1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

This study provides a sedimentological, stratigraphic and palaeocurrent investigation of Upper Eocene to Lower Oligocene deep‐sea fan deposits found in the central part of the Pindos foreland basin in western Greece. According to facies analysis, the examined succession at Amfilochia area has 13 sedimentary facies and 10 facies and sub‐facies associations. Depositional elements include abyssal plain pelagics, outer fan, inner fan, and slope deposits. Outer fan sediments are classified as lobe‐axis, lobe‐off‐axis, lobe‐fringe, and distant lobe‐fringe deposits, while inner fan sediments are classified as channel‐fill, crevasse‐splay, internal and external levee deposits. The stratigraphic study shows an upward shift from abyssal plain pelagics to outer, inner fan, and finally slope deposits, implying submarine fan system progradation and progressive infilling of a deep‐water sediment depocentre. The sediments were deposited in the foredeep of the Pindos foreland system and correspond to the system's underfilled stage, when sedimentation was unable to exceed the accommodation provided by lithospheric flexure. They point to deposition near the onset of the Pindos orogen, after the closure of the Pindos basin because of the collision of the Apulian with the Pelagonian microplate during the Cretaceous‐Palaeogene period. Palaeocurrent data from sole marks show bipolar directions associated with two distinct spreading sub‐marine fan deposits. As a result, the study region was split into Upper (major SE‐direction flow) and Lower (major NW‐direction flow) parts, indicating that axial flows were predominant during sediment deposition. However, as the deposition of the elements continued, the progradation of both systems constrained the space accommodation because of the increased basin sediment supply and forced an increase in the degree of basin confinement that changed the compensational to aggradational stacking pattern. The goals of this research are to develop an updated facies model for these deep‐sea fans as well as a robust correlation framework for the various stratigraphic units in the central Pindos foreland basin. This research also connects the stratigraphic development of deep‐sea fan deposits to the evolutionary phases of the Pindos foreland system, providing fresh insights into the palaeogeographic circumstances in the Pindos foreland basin.

,

3D model reconstruction illustrating the depositional setting of the Pindos Foreland Basin during the Late Eocene–Early Oligocene.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12804
2024-01-07
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/1/bre12804.html?itemId=/content/journals/10.1111/bre.12804&mimeType=html&fmt=ahah

References

  1. Allen, J. R. L. (1968). Current Ripples North‐Holland (Vol. 433).
    [Google Scholar]
  2. Allen, J. R. L. (1982). Sedimentary structures: Their character and physical basis, vols 1 and 2 (pp. 593–663). Elsevier.
    [Google Scholar]
  3. Allen, J. R. L., & Leeder, M. R. (1980). Criteria for the instability of upper‐stage plane beds. Sedimentology, 27, 209–217. https://doi.org/10.1111/j.1365‐3091.1980.tb01171.x
    [Google Scholar]
  4. Amerman, R., Nelson, E. P., Gardner, M. H., & Trudgill, B. (2011). Submarine mass‐transport deposits of the Permian cutoff formation, West Texas, U.S.A.: Internal architecture and controls on overlying reservoir sand deposition. In R. C.Shipp, P.Weimer, & H. W.Posamentier (Eds.), Mass‐transport deposits in deepwater settings (Vol. 96). SEPM Society for Sedimentary Geology.
    [Google Scholar]
  5. Armitage, D. A., Romans, B. W., Covault, J. A., & Graham, S. A. (2009). The influence of mass‐transport‐deposit surface topography on the evolution of turbidite architecture: The Sierra Contreras, Tres Pasos Formation (Cretaceous), southern Chile. Journal of Sedimentary Research, 79(5), 287–301. https://doi.org/10.2110/jsr.2009.035
    [Google Scholar]
  6. Arnott, R. W. C., & Hand, B. C. (1989). Bedforms, primary structures and grain fabric in the presence of suspended sediment rain. Journal of Sedimentary Research, 59, 1062–1069. https://doi.org/10.1111/sed.12776
    [Google Scholar]
  7. Aubouin, J. (1959). Contribution a I'etudegeologique de la Greceseptrionale: les confins de 1′Epire et de la Thessalie. Annales Géologiques des Pays Helléniques, 9, 279–295.
    [Google Scholar]
