ to post‐orogenic strata in the Permian Basin, Marathon foldbelt, southern Appalachian foreland basin and eastern GOM to interpret the sediment‐dispersal models in the AOM foreland and eastern GOM. Our models show that during the Leonardian Stage, sediments derived from the Appalachians were first delivered to the US midcontinent and then recycled to the Permian Basin; during the Miocene, sediment from the Appalachians fluxed to the eastern GOM, with no longshore mixing from the western GOM. These models based on the integration of single U–Pb and core–rim ages are consistent with published results that used other methods, including zircon single U–Pb age, zircon Hf isotopic data, zircon (U–Th)/He age, sedimentology and stratigraphy. Our results demonstrate that although some limitations exist, zircon core–rim age is a powerful tool, adding an extra constraint on the interpretation of sediment‐dispersal systems. This tool is particularly applicable to the post‐orogenic stage, during which the sediment pathways are more complicated because of the dominant input from distal sources. Insights gained in this study imply that this novel strategy of using core and rim ages could be integrated with other methods to better understand sediment dispersal.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12719
2023-03-20
2024-04-26
Loading full text...

Full text loading...

References

  1. Allred, I. J., & Blum, M. D. (2021). Early Pennsylvanian sediment routing to the Ouachita Basin (southeastern United States) and barriers to transcontinental sediment transport sourced from the Appalachian orogen based on detrital zircon U‐Pb and Hf analysis. Geosphere, 18, 350–369. https://doi.org/10.1130/GES02408.1
    [Google Scholar]
  2. Alsalem, O. B., Fan, M., Ghosh, N., & Basu, A. R. (2021). Sandstone petrographic and mudstone REE and Nd‐isotopic evidence for Middle Pennsylvanian arrival of Gondwana sediments in the Fort Worth Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 579, 110590. https://doi.org/10.1016/j.palaeo.2021.110590
    [Google Scholar]
  3. Alsalem, O. B., Fan, M., Zamora, J., Xie, X., & Griffin, W. R. (2018). Paleozoic sediment dispersal before and during the collision between Laurentia and Gondwana in the Fort Worth Basin, USA. Geosphere, 14(1), 325–342. https://doi.org/10.1130/GES01480.1
    [Google Scholar]
  4. Bea, F., Montero, P., González‐Lodeiro, F., & Talavera, C. (2007). Zircon inheritance reveals exceptionally fast crustal magma generation processes in Central Iberia during the Cambro‐Ordovician. Journal of Petrology, 48(12), 2327–2339. https://doi.org/10.1093/petrology/egm061
    [Google Scholar]
  5. Bea, F., Morales, I., Molina, J. F., Montero, P., & Cambeses, A. (2021). Zircon stability grids in crustal partial melts: Implications for zircon inheritance. Contributions to Mineralogy and Petrology, 176(3), 18. https://doi.org/10.1007/s00410‐021‐01772‐x
    [Google Scholar]
  6. Becker, T. P., Thomas, W. A., & Gehrels, G. E. (2006). Linking late Paleozoic sedimentary provenance in the Appalachian Basin to the history of Alleghanian deformation. American Journal of Science, 306(10), 777–798. https://doi.org/10.2475/10.2006.01
    [Google Scholar]
  7. Becker, T. P., Thomas, W. A., Samson, S. D., & Gehrels, G. E. (2005). Detrital zircon evidence of Laurentian crustal dominance in the lower Pennsylvanian deposits of the Alleghanian clastic wedge in eastern North America. Sedimentary Geology, 182(1), 59–86. https://doi.org/10.1016/j.sedgeo.2005.07.014
    [Google Scholar]
  8. Bickford, M., Van, W., & Zietz, I. (1986). Proterozoic history of the midcontinent region of North America. Geology, 14(6), 492–496. https://doi.org/10.1130/0091‐7613(1986)14<492:PHOTMR>2.0.CO;2
    [Google Scholar]
  9. Blatt, H., & Jones, R. L. (1975). Proportions of exposed igneous, metamorphic, and sedimentary rocks. Geological Society of America Bulletin, 86(8), 1085–1088. https://doi.org/10.1130/0016‐7606(1975)86<1085:POEIMA>2.0.CO;2
