1887
Volume 35, Issue 3
  • E-ISSN: 1365-2117

Abstract

[

To understand the source‐to‐sink relationship of the Zambezi River‐marginal sea system, we present the first provenance study based on Sr‐Nd‐Hf isotopic results of river sands from mainstream and tributaries of the Zambezi River. We find that the isotopic signatures of the river sediments are largely consistent with its underlying basements of the different reaches, which suggests the local geology control of the river sedimentary provenance.

, Abstract

Understanding the source‐to‐sink relationship of a large river‐marginal sea system is key to using marginal sea sediments to infer terrestrial erosion/weathering variations. The Zambezi River, the largest river in the southern African region, has been transporting large amounts of sediments to the southwestern Indian Ocean since the Cretaceous, which have been often used to infer river integration history and uplift of the southern African region. Thus, characterizing the geochemical features of different parts of the river is the key to correctly interpreting terrestrial sediment signals in the southwestern Indian Ocean drill cores. Here we present the first provenance study based on Sr‐Nd‐Hf isotopic results of river sands from mainstream and tributaries of the Zambezi River. We find that the isotopic signatures of the river sediments are largely consistent with its underlying basements of the different reaches, which suggests the local geology control of the river sedimentary provenance. This result is in line with the studies of the provenance of the Yellow and Yangtze Rivers, which suggest that sediments transported by the upper reaches of large rivers draining interior continents are primarily stored in sedimentary basins on land instead of marginal seas. This study suggests caution must be taken in using sediments of marginal seas to infer erosion history of the hinterland mountain uplift and exhumation.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12746
2023-05-19
2024-04-26
Loading full text...

Full text loading...

References

  1. Baby, G., Guillocheau, F., Braun, J., Robin, C., & Dall'Asta, M. (2020). Solid sedimentation rates history of the southern African continental margins: Implications for the uplift history of the south African plateau. Terra Nova, 32, 53–65. https://doi.org/10.1111/ter.12435
    [Google Scholar]
  2. Bao, Z., Zong, C., Fang, L., Yuan, H., Chen, K., & Dai, M. (2018). Determination of Hf‐Sr‐Nd isotopic ratios by MC‐ICP‐MS using rapid acid digestion after flux‐free fusion in geological materials. Acta Geochimica, 37, 244–256. https://doi.org/10.1007/s11631‐017‐0207‐x
    [Google Scholar]
  3. Ben‐Israel, M., Armon, M., ASTER Team , & Matmon, A. (2022). Sediment residence times in large rivers quantified using a cosmogenic nuclides based transport model and implications for buffering of continental erosion signals. Journal of Geophysical Research: Earth Surface, 127, e2021JF00641. https://doi.org/10.1029/2021JF006417
    [Google Scholar]
  4. Blum, J. D., & Erel, Y. (2003). Radiogenic isotopes in weathering and hydrology. Treatise on Geochemistry, 5, 365–369. https://doi.org/10.1016/B0‐08‐043751‐6/05082‐9
    [Google Scholar]
  5. Blum, M. D. (2007). Glacial‐Interglacial scale fluvial responses. Archives, 2, 995–1010. https://doi.org/10.1016/B0‐444‐52747‐8/00117‐4
    [Google Scholar]
  6. Bouvier, A., Vervoort, J. D., & Patchett, P. J. (2008). The Lu‐Hf and Sm‐Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273, 48–57. https://doi.org/10.1016/j.epsl.2008.06.010
    [Google Scholar]
  7. Burke, K., & Gunnel, Y. (2008). The African erosion surface: A continental‐scale synthesis of geomorphology, tectonics, and environmental change over the past 180 million years. Memoir of the Geological Society of America, 201, 66. https://doi.org/10.1130/2008.1201
    [Google Scholar]
  8. Clift, P. D., Hodges, K. V., Heslop, D., Hannigan, R., Van Long, H., & Calves, G. (2008). Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geoscience, 1, 875–880. https://doi.org/10.1038/ngeo351
    [Google Scholar]
  9. Clift, P. D., Wan, S., & Blusztajn, J. (2014). Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: A review of competing proxies. Earth‐Science Reviews, 130, 86–102. https://doi.org/10.1016/j.earscirev.2014.01.002
    [Google Scholar]
  10. De Waele, B., Liégeois, J. P., Nemchin, A. A., & Tembo, F. (2006). Isotopic and geochemical evidence of Proterozoic episodic crustal reworking within the Irumide Belt of south‐central Africa, the southern metacratonic boundary of an Archaean Bangweulu Craton. Precambrian Research, 148, 225–256. https://doi.org/10.1016/j.precamres.2006.05.006
    [Google Scholar]
  11. Fekete, B. M., Vörösmarty, C. J., & Grabs, W. (1999). Global, composite runoff fields based on observed river discharge and simulated water balances. WMO‐Global Runoff Data Centre Report, 22. Global Runoff Data Centre, Koblenz.