  8. Aubouin, J. (1964). Geosynclines: developments in geotectonics (Vol. 1, p. 355). Elsevier.
    [Google Scholar]
  9. Avramidis, P., & Zelilidis, A. (2001). The nature of deep‐marine sedimentation and palaeocurrent trends as an evidence of Pindos foreland basin fill conditions. Episodes, 24, 252–256. https://doi.org/10.18814/epiiugs/2001/v24i4/005
    [Google Scholar]
  10. Avramidis, P., Zelilidis, A., Vakalas, I., & Kontopoulos, N. (2002). Interactions between tectonic activity and eustatic sea‐level changes in the Pindos and Mesohellenic basins, NW Greece: Basin evolution and hydrocarbon potential. Journal of Petroleum Geology, 25(1), 53–82. https://doi.org/10.1111/j.1747‐5457.2002.tb00099.x
    [Google Scholar]
  11. Baas, J. H. (1994). A flume study on the development and equilibrium morphology of current ripples in very fine sand. Sedimentology, 41, 185–209. https://doi.org/10.1111/j.1365‐3091.1994.tb01400.x
    [Google Scholar]
  12. Baas, J. H. (1999). An empirical model for the development and equilibrium morphology of current ripples in fine sand. Sedimentology, 46, 123–138. https://doi.org/10.1046/j.1365‐3091.1999.00206.x
    [Google Scholar]
  13. Baas, J. H. (2004). Conditions for formation of massive turbiditic sandstones by primary depositional processes. Sedimentary Geology, 166(3–4), 293–310. https://doi.org/10.1016/j.sedgeo.2004.01.011
    [Google Scholar]
  14. Baas, J. H., Best, J. L., Peakall, J., & Wang, M. (2009). A phase diagram for turbulent, transitional, and laminar clay suspension flows. Journal of Sedimentary Research, 79, 162–183.
    [Google Scholar]
  15. Baas, J. H., van Dam, R. L., & Storms, J. E. A. (2000). Duration of deposition from decelerating high‐density turbidity currents. Sedimentary Geology, 136(1–2), 71–88. https://doi.org/10.1016/S0037‐0738(00)00088‐9
    [Google Scholar]
  16. Beaumont, C. (1981). Foreland basins. Geophysical Journal International, 65(2), 291–329. https://doi.org/10.1016/0040‐1951(94)00123‐Q
    [Google Scholar]
  17. Beerbower, J. R. (1964). Cyclothems and cyclic depositional mechanisms in alluvial plain sedimentation. Kansas State Geological Survey Bulletin, 169(1), 32–42.
    [Google Scholar]
  18. Bega, Z. (2015). Hydrocarbon exploration potential of Montenegro—A brief review. Journal of Petroleum Geology, 38(3), 317–330. https://doi.org/10.1111/jpg.12613
    [Google Scholar]
  19. Bernoulli, D., & Renz, O. (1970). Jurassic carbonate facies and new ammonite faunas from western Greece. Eclogae Geologicae Helvetiae, 63, 573–607.
    [Google Scholar]
  20. Bersezio, R., Felletti, F., Riva, R., & Micucci, L. (2009). Bed thickness and facies trends of turbiditic sandstone bodies. Unravelling the effects of basin confinement, depositional processes and modes of sediment supply. In B.Kneller & B.McCaffrey (Eds.), External controls on deep‐water depositional systems (Vol. 92, pp. 303–321). SEPM Special Publication.
    [Google Scholar]
  21. Best, J. L., & Bridge, J. S. (1992). The morphology and dynamics of low amplitude bedwaves upon upper stage plane beds and the preservation of planar laminae. Sedimentology, 39, 737–752.
    [Google Scholar]
  22. Botziolis, C., Maravelis, A., Pantopoulos, G., Kostopoulou, S., Catuneanu, O., & Zelilidis, A. (2021). Stratigraphic and paleogeographic development of a deep‐marine foredeep: Central Pindos foreland basin, western Greece. Marine and Petroleum Geology, 128, 105012.
    [Google Scholar]
  23. Bouma, A. H. (1962). Sedimentology of some flysch deposits: A graphic approach to facies interpretation. Elsevier.
    [Google Scholar]
  24. Bourli, N., Kokkaliari, M., Iliopoulos, I., Pe‐Piper, G., Piper, D. J. W., Maravelis, A. G., & Zelilidis, A. (2019). Mineralogy of siliceous concretions, Cretaceous of Ionian zone, western Greece: Implication for diagenesis and porosity. Marine and Petroleum Geology, 105, 45–63.
    [Google Scholar]
  25. Bourli, N., Pantopoulos, G., Maravelis, A. G., Zoumpoulis, E., Iliopoulos, G., Pomoni‐Papaioannou, F., Kostopoulou, S., & Zelilidis, A. (2019). Late Cretaceous to early eocene geological history of the eastern Ionian Basin, southwestern Greece: An integrated sedimentological and bed thickness statistics analysis. Cretaceous Research, 98, 47–71.
    [Google Scholar]
  26. Brooks, M., Clews, J. E., Melis, N. S., & Underhill, J. (1988). Structural development of Neogene basins in western Greece. Basin Research, 1, 129–138. https://doi.org/10.1111/j.1365‐2117.1988.tb00010.x
    [Google Scholar]
  27. Brunt, R. L., Hodgson, D. M., Flint, S. S., Pringle, J. K., Di Celma, C., Prélat, A., & Grecula, M. (2013). Confined to unconfined: Anatomy of a base of slope succession, Karoo Basin, South Africa. Marine and Petroleum Geology, 41, 206–221. https://doi.org/10.1016/j.marpetgeo.2012.02.007
    [Google Scholar]
  28. Catuneanu, O. (2004). Basement control on flexural profiles and the distribution of foreland facies: The Dwyka Group of the Karoo Basin, South Africa. Geology, 32, 517–520. https://doi.org/10.1130/G20526.1
    [Google Scholar]
  29. Catuneanu, O. (2018). First‐order foreland cycles: interplay of flexural tectonics, dynamic loading, and sedimentation. Journal of Geodynamics, 129, 290–298. https://doi.org/10.1016/j.jog.2018.03.001
    [Google Scholar]
  30. Catuneanu, O. (2019). First‐order foreland cycles: Interplay of flexural tectonics, dynamic loading, and sedimentation. Journal of Geodynamics, 129, 290–298. https://doi.org/10.1016/j.jog.2018.03.001
    [Google Scholar]