    [Google Scholar]
  10. Blum, M., & Pecha, M. (2014). Mid‐Cretaceous to Paleocene North American drainage reorganization from detrital zircons. Geology, 42(7), 607–610. https://doi.org/10.1130/G35513.1
    [Google Scholar]
  11. Blum, M. D., Milliken, K. T., Pecha, M. A., Snedden, J. W., Frederick, B. C., & Galloway, W. E. (2017). Detrital‐zircon records of Cenomanian, Paleocene, and Oligocene Gulf of Mexico drainage integration and sediment routing: Implications for scales of basin‐floor fans. Geosphere, 13(6), 2169–2205. https://doi.org/10.1130/GES01410.1
    [Google Scholar]
  12. Boettcher, S. S., & Milliken, K. L. (1994). Mesozoic‐Cenozoic unroofing of the Southern Appalachian Basin: Apatite fission track evidence from Middle Pennsylvanian sandstones. The Journal of Geology, 102(6), 655–668. https://doi.org/10.1086/629710
    [Google Scholar]
  13. Borer, J. M., & Harris, P. M. (1991). Lithofacies and cyclicity of the Yates Formation, Permian Basin: Implications for reservoir heterogeneity. AAPG Bulletin, 75(4), 726–779. https://doi.org/10.1306/0c9b283f‐1710‐11d7‐8645000102c1865d
    [Google Scholar]
  14. Campbell, I. H., Reiners, P. W., Allen, C. M., Nicolescu, S., & Upadhyay, R. (2005). He–Pb double dating of detrital zircons from the Ganges and Indus Rivers: Implication for quantifying sediment recycling and provenance studies. Earth and Planetary Science Letters, 237(3), 402–432. https://doi.org/10.1016/j.epsl.2005.06.043
    [Google Scholar]
  15. Chapman, A. D., & Laskowski, A. K. (2019). Detrital zircon U‐Pb data reveal a Mississippian sediment dispersal network originating in the Appalachian orogen, traversing North America along its southern shelf, and reaching as far as the southwest United States. Lithosphere, 11(4), 581–587. https://doi.org/10.1130/l1068.1
    [Google Scholar]
  16. Dickinson, W. R., & Gehrels, G. E. (2003). U–Pb ages of detrital zircons from Permian and Jurassic eolian sandstones of the Colorado Plateau, USA: Paleogeographic implications. Sedimentary Geology, 163(1), 29–66. https://doi.org/10.1016/S0037‐0738(03)00158‐1
    [Google Scholar]
  17. Dickinson, W. R., & Lawton, T. F. (2003). Sequential intercontinental suturing as the ultimate control for Pennsylvanian Ancestral Rocky Mountains deformation. Geology, 31(7), 609–612. https://doi.org/10.1130/0091‐7613(2003)031<0609:SISATU>2.0.CO;2
    [Google Scholar]
  18. Dutton, S. P., Kim, E. M., Broadhead, R. F., Raatz, W. D., Breton, C. L., Ruppel, S. C., & Kerans, C. (2005). Play analysis and leading‐edge oil‐reservoir development methods in the Permian basin: Increased recovery through advanced technologies. AAPG Bulletin, 89(5), 553–576. https://doi.org/10.1306/12070404093
    [Google Scholar]
  19. Eriksson, K. A., Campbell, I. H., Palin, J. M., & Allen, C. M. (2003). Predominance of Grenvillian magmatism recorded in detrital zircons from modern Appalachian rivers. The Journal of Geology, 111(6), 707–717. https://doi.org/10.1086/378338
    [Google Scholar]
  20. Fan, M., Alsalem, O. B., Tian, H., Kasprowicz, F., & Valencia, V. A. (2022). Paleozoic evolution and heterogeneity of sediment provenance in the Permian Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 588, 110820. https://doi.org/10.1016/j.palaeo.2021.110820
    [Google Scholar]
  21. Fildani, A., McKay, M. P., Stockli, D., Clark, J., Dykstra, M. L., Stockli, L., & Hessler, A. M. (2016). The ancestral Mississippi drainage archived in the late Wisconsin Mississippi deep‐sea fan. Geology, 44(6), 479–482. https://doi.org/10.1130/G37657.1
    [Google Scholar]
  22. Fischer, A. G., & Sarnthein, M. (1988). Airborne silts and dune‐derived sands in the Permian of the Delaware Basin. Journal of Sedimentary Research, 58(4), 637–643. https://doi.org/10.1306/212f8e0e‐2b24‐11d7‐8648000102c1865d
    [Google Scholar]
  23. Galloway, W. E. (2008). Depositional evolution of the Gulf of Mexico sedimentary basin. In A. D.Miall (Ed.), Sedimentary basins of the world (Vol. 5, pp. 505–549). Elsevier.