  12. Gammelsrød, T. (1992). Variation in shrimp abundance on the Sofala Bank, Mozambique, and its relation to the Zambezi River runoff. Estuarine, Coastal and Shelf Science, 35, 91–103. https://doi.org/10.1016/S0272‐7714(05)80058‐7
    [Google Scholar]
  13. Garçon, M., Chauvel, C., France‐Lanord, C., Huyghe, P., & Lavé, J. (2013). Continental sedimentary processes decouple Nd and Hf isotopes. Geochimica et Cosmochimica Acta, 121, 177–195. https://doi.org/10.1016/j.gca.2013.07.027
    [Google Scholar]
  14. Garçon, M., Chauvel, C., France‐Lanord, C., Limonta, M., & Garzanti, E. (2014). Which minerals control the Nd‐Hf‐Sr‐Pb isotopic compositions of river sediments?Chemical Geology, 364, 42–55. https://doi.org/10.1016/j.chemgeo.2013.11.018
    [Google Scholar]
  15. Garzanti, E. (2016). From static to dynamic provenance analysis—Sedimentary petrology upgraded. Sedimentary Geology, 336, 3–13. https://doi.org/10.1016/j.sedgeo.2015.07.010
    [Google Scholar]
  16. Garzanti, E., Padoan, M., Setti, M., López‐Galindo, A., & Villa, I. M. (2014). Provenance versus weathering control on the composition of tropical river mud (southern Africa). Chemical Geology, 366, 61–74. https://doi.org/10.1016/j.chemgeo.2013.12.016
    [Google Scholar]
  17. Garzanti, E., Pastore, G., Resentini, A., Vezzoli, G., Vermeesch, P., Ncube, L., Van Niekerk, H. J., Jouet, G., & Dall'Asta, M. (2021). The segmented Zambezi sedimentary system from source to sink: 1. Sand petrology and heavy minerals. The Journal of Geology, 129, 343–369. https://doi.org/10.1086/715792
    [Google Scholar]
  18. Garzanti, E., Pastore, G., Stone, A., Vainer, S., Vermeesch, P., & Resentini, A. (2022). Provenance of Kalahari Sand: Paleoweathering and recycling in a linked fluvial‐aeolian system. Earth‐Science Reviews, 224, 103867. https://doi.org/10.1016/j.earscirev.2021.103867
    [Google Scholar]
  19. Grantham, G. H., Manhica, A. D. S. T., Armstrong, R. A., Kruger, F. J., & Loubser, M. (2011). New SHRIMP, Rb/Sr and Sm/Nd isotope and whole rock chemical data from Central Mozambique and western Dronning Maud Land, Antarctica: Implications for the nature of the eastern margin of the Kalahari Craton and the amalgamation of Gondwana. Journal of African Earth Sciences, 59, 74–100. https://doi.org/10.1016/j.jafrearsci.2010.08.005
    [Google Scholar]
  20. Hall, I. R., Hemming, S. R., LeVay, L. J., Barker, S., Berke, M. A., Brentegani, L., Caley, T., Cartagena‐Sierra, A., Charles, C. D., Coenen, J. J., Crespin, J. G., Franzese, A. M., Gruetzner, J., Han, X., Hines, S. K. V., Jimenez Espejo, F. J., Just, J., Koutsodendris, A., Kubota, K., … Zhang, H. (2017). Expedition 361 summary. In Proceedings of the International Ocean Discovery Program, 361. International Ocean Discovery Program. https://doi.org/10.14379/iodp.proc.361.101.2017
    [Google Scholar]
  21. Han, W., Ma, H., Fang, W., Cheng, H., Li, Y., Li, B., Miao, W., & Hai, Q. (2021). U‐Pb detrital zircon ages and geochemical features of the Jingxing formation, (Qamdo Basin, Tibet: Implications): Inferences for the Metallogenic model of the east Tethys evaporite. Minerals, 11, 745. https://doi.org/10.3390/min11070745