  31. Catuneanu, O. (2020). Sequence stratigraphy of deep‐water systems. Marine and Petroleum Geology, 114, 104238.
    [Google Scholar]
  32. Cecil, C. B. (2003). The concept of autocyclic and allocyclic controls on sedimentation and stratigraphy, emphasizing the climatic variable (Vol. 77). SEPM Special Publication. https://doi.org/10.2110/pec.03.77
    [Google Scholar]
  33. Clark, J. D., & Pickering, K. T. (1996). Architectural elements and growth patterns of submarine channels: Application to hydrocarbon exploration. The American Association of Petroleum Geologists Bulletin, 80, 194–221.
    [Google Scholar]
  34. Collinson, J. D., & Thompson, D. B. (1988). Sedimentary structures (2nd ed., p. 207). Unwin Hyman. https://doi.org/10.1017/S0016756800006725
    [Google Scholar]
  35. Crampton, S. L., Allen, P. A. (1995) Recognition of forebulge unconformities associated with early stage foreland basin development: Example from the North Alpine foreland basin.
    [Google Scholar]
  36. Crowell, J. C. (1957). Origin of pebbly mudstones. GSA Bulletin, 68(8), 993–1010. https://doi.org/10.1130/0016‐7606(1957)68[993:OOPM]2.0.CO;2
    [Google Scholar]
  37. Dakin, N., Pickering, K. T., Mohrig, D., & Bayliss, N. J. (2013). Channel‐like features created by erosive submarine debris flows: Field evidence from the Middle Eocene Ainsa Basin, Spanish Pyrenees. Marine and Petroleum Geology, 41, 62–71.
    [Google Scholar]
  38. Damuth, J. E., Kolla, V., Flood, R. D., Kowsmann, R. O., Monteiro, M. C., Gorini, M. A., Pala, J. J. C., & Belderson, R. H. (1983). Distributary channel meandering and bifurcation patterns on the Amazon deep‐sea fan as revealed by long‐range side‐scan sonar (GLORIA). Geology, 11, 94–98.
    [Google Scholar]
  39. de Lamotte, D. F., Raulin, C., Mouchot, N., Wrobel‐Daveau, J. C., Blanpied, C., & Ringenbach, J. C. (2011). The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes. Tectonics, 30, TC3002. https://doi.org/10.1029/2010TC002691
    [Google Scholar]
  40. DeCelles, P. G. (2012). Foreland basin systems revisited: variations in response to tectonic settings. In C.Busby, A.Azor, & A.Pérez (Eds.), Tectonics of sedimentary basins: recent advances (pp. 405–426). Blackwell Publishing Ltd. https://doi.org/10.1002/9781444347166.ch20
    [Google Scholar]
  41. DeCelles, P. G., & Giles, K. A. (1996). Foreland basin systems. Basin Research, 8, 105–123. https://doi.org/10.1046/j.1365‐2117.1996.01491.x
    [Google Scholar]
  42. Degnan, P. J., & Robertson, A. H. F. (1998). Mesozoic‐early Tertiary passive margin evolution of the Pindos Ocean (NW Peloponnese, Greece). Sedimentary Geology, 117(1–2), 33–70.
    [Google Scholar]
  43. DeGraciansky, P. C., Dardeau, G., Lemoine, M., & Tricart, P. (1989). The inverted margin of the French Alps and forehand basin inversion. Geological Society London Special Publications, 44(1), 87–104. https://doi.org/10.1144/GSL.SP.1989.044.01.06
    [Google Scholar]
  44. Deptuck, M. E., Piper, D. J. W., Savoye, B., & Gervais, A. (2008). Dimensions and architecture of late Pleistocene submarine lobes off the northern margin of East Corsica. Sedimentology, 55, 869–898. https://doi.org/10.1111/j.1365‐3091.2007.00926.x
    [Google Scholar]
  45. Dewey, J. F., Pitman, W. C., Ryan, W. B. F., & Bonnin, J. (1973). Plate tectonics and the evolution of the alpine system. GSA Bulletin, 84(10), 3137–3180. https://doi.org/10.1130/0016‐7606(1973)84<3137:PTATEO>2.0.CO;2
    [Google Scholar]
  46. Dickinson, W. R. (1974). Plate tectonics and sedimentation. In W. R.Dickinson (Ed.), Tectonics and sedimentation (Vol. 22, pp. 1–27). Society of Economic Paleontologists and Mineralogists Special Publication. https://doi.org/10.2110/pec.74.22.0001
    [Google Scholar]
  47. Dott, R. H. (1963). Dynamics of subaqueous gravity depositional processes. AAPG Bulletin, 47(1), 104–128. https://doi.org/10.1306/BC743973‐16BE‐11D7‐8645000102C1865D
    [Google Scholar]
  48. Doutsos, T., Koukouvelas, I. K., & Xypolias, P. (2006). A new orogenic model for the External Hellenides. Geological Society, London, Special Publications, 260(1), 507–520. https://doi.org/10.1144/GSL.SP.2006.260.01.21
    [Google Scholar]
  49. Doutsos, T., Koukouvelas, J., Zelilidas, A., & Kontopoulos, N. (1994). Intracontinental wedging and post‐orogenic collapse in the mesohellenic trough. Geologische Rundschau, 83, 257–275. https://doi.org/10.1007/BF00210544
    [Google Scholar]
  50. Doutsos, T., Piper, G., Boronkay, K., & Koukouvelas, I. (1993). Kinematics of the Central Hellenides. Tectonics, 12, 936–953. https://doi.org/10.1029/93TC00108
    [Google Scholar]
  51. Faupl, P., Pavlopoulos, A., & Migiros, G. (1998). On the provenance of flysch deposits in the external Hellinides of mainland Greece: Results from heavy minerals studies. Geological Magazine, 135, 421–442. https://doi.org/10.1017/S001675689800870X
    [Google Scholar]
  52. Ferriere, J., Reynaud, J. Y., Pavlopoulos, A., Bonneau, M., Migiros, G., Chanier, F., Proust, J. N., & Gardin, S. (2004). Geologic evolution and geodynamic controls of the tertiary intramontane piggyback Meso‐Hellenic basin, Greece. Bulletin de la Société Géologique de France, 175, 361–381.