    [Google Scholar]
  24. Galloway, W. E., & Brown, L. (1973). Depositional systems and shelf‐slope relations on cratonic basin margin, uppermost Pennsylvanian of north‐central Texas. AAPG Bulletin, 57(7), 1185–1218. https://doi.org/10.1306/83D90E85‐16C7‐11D7‐8645000102C1865D
    [Google Scholar]
  25. Galloway, W. E., Whiteaker, T. L., & Ganey‐Curry, P. (2011). History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin. Geosphere, 7(4), 938–973. https://doi.org/10.1130/GES00647.1
    [Google Scholar]
  26. Gao, P., Zheng, Y.‐F., Mayne, M. J., & Zhao, Z.‐F. (2020). Miocene high‐temperature leucogranite magmatism in the Himalayan orogen. Geological Society of America Bulletin, 133(3–4), 679–690. https://doi.org/10.1130/B35691.1
    [Google Scholar]
  27. Gao, Z., Perez, N. D., Miller, B., & Pope, M. C. (2020). Competing sediment sources during Paleozoic closure of the Marathon‐Ouachita remnant ocean basin. Geological Society of America Bulletin, 132(1–2), 3–16. https://doi.org/10.1130/B35201.1
    [Google Scholar]
  28. Gehrels, G. E., Blakey, R., Karlstrom, K. E., Timmons, J. M., Dickinson, B., & Pecha, M. (2011). Detrital zircon U‐Pb geochronology of Paleozoic strata in the Grand Canyon, Arizona. Lithosphere, 3(3), 183–200. https://doi.org/10.1130/l121.1
    [Google Scholar]
  29. Gehrels, G. E., Valencia, V. A., & Ruiz, J. (2008). Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation–multicollector–inductively coupled plasma–mass spectrometry. Geochemistry, Geophysics, Geosystems, 9(3), QO3017. https://doi.org/10.1029/2007GC001805
    [Google Scholar]
  30. Hamlin, H. S. (2009). Ozona sandstone, Val Verde Basin, Texas: Synorogenic stratigraphy and depositional history in a Permian foredeep basin. AAPG Bulletin, 93(5), 573–594. https://doi.org/10.1306/01200908121
    [Google Scholar]
  31. Handford, C. R. (1980a). Facies patterns and depositional history of a Permian sabkha complex–Red Cave Formation, Texas Panhandle (p. 38). University of Texas at Austin, Bureau of Economic Geology Geological Circular 80‐9.
    [Google Scholar]
  32. Handford, C. R. (1980b). Lower Permian facies of the Palo Duro Basin, Texas: Depositional systems, shelf‐margin evolution, paleogeography, and petroleum potential (p. 31). The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 102.
    [Google Scholar]
  33. Harrison, T. M., Watson, E. B., & Aikman, A. B. (2007). Temperature spectra of zircon crystallization in plutonic rocks. Geology, 35(7), 635–638. https://doi.org/10.1130/G23505A.1
    [Google Scholar]
  34. Hentz, T. F., & Ambrose, W. A. (2019). Lowstand deltas and incised valleys of the Tannehill Sandstone (Cisco Group) of the Southern Eastern Shelf of the Permian Basin, West Texas. GCAGS Transactions, 69(1), 97–110.
    [Google Scholar]
  35. Hentz, T. F., Ambrose, W. A., & Hamlin, H. S. (2017). Upper Pennsylvanian and Lower Permian shelf‐to‐basin facies architecture and trends, Eastern Shelf of the Southern Midland Basin, West Texas (p. 68). The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations No. 282. https://doi.org/10.23867/RI0282D
    [Google Scholar]
  36. Howard, A. L., Farmer, G. L., Amato, J. M., & Fedo, C. M. (2015). Zircon U–Pb ages and Hf isotopic compositions indicate multiple sources for Grenvillian detrital zircon deposited in western Laurentia. Earth and Planetary Science Letters, 432, 300–310. https://doi.org/10.1016/j.epsl.2015.10.018
    [Google Scholar]
  37. Hurd, G. S., Kerans, C., Frost, E. L., Simo, J. A., & Janson, X. (2018). Sediment gravity‐flow deposits and three‐dimensional stratigraphic architectures of the linked Cutoff, upper Bone Spring, and upper Avalon system, Delaware Basin. AAPG Bulletin, 102(9), 1703–1737. https://doi.org/10.1306/02061817121
    [Google Scholar]
  38. Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation‐inductively coupled plasma‐mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology, 211(1), 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017
    [Google Scholar]
  39. Keppie, J. D., Nance, R., Fernández‐Suárez, J., Storey, C. D., Jeffries, T. E., & Murphy, J. B. (2006). Detrital zircon data from the Eastern Mixteca Terrane, Southern Mexico: evidence for an Ordovician—Mississippian continental rise and a Permo‐Triassic clastic wedge adjacent to Oaxaquia. International Geology Review, 48(2), 97–111. https://doi.org/10.2747/0020‐6814.48.2.97
    [Google Scholar]
  40. Kerans, C., & Fitchen, W. M. (1995). Sequence hierarchy and facies architecture of a carbonate‐ramp system: San Andres Formation of Algerita Escarpment and western Guadalupe Mountains, West Texas and New Mexico (p. 86). The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations No. 235. https://doi.org/10.23867/RI0235D
    [Google Scholar]
  41. Kerans, C., & Tinker, S. W. (1999). Extrinsic stratigraphic controls on development of the Capitan reef complex (pp. 15–36). SEPM Special Publication No. 6.