    [Google Scholar]
  22. Hay, W. W., Shaw, C. A., & Wold, C. N. (1989). Mass‐balanced paleogeographic reconstructions. Geologische Rundschau, 78, 207–242. https://doi.org/10.1007/BF01988362
    [Google Scholar]
  23. He, M., Zheng, H., Bookhagen, B., & Clift, P. D. (2014). Controls on erosion intensity in the Yangtze River basin tracked by U‐Pb detrital zircon dating. Earth‐Science Reviews, 136, 121–140. https://doi.org/10.1016/j.earscirev.2014.05.014
    [Google Scholar]
  24. He, M., Zheng, H., & Clift, P. D. (2013). Zircon U‐Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China. Chemical Geology, 360, 186–203. https://doi.org/10.1016/j.chemgeo.2013.10.020
    [Google Scholar]
  25. He, S., Li, R., Wang, C., Gu, P., Yu, P., Shi, C., & Zha, X. (2013). Research on the formation age of Ningduo rock Group in Changdu Block: Evidence for the existence of basement in the north Qiangtang. Earth Science Frontiers, 20, 15–24 (in Chinese).
    [Google Scholar]
  26. Jelsma, H. A., Vinyu, M. L., Wijbrans, J. R., Verdurmen, E. A. T., Valbracht, P. J., & Davies, G. R. (1996). Constraints on Archaean crustal evolution of the Zimbabwe craton: A U‐Pb zircon, Sm‐Nd and Pb‐Pb whole‐rock isotope study. Contributions to Mineralogy and Petrology, 124, 55–70. https://doi.org/10.1007/s004100050173
    [Google Scholar]
  27. Johnson, S. P., De Waele, B., Tembo, F., Katongo, C., Tani, K., Chang, Q., Iizuka, T., & Dunkley, D. (2007). Geochemistry, geochronology and isotopic evolution of the Chewore‐Rufunsa terrane, southern Irumide Belt: A Mesoproterozoic continental margin arc. Journal of Petrology, 48, 1411–1441. https://doi.org/10.1093/petrology/egm025
    [Google Scholar]
  28. Jonell, T. N., Carter, A., Böning, P., Pahnke, K., & Clift, P. D. (2017). Climatic and glacial impact on erosion patterns and sediment provenance in the Himalayan rain shadow, Zanskar River, NW India. GSA Bulletin, 129, 820–836. https://doi.org/10.1130/B31573.1
    [Google Scholar]
  29. Jourdan, F., Bertrand, H., Schärer, U., Blichert‐Toft, J., Féraud, G., & Kampunzu, A. B. (2007). Major and trace element and Sr, Nd, Hf, and Pb isotope compositions of the Karoo large igneous province, Botswana‐Zimbabwe: Lithosphere vs mantle plume contribution. Journal of Petrology, 48, 1043–1077. https://doi.org/10.1093/petrology/egm010
    [Google Scholar]
  30. Jung, S. J. A., Davies, G. R., Ganssen, G. M., & Kroon, D. (2004). Stepwise Holocene aridification in NE Africa deduced from dust‐borne radiogenic isotope records. Earth and Planetary Science Letters, 221, 27–37. https://doi.org/10.1016/S0012‐821X(04)00095‐0
    [Google Scholar]
  31. Just, J., Schefuß, E., Kuhlmann, H., Stuut, J. B. W., & Pätzold, J. (2014). Climate induced sub‐basin source‐area shifts of Zambezi River sediments over the past 17 ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 410, 190–199. https://doi.org/10.1016/j.palaeo.2014.05.045
    [Google Scholar]