    [Google Scholar]
  53. Gardner, M. H. (1995). Tectonic and eustatic controls on the spatial architecture of mid‐cretaceous stratigraphic sequences, central western interior foreland basin of North America. In S. L.Dorobek & G. M.Ross (Eds.), Stratigraphic evolution of foreland basins (Vol. 52, pp. 243–282). Society of Economic Paleontologists and Mineralogists Special Publication.
    [Google Scholar]
  54. Garzanti, E., Doglioni, C., Vezzoli, G., & Ando, S. (2007). Orogenic belts and orogenic sediment provenance. The Journal of Geology, 115, 315–333. https://doi.org/10.1086/512755
    [Google Scholar]
  55. Gervais, A., Savoye, B., Mulder, T., & Gonthier, E. (2006). Sandy modern turbidite lobes: a new insight from high resolution seismic data. Marine and Petroleum Geology, 23, 485–502. https://doi.org/10.1016/j.marpetgeo.2005.10.006
    [Google Scholar]
  56. Gervais, A., Savoye, B., Piper, D. J. W., Mulder, T., Cremer, M., & Pichevin, L. (2004). Present morphology and depositional architecture of a sandy confined submarine system: the golo turbidite system (Eastern Margin of Corsica). In S. A.Lomas & P.Joseph (Eds.), Confined turbidite systems (Vol. 222, pp. 59–89). Geological Society Special Publication. https://doi.org/10.1144/gsl.sp.2004.222.01.05
    [Google Scholar]
  57. Groenenberg, R. M., Hodgson, D. M., Prelat, A., Luthi, S. M., & Flint, S. S. (2010). Flow‐deposit interaction in submarine lobes: Insights from outcrop observations and realizations of a process‐based numerical model. Journal of Sedimentary Research, 80(3), 252–267. https://doi.org/10.2110/jsr.2010.028
    [Google Scholar]
  58. Grundvag, S. A., Johannessen, E. P., Helland‐Hansen, W., & Plink‐Björklund, P. (2014). Depositional architecture and evolution of progradationally stacked lobe complexes in the Eocene Central Basin of Spitsbergen. Sedimentology, 61(2), 535–569. https://doi.org/10.1111/sed.12067
    [Google Scholar]
  59. Guillocheau, F., Quéméner, J.‐M., Robin, C., Joseph, P., & Broucke, O. (2004). Genetic units/parasequences of the Annot Turbidite system, SE France. In P.Joseph & S. A.Lomas (Eds.), Deep water sedimentation in the Alpine Basin of SE France. New perspectives on the Grès d'Annot and related systems (Vol. 221, pp. 181–202). Geological Society, London, Special Publication. https://doi.org/10.1144/gsl.sp.2004.221.01.10
    [Google Scholar]
  60. Harms, J. C., & Fahnestock, R. K. (1965). Stratification, bed forms, and flow phenomena (with an example from the Rio Grande). In Primary sedimentary structures and their hydrodynamic interpretation (p. 84). SEPM Special Publication. No. 12. https://doi.org/10.2110/pec.65.08.0084
    [Google Scholar]
  61. Heller, P. L., Angevine, C. L., Winslow, N. S., & Paola, C. (1988). Two‐phase stratigraphic model of foreland basin sequences. Geology, 16, 501–504.
    [Google Scholar]
  62. Hiscott, R. N. (1994). Loss of capacity, not competence, as the fundamental process governing deposition from turbidity currents. Journal of Sedimentary Research, 64, 209–214. https://doi.org/10.2110/jsr.64.209
    [Google Scholar]
  63. Hiscott, R. N. (1995). Middle Ordovician clastic rocks of the Humber zone and St. Lawrence platform. In H.Williams (Ed.), Geology of the Appalachian–Caledonian Orogen in Canada and Greenland (Vol. 6, pp. 87–98). Geological Survey of Canada, Geology of Canada.