    [Google Scholar]
  42. Kessler, J. L. P., Soreghan, G. S., & Wacker, H. J. (2001). Equatorial aridity in western Pangea: Lower Permian loessite and dolomitic paleosols in northeastern New Mexico, U.S.A. Journal of Sedimentary Research, 71(5), 817–832. https://doi.org/10.1306/2dc4096b‐0e47‐11d7‐8643000102c1865d
    [Google Scholar]
  43. Kirsch, M., Keppie, J. D., Murphy, J. B., & Solari, L. A. (2012). Permian–Carboniferous arc magmatism and basin evolution along the western margin of Pangea: Geochemical and geochronological evidence from the eastern Acatlán Complex, southern Mexico. GSA Bulletin, 124(9‐10), 1607–1628. https://doi.org/10.1130/b30649.1
    [Google Scholar]
  44. Kissock, J. K., Finzel, E. S., Malone, D. H., & Craddock, J. P. (2018). Lower–Middle Pennsylvanian strata in the North American midcontinent record the interplay between erosional unroofing of the Appalachians and eustatic sea‐level rise. Geosphere, 14(1), 141–161. https://doi.org/10.1130/ges01512.1
    [Google Scholar]
  45. Kocurek, G., & Kirkland, B. L. (1998). Getting to the source: Aeolian influx to the Permian Delaware basin region. Sedimentary Geology, 117(3), 143–149. https://doi.org/10.1016/S0037‐0738(98)00024‐4
    [Google Scholar]
  46. Lawton, T. F., Blakey, R. C., Stockli, D. F., & Liu, L. (2021). Late Paleozoic (Late Mississippian–Middle Permian) sediment provenance and dispersal in western equatorial Pangea. Palaeogeography, Palaeoclimatology, Palaeoecology, 572, 110386. https://doi.org/10.1016/j.palaeo.2021.110386
    [Google Scholar]
  47. Lawton, T. F., Hunt, G. J., & Gehrels, G. E. (2010). Detrital zircon record of thrust belt unroofing in Lower Cretaceous synorogenic conglomerates, central Utah. Geology, 38(5), 463–466. https://doi.org/10.1130/G30684.1
    [Google Scholar]
  48. Lawton, T. F., Schellenbach, W. L., & Nugent, A. E. (2014). Late cretaceous fluvial‐megafan and axial‐river systems in the Southern Cordilleran Foreland Basin: Drip tank member of straight Cliffs formation and adjacent strata, Southern Utah, U.S.A. Journal of Sedimentary Research, 84(5), 407–434. https://doi.org/10.2110/jsr.2014.33
    [Google Scholar]
  49. Liu, L., & Ambrose, W. A. (2022). Sediment delivery in fine‐grained deepwater system, lower Permian Dean formation, Midland Basin. AAPG Bulletin, 106(1), 119–144. https://doi.org/10.1306/07272119141
    [Google Scholar]
  50. Liu, L., Ambrose, W. A., Lawton, T. F., & Stockli, D. F. (2021). Tectonic controls on the evolution of mixed carbonate‐siliciclastic systems: Insights from the late Palaeozoic Ouachita‐Marathon Foreland, United States. Basin Research, 33(4), 2281–2302. https://doi.org/10.1111/bre.12557
    [Google Scholar]
  51. Liu, L., & Stockli, D. F. (2020). U‐Pb ages of detrital zircons in lower Permian sandstone and siltstone of the Permian Basin, west Texas, USA: Evidence of dominant Gondwanan and peri‐Gondwanan sediment input to Laurentia. Geological Society of America Bulletin, 132(1–2), 245–262. https://doi.org/10.1130/b35119.1
    [Google Scholar]
  52. Liu, L., Stockli, D. F., Lawton, T. F., Xu, J., Stockli, L. D., Fan, M., & Nadon, G. C. (2022). Reconstructing source‐to‐sink systems from detrital zircon core and rim ages. Geology, 50, 691–696. https://doi.org/10.1130/G49904.1
    [Google Scholar]
  53. Lopez, R., Cameron, K. L., & Jones, N. W. (2001). Evidence for Paleoproterozoic, Grenvillian, and Pan‐African age Gondwanan crust beneath northeastern Mexico. Precambrian Research, 107(3), 195–214. https://doi.org/10.1016/S0301‐9268(00)00140‐6
    [Google Scholar]
  54. Marsh, J. H., & Stockli, D. F. (2015). Zircon U–Pb and trace element zoning characteristics in an anatectic granulite domain: Insights from LASS‐ICP‐MS depth profiling. Lithos, 239, 170–185. https://doi.org/10.1016/j.lithos.2015.10.017
    [Google Scholar]
  55. Martens, U., Weber, B., & Valencia, V. A. (2010). U/Pb geochronology of Devonian and older Paleozoic beds in the southeastern Maya block, Central America: Its affinity with peri‐Gondwanan terranes. Geological Society of America Bulletin, 122(5–6), 815–829. https://doi.org/10.1130/b26405.1
    [Google Scholar]
  56. Mazzullo, S., Hipke, W., Wiedemeir, T., Wingate, T., Gaylord, M., & Reid, A. (1989). Dynamic stratigraphy of the Tubb and Dean formations (early Permian), northern Midland basin, Texas. West Texas Geological Society Bulletin, 29, 5–11.