  32. Kong, P., Jia, J., & Zheng, Y. (2014). Time constraints for the Yellow River traversing the Sanmen Gorge. Geochemistry, Geophysics, Geosystems, 15, 395–407. https://doi.org/10.1002/2013GC004912
    [Google Scholar]
  33. Kröner, A., Willner, A. P., Hegner, E., Jaeckel, P., & Nemchin, A. (2001). Single zircon ages, PT evolution and Nd isotopic systematics of high‐grade gneisses in southern Malawi and their bearing on the evolution of the Mozambique belt in southeastern Africa. Precambrian Research, 109, 257–291. https://doi.org/10.1016/S0301‐9268(01)00150‐4
    [Google Scholar]
  34. Lin, A., Yang, Z., Sun, Z., & Yang, T. (2001). How and when did the Yellow River develop its square bend?Geology, 29, 951–954. https://doi.org/10.1130/0091‐7613(2001)029<0951:HAWDTY>2.0.CO;2
    [Google Scholar]
  35. Liu, S., Li, J., Stockli, D. F., Song, C., Nie, J., Peng, T., Wang, X., He, K., Hui, Z., & Zhang, J. (2015). Late tertiary reorganizations of deformation in northeastern Tibet constrained by stratigraphy and provenance data from eastern Longzhong Basin. Journal of Geophysical Research: Solid Earth, 120, 5804–5821. https://doi.org/10.1002/2015JB011949
    [Google Scholar]
  36. Luttinen, A., Kurhila, M., Puttonen, R., Whitehouse, M., & Andersen, T. (2022). Periodicity of Karoo rift zone magmatism inferred from zircon ages of silicic rocks: Implications for the origin and environmental impact of the large igneous province. Gondwana Research, 107, 107–122. https://doi.org/10.1016/j.gr.2022.03.005
    [Google Scholar]
  37. Malusà, M. G., & Fitzgerald, P. G. (2020). The geologic interpretation of the detrital thermochronology record within a stratigraphic framework, with examples from the European Alps, Taiwan and the Himalayas. Earth‐Science Reviews, 201, 103074. https://doi.org/10.1016/j.earscirev.2019.103074
    [Google Scholar]
  38. Manda, B. W. C., Cawood, P. A., Spencer, C. J., Prave, T., Robinson, R., & Roberts, N. M. W. (2019). Evolution of the Mozambique Belt in Malawi constrained by granitoid U‐Pb, Sm‐Nd and Lu‐Hf isotopic data. Gondwana Research, 68, 93–107. https://doi.org/10.1016/j.gr.2018.11.004
    [Google Scholar]
  39. Métivier, F., Gaudemer, Y., Tapponnier, P., & Klein, M. (1999). Mass accumulation rates in Asia during the Cenozoic. Geophysical Journal International, 137, 280–318. https://doi.org/10.1046/j.1365‐246X.1999.00802.x
    [Google Scholar]
  40. Meyer, I., Davies, G. R., & Stuut, J. B. W. (2011). Grain size control on Sr‐Nd isotope provenance studies and impact on paleoclimate reconstructions: An example from deep‐sea sediments offshore NW Africa. Geochemistry, Geophysics, Geosystems, 12, Q03005. https://doi.org/10.1029/2010GC003355
    [Google Scholar]
  41. Milliman, J. D., & Syvitski, J. P. M. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. The Journal of Geology, 100, 525–544. https://doi.org/10.1086/629606
    [Google Scholar]
  42. Möller, A., Mezger, K., & Schenk, V. (1998). Crustal age domains and the evolution of the continental crust in the Mozambique Belt of Tanzania: Combined Sm‐Nd, Rb‐Sr, and Pb‐Pb isotopic evidence. Journal of Petrology, 39, 749–783.