    [Google Scholar]
  64. Hiscott, R. N., & Middleton, G. V. (1979). In L. J.Doyle & O. H.Pilkey (Eds.), Depositional mechanics of thick‐bedded sandstones at the base of a submarine slope, Tourelle Formation (Lower Ordovician) (Vol. 27, pp. 307–326). Geology of Continental Slopes. Spec. Publ. Soc. Econ. Paleontol. Mineral. No. https://doi.org/10.2110/pec.79.27.0307
    [Google Scholar]
  65. Hiscott, R. N., & Middleton, G. V. (1980). Fabric of coarse deep‐water sandstones, Tourelle Formation, Quebec, Canada. Journal of Sedimentary Research, 50(1980), 703–722. https://doi.org/10.1306/212F7AC7‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  66. Hodgson, D. M. (2009). Distribution and origin of hybrid beds in sand‐rich submarine fans of the Tanqua depocenter, Karoo Basin, South Africa. Marine and Petroleum Geology, 26, 1940–1956. https://doi.org/10.1016/j.marpetgeo.2009.02.011
    [Google Scholar]
  67. Hodgson, D. M., & Haughton, P. D. W. (2004). Impact of syndepositional faulting on gravity current behaviour and deep‐water stratigraphy: Tabernas‐Sorbas Basin, SE Spain. Geological Society, London, Special Publications, 222(1), 135–158.
    [Google Scholar]
  68. Hodgson, D. M., Kane, I. A., Flint, S. S., Brunt, R. L., & Ortiz‐Karpf, A. (2016). Time‐transgressive confinement on the slope and the progradation of basin‐floor fans: Implications for the sequence stratigraphy of deep‐water deposits. Journal of Sedimentary Research, 86, 73–86. https://doi.org/10.2110/jsr.2016.3
    [Google Scholar]
  69. Hubbard, S. M., de Ruig, M. J., & Graham, S. A. (2009). Confined channel‐levee complex development in an elongate depo‐center: Deep‐water tertiary strata of the Austrian Molasse Basin. Marine and Petroleum Geology, 26, 85–112. https://doi.org/10.1016/j.marpetgeo.2007.11.006
    [Google Scholar]
  70. Jacobshagen, V. (1986). Geologie von Griechenland (p. 363). Borntraeger.
    [Google Scholar]
  71. Jobe, Z., Lowe, D. R., & Morris, W. (2012). Climbing‐ripple successions in turbidite systems: Depositional environments, sedimentation rates and accumulation times. Sedimentology, 59, 867–898. https://doi.org/10.1111/j.1365‐3091.2011.01283.x
    [Google Scholar]
  72. Johns, D. R., Mutti, E., Rosell, J., & Séguret, M. (1981). Origin of a thick, redeposited carbonate bed in Eocene turbidites of the Hecho Group, south‐central Pyrenees, Spain. Geology, 9(4), 161–164. https://doi.org/10.1130/0091‐7613(1981)9<161:OOATRC>2.0.CO;2
    [Google Scholar]
  73. Jones, G., & Robertson, A. H. F. (1991). Tectonostratigraphy and evolution of the Mesozoic Pindosophiolite and related units, northwestern Greece. Journal of the Geological Society, 148, 267–288.
    [Google Scholar]
  74. Jordan, T. E. (1981). Thrust loads and foreland basin evolution, Cretaceous, western United States. American Association of Petroleum Geologists Bulletin, 65, 2506–2520. https://doi.org/10.1306/03B599F4‐16D1‐11D7‐8645000102C1865D
    [Google Scholar]
  75. Jordan, T. E. (1995). Retroarc foreland and related basins. In C. J.Busby & R. V.Ingersoll (Eds.), Tectonics of sedimentary basins (pp. 331–362). Blackwell Science.
    [Google Scholar]
  76. Kamberis, E., Sotiropoulos, S., Marnelis, F., & Rigakis, N. (2013). Thrust tectonics in the central part of the External Hellenides, the case of the Gavrovo thrust. Bulletin of the Geological Society of Greece, 47(2), 540–550. https://doi.org/10.12681/bgsg.11081
    [Google Scholar]
  77. Kane, I. A., & Hodgson, D. M. (2011). Sedimentological criteria to differentiate submarine channel levee subenvironments: Exhumed examples from the Rosario Fm. (Upper Cretaceous) of Baja California, Mexico, and the Fort Brown Fm. (Permian), Karoo Basin, S. Africa. Marine and Petroleum Geology, 28(3), 807–823. https://doi.org/10.1016/j.marpetgeo.2010.05.009
    [Google Scholar]
  78. Kane, I. A., Kneller, B. C., Dykstra, M., Kassem, A., & McCaffrey, W. D. (2007). Anatomy of a submarine channel‐levee: An example from Upper Cretaceous slope sediments, Rosario Formation, Baja California, Mexico. Marine and Petroleum Geology, 24, 540–563. https://doi.org/10.1016/j.marpetgeo.2007.01.003
    [Google Scholar]
  79. Karakitsios, V. (1990). Chronologie et géométrie de l'ouverture d'un bassin et de son inversion tectonique: le bassin ionien (Epire, Grèce). Mem. Sc. Terre Univ. P: et M. Curie, Paris, 91‐4, 310.