    [Google Scholar]
  57. Mazzullo, S. J. (1982). Stratigraphy and depositional mosaics of Lower Clear Fork and Wichita Groups (Permian), Northern Midland Basin, Texas. AAPG Bulletin, 66(2), 210–227. https://doi.org/10.1306/03B59A67‐16D1‐11D7‐8645000102C1865D
    [Google Scholar]
  58. Moecher, D. P., Kelly, E. A., Hietpas, J., & Samson, S. D. (2019). Proof of recycling in clastic sedimentary systems from textural analysis and geochronology of detrital monazite: Implications for detrital mineral provenance analysis. Geological Society of America Bulletin, 131(7–8), 1115–1132. https://doi.org/10.1130/B31947.1
    [Google Scholar]
  59. Moecher, D. P., & Samson, S. D. (2006). Differential zircon fertility of source terranes and natural bias in the detrital zircon record: Implications for sedimentary provenance analysis. Earth and Planetary Science Letters, 247(3), 252–266. https://doi.org/10.1016/j.epsl.2006.04.035
    [Google Scholar]
  60. Mueller, P. A., Heatherington, A. L., Foster, D. A., Thomas, W. A., & Wooden, J. L. (2014). The Suwannee suture: Significance for Gondwana‐Laurentia terrane transfer and formation of Pangaea. Gondwana Research, 26(1), 365–373. https://doi.org/10.1016/j.gr.2013.06.018
    [Google Scholar]
  61. Murphy, J. B., Fernández‐Suárez, J., Keppie, J. D., & Jeffries, T. E. (2004). Contiguous rather than discrete Paleozoic histories for the Avalon and Meguma terranes based on detrital zircon data. Geology, 32(7), 585–588. https://doi.org/10.1130/g20351.1
    [Google Scholar]
  62. Nance, H. S. (1988). Interfingering of evaporites and red beds: An example from the Queen/Grayburg formation, Texas. Sedimentary Geology, 56(1), 357–381. https://doi.org/10.1016/0037‐0738(88)90061‐9
    [Google Scholar]
  63. Park, H., Barbeau, D. L., Rickenbaker, A., Bachmann‐Krug, D., & Gehrels, G. (2010). Application of foreland basin Detrital‐Zircon geochronology to the reconstruction of the Southern and Central Appalachian Orogen. The Journal of Geology, 118(1), 23–44. https://doi.org/10.1086/648400
    [Google Scholar]
  64. Petrus, J. A., & Kamber, B. S. (2012). VizualAge: A novel approach to laser ablation ICP‐MS U‐Pb geochronology data reduction. Geostandards and Geoanalytical Research, 36(3), 247–270. https://doi.org/10.1111/j.1751‐908X.2012.00158.x
    [Google Scholar]
  65. Poag, C. W., & Sevon, W. D. (1989). A record of Appalachian denudation in postrift Mesozoic and Cenozoic sedimentary deposits of the U.S. Middle Atlantic continental margin. Geomorphology, 2(1), 119–157. https://doi.org/10.1016/0169‐555X(89)90009‐3
    [Google Scholar]
  66. Poulaki, E. M., Stockli, D. F., Flansburg, M. E., Gevedon, M. L., Stockli, L. D., Barnes, J. D., Soukis, K., Kitajima, K., & Valley, J. W. (2021). Zircon U‐Pb and geochemical signatures in high‐pressure, low‐temperature metamorphic rocks as recorders of subduction zone processes, Sikinos and Ios islands, Greece. Chemical Geology, 582, 120447. https://doi.org/10.1016/j.chemgeo.2021.120447
    [Google Scholar]
  67. Pujols, E. J., & Stockli, D. F. (2021). Zircon (U‐Th)/(He‐Pb) double‐dating constraints on the interplay between thrust deformation and foreland basin architecture, Sevier foreland basin, Utah. Geosphere, 17(6), 1890–1913. https://doi.org/10.1130/GES02372.1
    [Google Scholar]
  68. Rahl, J. M., Reiners, P. W., Campbell, I. H., Nicolescu, S., & Allen, C. M. (2003). Combined single‐grain (U‐Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone Utah. Geology, 31(9), 761–764. https://doi.org/10.1130/G19653.1
    [Google Scholar]
  69. Ross, C. A. (1986). Paleozoic evolution of southern margin of Permian basin. Geological Society of America Bulletin, 97(5), 536–554. https://doi.org/10.1130/0016‐7606(1986)97<536:peosmo>2.0.co;2
    [Google Scholar]
  70. Ruppel, S. C. (2019). Anatomy of a Paleozoic basin: The Permian Basin, U.S.A.: Introduction, overview, and evolution. In S. C.Ruppel (Ed.), Anatomy of a Paleozoic Basin: The Permian Basin, USA (Vol. 1, pp. 1–27). The University of Texas, Bureau of Economic Geology Report of Investigations No. 285 and American Association of Petroleum Geologists Memoir 118.
    [Google Scholar]
  71. Ruppel, S. C., & Ariza, E. (2002). Cycle and sequence stratigraphy of the Clear Fork reservoir at South Wasson field: Gaines County, Texas. In Integrated outcrop and subsurface studies of the interwell environment of carbonate reservoirs: Clear Fork (Leonardian‐age) reservoirs, west Texas and New Mexico (pp. 59–93). U.S. Department of Energy Final Technical Report DE‐AC26‐98BC15105.