    [Google Scholar]
  43. Moore, A. E. (1999). A reappraisal of epeirogenic flexure axes in southern Africa. South African Journal of Geology, 102, 363–376. https://doi.org/10.10520/EJC‐942c6e6ad
    [Google Scholar]
  44. Nie, J., Horton, B. K., Saylor, J. E., Mora, A., Mange, M., Garzione, C. N., Basu, A., Moreno, C. J., Caballero, V., & Parra, M. (2012). Integrated provenance analysis of a convergent retroarc foreland system: U‐Pb ages, heavy minerals, Nd isotopes, and sandstone compositions of the Middle Magdalena Valley basin, northern Andes, Colombia. Earth‐Science Reviews, 110, 111–126. https://doi.org/10.1016/j.earscirev.2011.11.002
    [Google Scholar]
  45. Nie, J., Stevens, T., Rittner, M., Stockli, D., Garzanti, E., Limonta, M., Bird, A., Andò, S., Vermeesch, P., Saylor, J., Lu, H., Breecker, D., Hu, X., Liu, S., Resentini, A., Vezzoli, G., Peng, W., Carter, A., Ji, S., & Pan, B. (2015). Loess plateau storage of northeastern Tibetan plateau‐derived Yellow River sediment. Nature Communications, 6, 1–10. https://doi.org/10.1038/ncomms9511
    [Google Scholar]
  46. Paola, C., Heller, P., & Angevine, C. (1992). The large‐scale dynamics of grainsize variation in alluvial basins, 1: Theory. Basin Research, 4, 73–90. https://doi.org/10.1111/j.1365‐2117.1992.tb00145.x
    [Google Scholar]
  47. Pullen, A., Kapp, P., McCallister, A. T., Chang, H., Gehrels, G. E., Garzione, C. N., Heermance, R. V., & Ding, L. (2011). Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications. Geology, 39, 1031–1034. https://doi.org/10.1130/G32296.1
    [Google Scholar]
  48. Ran, L., Wang, S., Fan, X., Min, S., Zhao, J., Zhang, R., & Zeng, G. (2009). River channel change at Toudaoguai section and its response to water and sediment supply of the Upper Yellow River. Acta Geographica Sinica, 5, 531–540 (in Chinese). https://doi.org/10.11821/xb200905002
    [Google Scholar]
  49. Resentini, A., Andò, S., Garzanti, E., Malusà, M. G., Pastore, G., Vermeesch, P., Chanvry, E., & Dall'Asta, M. (2020). Zircon as a provenance tracer: Coupling Raman spectroscopy and U‐Pb geochronology in source‐to‐sink studies. Chemical Geology, 555, 119828. https://doi.org/10.1016/j.chemgeo.2020.119828
    [Google Scholar]
  50. Riggs, N. R., Lehman, T. M., Gehrels, G. E., & Dickinson, W. R. (1996). Detrital zircon link between headwaters and terminus of the Upper Triassic Chinle‐Dockum paleoriver system. Science, 273, 97–100. https://doi.org/10.1126/science.273.5271.97
    [Google Scholar]
  51. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. P. (2016). Environmental signal propagation in sedimentary systems across timescales. Earth‐Science Reviews, 153, 7–29. https://doi.org/10.1016/j.earscirev.2015.07.012
    [Google Scholar]
  52. Ronco, P., Fasolato, G., & Di Silvio, G. (2006). The case of the Zambezi River in Mozambique: Some investigations on solid transport phenomena downstream Cahora Bassa Dam. In. Proceeding of International Conference on Fluvial Hydraulics, Riverflow, 143, 1345–1354.
    [Google Scholar]
  53. Simon, M. H., Babin, D. P., Goldstein, S. L., Cai, M. Y., Liu, T., Han, X., Haws, A. A., Johns, M., Lear, C., & Hemming, S. R. (2020). Development of a protocol to obtain the composition of terrigenous detritus in marine sediments‐a pilot study from international ocean discovery program expedition 361. Chemical Geology, 535, 119449. https://doi.org/10.1016/j.chemgeo.2019.119449
    [Google Scholar]
  54. Singletary, S. J., Hanson, R. E., Martin, M. W., Crowley, J. L., Bowring, S. A., Key, R. M., Ramokate, L. V., Direng, B. B., & Krol, M. A. (2003). Geochronology of basement rocks in the Kalahari Desert, Botswana, and implications for regional Proterozoic tectonics. Precambrian Research, 121, 47–71. https://doi.org/10.1016/S0301‐9268(02)00201‐2
    [Google Scholar]
  55. Spaliviero, M., De Dapper, M., & Maló, S. (2014). Flood analysis of the Limpopo River basin through past evolution reconstruction and a geomorphological approach. Natural Hazards and Earth System Sciences, 14, 2027–2039. https://doi.org/10.5194/nhess‐14‐2027‐2014
    [Google Scholar]
  56. Sun, J., Chai, Y., Wang, G., Zhang, G., & Li, J. (2010). Review on effects of sediment on the water quality of the Yellow River. Journal of Sediment Research, 1, 72–80 (in Chinese).