  80. Karakitsios, V. (1995). The influence of preexisting structure and halokinesis on organic matter preservation and thrust system evolution in the Ionian basin, northwestern Greece. AAPG Bulletin, 79, 960–980. https://doi.org/10.1306/8D2B2191‐171E‐11D7‐8645000102C1865D
    [Google Scholar]
  81. Karakitsios, V. (2013). Western Greece and Ionian Sea petroleum systems. AAPG Bulletin, 97(9), 1567–1595. https://doi.org/10.1306/02221312113
    [Google Scholar]
  82. Karakitsios, V., & Rigakis, N. (1996). New oil source rocks cut in Greek Ionian basin. Oil and Gas Journal, 94(7), 56–59.
    [Google Scholar]
  83. Kneller, B. C. (1995). Beyond the turbidite paradigm: Physical models for deposition of turbidites and their implications for reservoir prediction. Geological Society, London, Special Publications, 94, 31–49. https://doi.org/10.1144/GSL.SP.1995.094.01.04
    [Google Scholar]
  84. Kneller, B. C. (2003). The influence of flow parameters on turbidite slope channel architecture. Marine and Petroleum Geology, 20, 901–910. https://doi.org/10.1016/j.marpetgeo.2003.03.001
    [Google Scholar]
  85. Kneller, B. C., & Branney, M. J. (1995). Sustained high‐density turbidity currents and the deposition of thick massive sands. Sedimentology, 42, 607–616. https://doi.org/10.1111/j.1365‐3091.1995.tb00395.x
    [Google Scholar]
  86. Kneller, B., & McCaffrey, W. (1999). Depositional effects of flow nonuniformity and stratification within turbidity currents ap‐proaching a bounding slope: deflection, reflection and faciesvariation. Journal of Sedimentary Research, 69, 980–991. https://doi.org/10.2110/jsr.69.980
    [Google Scholar]
  87. Kneller, B. C., & McCaffrey, W. D. (2003). The interpretation of vertical sequences in turbidite beds: The influence of longitudinal flow structure. Journal of Sedimentary Research, 73, 706–713.
    [Google Scholar]
  88. Knudson, K. P., & Hendy, I. L. (2009). Climatic influences on sediment deposition and turbidite frequency in the Nitinat Fan, British Columbia. Marine Geology, 262(1–4), 29–38. https://doi.org/10.1016/j.margeo.2009.03.002
    [Google Scholar]
  89. Komar, P. D. (1985). The hydraulic interpretation of turbidites from their grain sizes and sedimentary structures. Sedimentology, 32, 395–407. https://doi.org/10.1111/j.1365‐3091.1985.tb00519.x
    [Google Scholar]
  90. Konstantopoulos, P., Maravelis, A., & Zelilidis, A. (2013). The implication of transfer faults in Foreland Basin evolution: Application on Pindos Foreland Basin, West Peloponnesus, Greece. Terra Nova, 25, 323–336. https://doi.org/10.1111/ter.12039
    [Google Scholar]
  91. Konstantopoulos, P., & Zelilidis, A. (2012). The geodynamic evolution of Pindos foreland basin in SW Greece. Episodes Journal of International Geoscience, 35, 501–512. https://doi.org/10.18814/epiiugs/2012/v35i4/007
    [Google Scholar]
  92. Kuenen, P. H., & Humbert, F. L. (1969). Grain size of turbidite ripples. Sedimentology, 13, 253–261. https://doi.org/10.1111/j.1365‐3091.1969.tb00172.x
    [Google Scholar]
  93. Laberg, J. S., & Vorren, T. O. (2000). Flow behaviour of the submarine glacigenic debris flows on the Bear Island Trough Mouth Fan, western Barents Sea. Sedimentology, 47, 1105–1117. https://doi.org/10.1046/j.1365‐3091.2000.00343.x
    [Google Scholar]
  94. Leclair, S. F., & Arnott, R. W. C. (2005). Parallel lamination formed by high‐density turbidity currents. Journal of Sedimentary Research, 75, 1–5. https://doi.org/10.2110/jsr.2005.001
    [Google Scholar]
  95. Leigh, S., & Hartley, A. J. (1992). (1992): Mega‐debris flow deposits from the oligo‐Miocene Pindos foreland basin, western mainland Greece: Implications for transport mechanisms in ancient deep marine basins. Sedimentology, 39, 1003–1012.