    [Google Scholar]
  72. Ruppel, S. C., & Ward, W. B. (2013). Outcrop‐based characterization of the Leonardian carbonate platform in west Texas: Implications for sequence‐stratigraphic styles in the Lower Permian. AAPG Bulletin, 97(2), 223–250. https://doi.org/10.1306/05311212013
    [Google Scholar]
  73. Saylor, J. E., Stockli, D. F., Horton, B. K., Nie, J., & Mora, A. (2012). Discriminating rapid exhumation from syndepositional volcanism using detrital zircon double dating: Implications for the tectonic history of the Eastern Cordillera, Colombia. Geological Society of America Bulletin, 124(5–6), 762–779. https://doi.org/10.1130/B30534.1
    [Google Scholar]
  74. Sharman, G. R., & Malkowski, M. A. (2020). Needles in a haystack: Detrital zircon UPb ages and the maximum depositional age of modern global sediment. Earth‐Science Reviews, 203, 103109. https://doi.org/10.1016/j.earscirev.2020.103109
    [Google Scholar]
  75. Sharman, G. R., Sharman, J. P., & Sylvester, Z. (2018). detritalPy: A Python‐based toolset for visualizing and analysing detrital geo‐thermochronologic data. The Depositional Record, 4(2), 202–215. https://doi.org/10.1002/dep2.45
    [Google Scholar]
  76. Sharman, G. R., Sylvester, Z., & Covault, J. A. (2019). Conversion of tectonic and climatic forcings into records of sediment supply and provenance. Scientific Reports, 9(1), 1–7. https://doi.org/10.1038/s41598‐019‐39754‐6
    [Google Scholar]
  77. Silver, B. A., & Todd, R. G. (1969). Permian cyclic strata, northern Midland and Delaware basins, west Texas and southeastern New Mexico. AAPG Bulletin, 53(11), 2223–2251. https://doi.org/10.1306/5D25C94D‐16C1‐11D7‐8645000102C1865D
    [Google Scholar]
  78. Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., & Whitehouse, M. J. (2008). Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249(1), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005
    [Google Scholar]
  79. Smye, A. J., & Stockli, D. F. (2014). Rutile U–Pb age depth profiling: A continuous record of lithospheric thermal evolution. Earth and Planetary Science Letters, 408, 171–182. https://doi.org/10.1016/j.epsl.2014.10.013
    [Google Scholar]
  80. Snedden, J. W., Cunningham, R. C., & Virdell, J. W. (2020). The northern Gulf of Mexico offshore super basin: Reservoirs, source rocks, seals, traps, and successes. AAPG Bulletin, 104(12), 2603–2642. https://doi.org/10.1306/09092020054
    [Google Scholar]
  81. Soreghan, G. S., & Soreghan, M. J. (2013). Tracing clastic delivery to the Permian Delaware Basin, U.S.A.: Implications for paleogeography and circulation in westernmost equatorial pangea. Journal of Sedimentary Research, 83(9), 786–802. https://doi.org/10.2110/jsr.2013.63
    [Google Scholar]
  82. Soreghan, M., Swift, M., & Soreghan, G. (2018). Provenance of Permian eolian and related strata in the North American midcontinent: Tectonic and climatic controls on sediment dispersal in western tropical Pangea. In R. V.Ingersoll, T. F.Lawton, & S. A.Graham (Eds.), Tectonics, sedimentary basins, and provenance: A celebration of William R. Dickinson's career (pp. 661–687). Geological Society of America Special Paper 540.