    [Google Scholar]
  57. Sun, W. H., Zhou, M. F., Gao, J. F., Yang, Y. H., Zhao, X. F., & Zhao, J. H. (2009). Detrital zircon U‐Pb geochronological and Lu‐Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze block, SW China. Precambrian Research, 172, 99–126. https://doi.org/10.1016/j.precamres.2009.03.010
    [Google Scholar]
  58. Taylor, A. K., Berke, M. A., Castañeda, I. S., Koutsodendris, A., Campos, H., Hall, I. R., Hemming, S. R., LeVay, L. J., Sierra, A. C., O'Connor, K., & Expedition 361 Scientists . (2021). Plio‐pleistocene continental hydroclimate and Indian Ocean Sea surface temperatures at the southeast African margin. Paleoceanography and Paleoclimatology, 36, e2020PA004186. https://doi.org/10.1029/2020PA004186
    [Google Scholar]
  59. Tofelde, S., Bernhardt, A., Guerit, L., & Romans, B. W. (2021). Times associated with source‐to‐sink propagation of environmental signals during landscape transience. Frontiers in Earth Science, 9, 227. https://doi.org/10.3389/feart.2021.628315
    [Google Scholar]
  60. Vainer, S., Erel, Y., & Matmon, A. (2018). Provenance and depositional environments of Quaternary sediments in the southern Kalahari Basin. Chemical Geology, 476, 352–369. https://doi.org/10.1016/j.chemgeo.2017.11.031
    [Google Scholar]
  61. Vermeesch, P. (2012). On the visualisation of detrital age distributions. Chemical Geology, 312‐313, 190–194. https://doi.org/10.1016/j.chemgeo.2012.04.021
    [Google Scholar]
  62. Vogt, M., Kröner, A., Poller, U., Sommer, H., Muhongo, S., & Wingate, M. T. D. (2006). Archaean and Palaeoproterozoic gneisses reworked during a Neoproterozoic (Pan‐African) high‐grade event in the Mozambique belt of East Africa: Structural relationships and zircon ages from the Kidatu area, Central Tanzania. Journal of African Earth Sciences, 45, 139–155. https://doi.org/10.1016/j.jafrearsci.2006.01.012
    [Google Scholar]
  63. Walford, H. L., White, N. J., & Sydow, J. C. (2005). Solid sediment load history of the Zambezi Delta. Earth and Planetary Science Letters, 238, 49–63. https://doi.org/10.1016/j.epsl.2005.07.014
    [Google Scholar]
  64. Wang, L., Liu, C., Gao, X., & Zhang, H. (2014). Provenance and paleogeography of the late cretaceous Mengyejing formation, Simao Basin, southeastern Tibetan plateau: Whole‐rock geochemistry, U‐Pb geochronology, and Hf isotopic constraints. Sedimentary Geology, 304, 44–58. https://doi.org/10.1016/j.sedgeo.2014.02.003
    [Google Scholar]
  65. Wang, L. J., Griffin, W. L., Yu, J. H., & O'Reilly, S. Y. (2010). Precambrian crustal evolution of the Yangtze block tracked by detrital zircons from Neoproterozoic sedimentary rocks. Precambrian Research, 177, 131–144. https://doi.org/10.1016/j.precamres.2009.11.008
    [Google Scholar]
  66. Wang, L. J., Griffin, W. L., Yu, J. H., & O'Reilly, S. Y. (2013). U‐Pb and Lu‐Hf isotopes in detrital zircon from Neoproterozoic sedimentary rocks in the northern Yangtze block: Implications for Precambrian crustal evolution. Gondwana Research, 23, 1261–1272. https://doi.org/10.1016/j.gr.2012.04.013
    [Google Scholar]
  67. Wei, Q., Li, D., Wang, G., & Zheng, J. (2007). Zircon SHRIMP U‐Pb dating and geochemical characteristics of Chabaoma formation volcanic rocks in northern Tibetan plateau and its petrogenesis. Acta Petrologica Sinica, 23, 2727–2736 (in Chinese).