    [Google Scholar]
  96. Lowe, D. R. (1975). Water escape structures in coarse‐grained sediments. Sedimentology, 22, 157–204. https://doi.org/10.1111/j.1365‐3091.1975.tb00290.x
    [Google Scholar]
  97. Lowe, D. R. (1982). Sediment gravity flows: II. Depositional models with special reference to the deposits of high‐density turbidity currents. Journal of Sedimentary Research, 52, 279–297. https://doi.org/10.1306/212F7F31‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  98. Lowe, D. R. (1988). Suspended‐load fallout rate as an independent variable in the analysis of current structures. Sedimentology, 35, 765–776. https://doi.org/10.1111/j.1365‐3091.1988.tb01250.x
    [Google Scholar]
  99. Macauley, R. V., & Hubbard, S. M. (2013). Slope channel sedimentary processes and stratigraphic stacking, Cretaceous Tres Pasos Formation slope system, Chilean Patagonia. Marine and Petroleum Geology, 41, 146–162. https://doi.org/10.1016/j.marpetgeo.2012.02.004
    [Google Scholar]
  100. Manley, P. L., Pirmez, C., Busch, W., & Cramp, A. (1997). Grain‐size characterisation of Amazon Fan deposits and comparison to seismic facies units. In R. D.Flood, D. J.Piper, A.Klaus, & L. C.Peterson (Eds.), Proceedings of the ODP Program, Scientific Reports 155 (pp. 35–52). Ocean Drilling Program.
    [Google Scholar]
  101. Maravelis, A. G., & Zelilidis, A. (2012). Paleoclimatology and paleoecology across the Eocene/Oligocene boundary, Thrace Basin, Northeast Aegean Sea, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology, 365, 81–98. https://doi.org/10.1016/j.palaeo.2012.09.015
    [Google Scholar]
  102. Marini, M., Milli, S., Ravnås, R., & Moscatelli, M. (2015). A comparative study of confined vs. semi‐confined turbidite lobes from the Lower Messinian Laga Basin (Central Apennines, Italy): Implications for assessment of reservoir architecture. Marine and Petroleum Geology, 63, 142–165. https://doi.org/10.1016/j.marpetgeo.2015.02.015
    [Google Scholar]
  103. Maslin, M., Knutz, P. C., & Ramsay, T. (2006). Millennial‐scale sea‐level control on avulsion events on the Amazon Fan. Quaternary Science Reviews, 25(23–24), 3338–3345.
    [Google Scholar]
  104. Mayall, M., & Stewart, I. (2000). The architecture of turbidite slope channels. In P.Weimer, R. M.Slatt, J.Coleman, N. C.Rosen, H.Nelson, A. H.Bouma, M. J.Styzen, & D. T.Lawrence (Eds.), 20th Annual GCSSEPM Foundation Bob F. Perkins Research Conference 2000: Deep‐Water Reservoirs of the World, Houston, 3‐6 December 2000 (pp. 578–586).
    [Google Scholar]
  105. McCave, I., & Jones, K. (1988). Deposition of ungraded muds from high‐density non‐turbulent turbidity currents. Nature, 333, 250–252. https://doi.org/10.1038/333250a0
    [Google Scholar]
  106. McCaffrey, W. D., & Kneller, B. (2001). Process controls on the development of stratigraphic trap potential on the margins of confined turbidite systems and aids to reservoir evaluation. AAPG Bulletin, 85, 971–988. https://doi.org/10.1306/8626ca41‐173b‐11d7‐8645000102c1865d
    [Google Scholar]
  107. Miall, A. D. (1985). Architectural‐element analysis: A new method of facies analysis applied to fluvial deposits. Earth‐Science Reviews, 22, 261–308. https://doi.org/10.1016/0012‐8252(85)90001‐7
    [Google Scholar]
  108. Middleton, G.V. (1970). Experimental studies related to problems of flysch sedimentation. Flysch sedimentology in North America. 253‐272.
  109. Middleton, G. V. (1993). Sediment deposition from turbidity currents. Annual Review of Earth and Planetary Sciences, 21, 89–114. https://doi.org/10.1146/annurev.ea.21.050193.000513
    [Google Scholar]
  110. Moody, J. D., Pyles, D. R., Clark, J., & Bouroullec, R. (2012). Quantitative outcrop characterization of an analog to weakly confined submarine channel systems: Morillo 1 member, Ainsa Basin, Spain. AAPG Bulletin, 96(10), 1813–1841. https://doi.org/10.1306/01061211072
    [Google Scholar]
  111. Morris, E. A., Hodgson, D. M., Brunt, R. L., & Flint, S. (2014). Origin, evolution and anatomy of silt‐prone submarine external levees. Sedimentology, 61, 1734–1763. https://doi.org/10.1111/sed.12114
    [Google Scholar]
  112. Moscardelli, L., & Wood, L. (2008). New classification system for mass transport complexes in offshore Trinidad. Basin Research, 20(1), 73–98.
    [Google Scholar]
  113. Mulder, T., & Alexander, J. (2001). The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48, 269–299. https://doi.org/10.1046/j.1365‐3091.2001.00360.x
    [Google Scholar]
  114. Mutti, E., & Normark, W. R. (1987). Comparing examples of modern and ancient turbidite systems: Problems and concepts. In J. K.Leggett & G. G.Zuffa (Eds.), Marine clastic sedimentology: Concepts and case studies (pp. 1–38). Graham & Trotman.