    [Google Scholar]
  83. Soto‐Kerans, G. M., Stockli, D. F., Janson, X., Lawton, T. F., & Covault, J. A. (2020). Orogen proximal sedimentation in the Permian foreland basin. Geosphere, 16(2), 567–593. https://doi.org/10.1130/GES02108.1
    [Google Scholar]
  84. Thomas, W. A. (2011). Detrital‐zircon geochronology and sedimentary provenance. Lithosphere, 3(4), 304–308. https://doi.org/10.1130/rf.l001.1
    [Google Scholar]
  85. Thomas, W. A., Becker, T. P., Samson, S. D., & Hamilton, M. A. (2004). Detrital zircon evidence of a recycled orogenic foreland provenance for Alleghanian clastic‐wedge sandstones. The Journal of Geology, 112(1), 23–37. https://doi.org/10.1086/379690
    [Google Scholar]
  86. Thomas, W. A., Gehrels, G. E., Greb, S. F., Nadon, G. C., Satkoski, A. M., & Romero, M. C. (2017). Detrital zircons and sediment dispersal in the Appalachian foreland. Geosphere, 13(6), 2206–2230. https://doi.org/10.1130/ges01525.1
    [Google Scholar]
  87. Thomas, W. A., Gehrels, G. E., Lawton, T. F., Satterfield, J. I., Romero, M. C., & Sundell, K. E. (2019). Detrital zircons and sediment dispersal from the Coahuila terrane of northern Mexico into the Marathon foreland of the southern Midcontinent. Geosphere, 15(4), 1102–1127. https://doi.org/10.1130/ges02033.1
    [Google Scholar]
  88. Thomas, W. A., Gehrels, G. E., Sundell, K. E., Greb, S. F., Finzel, E. S., Clark, R. J., Malone, D. H., Hampton, B. A., & Romero, M. C. (2020). Detrital zircons and sediment dispersal in the eastern Midcontinent of North America. Geosphere, 16(3), 817–843. https://doi.org/10.1130/GES02152.1
    [Google Scholar]
  89. Thomas, W. A., Gehrels, G. E., Sundell, K. E., & Romero, M. C. (2021). Detrital‐zircon analyses, provenance, and late Paleozoic sediment dispersal in the context of tectonic evolution of the Ouachita orogen. Geosphere, 17(4), 1214–1247. https://doi.org/10.1130/GES02288.1
    [Google Scholar]
  90. Tian, H., Fan, M., Valencia, V. A., Chamberlain, K., Stern, R. J., & Waite, L. (2022). Mississippian southern Laurentia tuffs came from a northern Gondwana arc. Geology, 50(3), 266–271. https://doi.org/10.1130/G49502.1
    [Google Scholar]
  91. Tian, H., Fan, M., Victor, V., Chamberlain, K., Waite, L., Stern, R. J., & Locke, M. (2022). Rapid early Permian tectonic reorganization of Laurentia's plate margins: Evidence from volcanic tuffs in the Permian Basin, USA. Gondwana Research, 111, 76–94. https://doi.org/10.1016/j.gr.2022.07.003
    [Google Scholar]
  92. Van Siclen, D., & Merriam, D. (1964). Depositional topography in relation to cyclic sedimentation. In D. F.Merriam (Ed.), Symposium on cyclic sedimentation (Vol. 169, pp. 533–539). Kansas Geological Survey Bulletin.
    [Google Scholar]
  93. Vermeesch, P. (2004). How many grains are needed for a provenance study?Earth and Planetary Science Letters, 224(3), 441–451. https://doi.org/10.1016/j.epsl.2004.05.037
    [Google Scholar]
  94. Viele, G., & Thomas, W. (1989). Tectonic synthesis of the Ouachita orogenic belt. In R. D.Hatcher, Jr., W. A.Thomas, & G. W.Viele (Eds.), The Appalachian‐Ouachita orogenic belt in the United States (Vol. F‐2, pp. 695–728). Geological Society of America, Geology of North America.
    [Google Scholar]
  95. Waite, L., Fan, M., Collins, D., Gehrels, G., & Stern, R. J. (2020). Detrital zircon provenance evidence for an early Permian longitudinal river flowing into the Midland Basin of west Texas. International Geology Review, 62(9), 1–21. https://doi.org/10.1080/00206814.2020.1756930
    [Google Scholar]
  96. Walker, W., Jobe, Z. R., Sarg, J. F., & Wood, L. (2021). Progradational slope architecture and sediment distribution in outcrops of the mixed carbonate‐siliciclastic Bone Spring Formation, Permian Basin, west Texas. Geosphere, 17(4), 1268–1293. https://doi.org/10.1130/GES02355.1
    [Google Scholar]
  97. Wang, W., & Bidgoli, T. S. (2019). Detrital zircon geochronologic constraints on patterns and drivers of continental‐scale sediment dispersal in the Late Mississippian. Geochemistry, Geophysics, Geosystems, 20(11), 5522–5543. https://doi.org/10.1029/2019gc008469
    [Google Scholar]
  98. Wang, W., Bidgoli, T. S., & Sturmer, D. M. (2022). Exploring the influence of Late Mississippian to Middle Pennsylvanian tectonics on sediment transport through detrital zircon geochronology, southwestern Kansas and northwestern Arkansas. Palaeogeography, Palaeoclimatology, Palaeoecology, 586, 110750. https://doi.org/10.1016/j.palaeo.2021.110750
    [Google Scholar]
  99. Weber, B., Iriondo, A., Premo, W. R., Hecht, L., & Schaaf, P. (2007). New insights into the history and origin of the southern Maya block, SE México: U–Pb–SHRIMP zircon geochronology from metamorphic rocks of the Chiapas massif. International Journal of Earth Sciences, 96(2), 253–269. https://doi.org/10.1007/s00531‐006‐0093‐7
    [Google Scholar]
  100. Weber, B., Schaaf, P., Valencia, V. A., Iriondo, A., & Ortega‐Gutiérrez, F. (2006). Provenance ages of late Paleozoic sandstones (Santa Rosa Formation) from the Maya Block, SE México: Implications on the tectonic evolution of western Pangea. Revista Mexicana de Ciencias Geológicas, 23(3), 262–276.
    [Google Scholar]
  101. Weber, B., Valencia, V. A., Schaaf, P., & Gutiérrez, F. O. (2009). Detrital zircon ages from the Lower Santa Rosa formation, Chiapas: Implications on regional Paleozoic stratigraphy. Revista Mexicana de Ciencias Geológicas, 26(1), 260–276.