    [Google Scholar]
  68. Weislogel, A. L., Graham, S. A., Chang, E. Z., Wooden, J. L., & Gehrels, G. E. (2010). Detrital zircon provenance from three turbidite depocenters of the middle‐upper Triassic Songpan‐Ganzi complex, Central China: Record of collisional tectonics, erosional exhumation, and sediment production. GSA Bulletin, 122, 2041–2062. https://doi.org/10.1130/B26606.1
    [Google Scholar]
  69. Weislogel, A. L., Graham, S. A., Chang, E. Z., Wooden, J. L., Gehrels, G. E., & Yang, H. (2006). Detrital zircon provenance of the late Triassic Songpan‐Ganzi complex: Sedimentary record of collision of the north and South China blocks. Geology, 34, 97–100. https://doi.org/10.1130/G23141.1
    [Google Scholar]
  70. Willenbring, J. K., & Von Blanckenburg, F. (2010). Long‐term stability of global erosion rates and weathering during late‐Cenozoic cooling. Nature, 465, 211–214. https://doi.org/10.1038/nature09044
    [Google Scholar]
  71. Wittmann, H., von Blanckenburg, F., Maurice, L., Guyot, J. L., & Kubik, P. W. (2011). Recy‐cling of Amazon floodplain sediment quantified by cosmogenic 26Al and 10Be. Geology, 39, 467–470. https://doi.org/10.1130/G31829.1
    [Google Scholar]
  72. Wu, Z., Ye, P., Hu, D., Zhang, W., & Zhou, C. (2007). U‐Pb isotopic dating of zircons from porphyry granite of the Fenghuoshan Mts, northern Tibetan plateau and its geological significance. Geoscience, 21, 435–442 (in Chinese).
    [Google Scholar]
  73. Xu, Y., Luo, Z., Huang, X., He, B., Xiao, L., Xie, L., & Shi, Y. (2008). Zircon U‐Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume. Geochemica et Cosmochemica Acts, 72, 3084–3104. https://doi.org/10.1016/j.gca.2008.04.019
    [Google Scholar]
  74. Xue, H., Wang, Y., Fang, M., Wang, C., Wan, D., & Zuo, Y. (2009). Zircon U‐Pb SHRIMP ages of the Taiping (calc‐alkaline)‐Huangshan (alkaline) composite intrusion: Constraints on Mesozoic lithospheric thinning of the southeastern Yangtze craton, China. Science in China Series D: Earth Sciences, 52, 1756–1770. https://doi.org/10.1007/s11430‐009‐0133‐9
    [Google Scholar]
  75. Yang, J., Gao, S., Chen, C., Tang, Y., Yuan, H., Gong, H., Xie, S., & Wang, J. (2009). Episodic crustal growth of North China as revealed by U‐Pb age and Hf isotopes of detrital zircons from modern rivers. Geochimica et Cosmochimica Acta, 73, 2660–2673. https://doi.org/10.1016/j.gca.2009.02.007
    [Google Scholar]
  76. Zhang, H., Li, M., Peng, W., Zhang, Z., & Nie, J. (2022). No major temporal provenance variation on the Chinese loess plateau since the late Miocene—Insight from stable heavy mineral ratios. Geosystems and Geoenvironment, 1, 100022. https://doi.org/10.1016/j.geogeo.2022.100022
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12746
Loading
/content/journals/10.1111/bre.12746
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): provenance; southern Africa; Sr‐Nd‐Hf isotope; Zambezi River

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error