    [Google Scholar]
  102. Weber, B., Valencia, V. A., Schaaf, P., Pompa‐Mera, V., & Ruiz, J. (2008). Significance of provenance ages from the Chiapas Massif complex (Southeastern Mexico): Redefining the Paleozoic basement of the Maya block and its evolution in a Peri‐Gondwanan Realm. The Journal of Geology, 116(6), 619–639. https://doi.org/10.1086/591994
    [Google Scholar]
  103. Weislogel, A. L., Hunt, B., Lisi, A., Lovell, T., & Robinson, D. M. (2015). Detrital zircon provenance of the eastern Gulf of Mexico subsurface: Constraints on Late Jurassic paleogeography and sediment dispersal of North America. In T. H.Anderson, A. N.Didenko, C. L.Johnson, A. I.Khanchuk, & J. H.MacDonald, Jr. (Eds.), Late Jurassic margin of Laurasia: A record of faulting accommodating plate rotation (pp. 89–105). Geological Society of America Special Paper 513. https://doi.org/10.1130/2015.2513(02)
    [Google Scholar]
  104. Whitmeyer, S. J., & Karlstrom, K. E. (2007). Tectonic model for the Proterozoic growth of North America. Geosphere, 3(4), 220–259. https://doi.org/10.1130/ges00055.1
    [Google Scholar]
  105. Winker, C. D. (1982). Cenozoic shelf margins, northwestern Gulf of Mexico. Gulf Coast Association of Geological Societies Transactions, 32, 427–448.
    [Google Scholar]
  106. Wright, W. R. (2011). Pennsylvanian paleodepositional evolution of the greater Permian Basin, Texas and New Mexico: Depositional systems and hydrocarbon reservoir analysis. AAPG Bulletin, 95(9), 1525–1555. https://doi.org/10.1306/01031110127
    [Google Scholar]
  107. Xie, X., Anthony, J. M., & Busbey, A. B. (2019). Provenance of Permian Delaware Mountain Group, central and southern Delaware Basin, and implications of sediment dispersal pathway near the southwestern terminus of Pangea. International Geology Review, 61(3), 361–380. https://doi.org/10.1080/00206814.2018.1425925
    [Google Scholar]
  108. Xie, X., O'Connor, P. M., & Alsleben, H. (2016). Carboniferous sediment dispersal in the Appalachian–Ouachita juncture: Provenance of selected late Mississippian sandstones in the Black Warrior Basin, Mississippi, United States. Sedimentary Geology, 342, 191–201. https://doi.org/10.1016/j.sedgeo.2016.07.007
    [Google Scholar]
  109. Xu, J., Snedden, J. W., Fulthorpe, C. S., Stockli, D. F., Galloway, W. E., & Sickmann, Z. T. (2022). Quantifying the relative contributions of Miocene rivers to the deep Gulf of Mexico using detrital zircon geochronology: Implications for the evolution of Gulf Basin circulation and regional drainage. Basin Research, 34, 1143–1163. https://doi.org/10.1111/bre.12653
    [Google Scholar]
  110. Xu, J., Snedden, J. W., Stockli, D. F., Fulthorpe, C. S., & Galloway, W. E. (2017). Early Miocene continental‐scale sediment supply to the Gulf of Mexico Basin based on detrital zircon analysis. Geological Society of America Bulletin, 129(1–2), 3–22. https://doi.org/10.1130/b31465.1
    [Google Scholar]
  111. Xu, J., Stockli, D. F., & Snedden, J. W. (2017). Enhanced provenance interpretation using combined U–Pb and (U–Th)/He double dating of detrital zircon grains from lower Miocene strata, proximal Gulf of Mexico Basin, North America. Earth and Planetary Science Letters, 475, 44–57. https://doi.org/10.1016/j.epsl.2017.07.024
    [Google Scholar]
  112. Zambito, J. J., IV, & Benison, K. C. (2013). Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite. Geology, 41(5), 587–590. https://doi.org/10.1130/g34078.1
    [Google Scholar]
  113. Zimmermann, S., Mark, C., Chew, D., & Voice, P. J. (2018). Maximising data and precision from detrital zircon U‐Pb analysis by LA‐ICPMS: The use of core‐rim ages and the single‐analysis concordia age. Sedimentary Geology, 375, 5–13. https://doi.org/10.1016/j.sedgeo.2017.12.020
    [Google Scholar]
  114. Zotto, S. C., Moecher, D. P., Niemi, N. A., Thigpen, J. R., & Samson, S. D. (2020). Persistence of Grenvillian dominance in Laurentian detrital zircon age systematics explained by sedimentary recycling: Evidence from detrital zircon double dating and detrital monazite textures and geochronology. Geology, 48(8), 792–797. https://doi.org/10.1130/G47530.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12719
Loading
/content/journals/10.1111/bre.12719
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): core and rim; depth profiling; detrital zircon; sediment dispersal; sediment recycling

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error