    [Google Scholar]
  115. Mutti, E., & Normark, W. R. (1991). An integrated approach to the study of turbidite systems. In P.Weimer & M. H.Link (Eds.), Seismic facies and sedimentary processes of submarine fans and turbidite systems (pp. 75–106). Springer‐Verlag.
    [Google Scholar]
  116. Mutti, E., Tinterri, R., Benevelli, G., di Biase, D., & Cavanna, G. (2003). Deltaic, mixed and turbidite sedimentation of ancient foreland basins. Marine and Petroleum Geology, 20(6–8), 733–755. https://doi.org/10.1016/j.marpetgeo.2003.09.001
    [Google Scholar]
  117. Nelson, C. H., Escutia, C., Goldfinger, C., Karabanov, E., Gutierrez‐Pastor, J., & De Batist, M. (2009). External controls on modern clastic turbidite systems: Three case studies. In B.Kneller, O. J.Martinsen, & B.McCaffrey (Eds.), External controls on deep‐water depositional systems (Vol. 92). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/sepmsp.092
    [Google Scholar]
  118. Normark, W. R., Paull, C. K., Caress, D. W., Ussler, W., & Sliter, R. (2009). Fine‐scale relief related to late Holocene channel shifting within the fl oor of the upper Redondo Fan, offshore southern California. Sedimentology, 56, 1690–1740. https://doi.org/10.1111/j.1365‐3091.2009.01052.x
    [Google Scholar]
  119. Normark, W. R., Piper, D. J. W., & Sliter, R. (2006). Sea‐level and tectonic control of middle to late Pleistocene turbidite systems in Santa Monica Basin, offshore California. Sedimentology, 53(4), 867–897. https://doi.org/10.1111/j.1365‐3091.2006.00797.x
    [Google Scholar]
  120. Papanikolaou, D., Barghathi, H., Dabovski, C., Dimitriu, R., El‐Hawat, A., & Ioane, D. (2004). Transmed transect VII: East European craton–Scythian–platform–Dobrogea–Balkanides–Rhodope Massif–Hellenides–East Mediterranean–Cyrenaica. In W.Cavazza, F.Roure, W.Spakman, G. M.Stampfli, & P. A.Ziegler (Eds.), The Transmed atlas—The Mediterranean region from crust to mantle. Springer.
    [Google Scholar]
  121. Papanikolaou, I., & Lekkas, E. (2008). Lithostratigraphic differentiation of the Gavrovo and the Ionian flysch in the Southern Akarnania and the role of the Agrilia and Evinos transverse fault zones Hell. Journal of Geosciences, 43, 41–55.
    [Google Scholar]
  122. Pavlopoulos, A., (1983). Contribution to the geological investigation of Makrynoros flysch deposits, Akarnania. PhD, thesis, Aristotle University of Thessaloniki.
    [Google Scholar]
  123. Pickering, K.T., (1981). Two types of outer fan lobe sequence from the late Precambrian Kongsfjord Formation submarine fan, Finnmark, North Norway. Journal of Sedimentary Research, 51(4): 1277–1286. https://doi.org/10.1306/212F7E87‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  124. Pickering, K. T., & Corregidor, J. (2005). Mass‐transport complexes (MTCs) and tectonic control on Basin‐floor submarine fans, middle Eocene, south Spanish Pyrenees. Journal of Sedimentary Research, 75(5), 761–783. https://doi.org/10.2110/jsr.2005.062
    [Google Scholar]
  125. Piper, D. J. W. (2007). Sedimentology and tectonic setting of the Pindos flysch of the Peloponnese, Greece. In A. H. F.Robertson & D.Mountrakis (Eds.), Tectonic development of the eastern Mediterranean region (Vol. 260, pp. 493–505). Geological Society, London, Special Publications. https://doi.org/10.1144/GSL.SP.2006.260.01.20
    [Google Scholar]
  126. Piper, D. J. W., Panagos, G., & Pe, G. G. (1978). Conglomeratic Miocene flysch, western Greece. Journal of Sedimentary Research., 48, 117–126. https://doi.org/10.1306/212F740A‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  127. Posamentier, H. W., & Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. Journal of Sedimentary Research, 73, 367–388. https://doi.org/10.1306/111302730367
    [Google Scholar]
  128. Posamentier, H. W., & Walker, R. G. (2006). Facies Models Revisited (Vol. 84). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/PEC.06.84
    [Google Scholar]
  129. Prélat, A., Covault, J. A., Hodgson, D. M., Fildani, A., & Flint, S. S. (2010). Intrinsic controls on the range of volumes, morphologies, and dimensions of submarine lobes. Sedimentary Geology, 232, 66–76. https://doi.org/10.1016/j.sedgeo.2010.09.010
    [Google Scholar]
  130. Prelat, A., & Hodgson, D. M. (2013). The full range of turbidite bed thickness patterns in submarine lobes: Controls and implications. Journal of the Geological Society, 170, 209–214. https://doi.org/10.1144/jgs2012‐056
    [Google Scholar]
  131. Prelat, A., Hodgson, D. M., & Flint, S. S. (2009). Evolution, architecture, and hierarchy of distributary deep‐water deposits: A high‐resolution outcrop investigation from the Permian Karoo Basin, South Africa. Sedimentology, 56, 2132–2154. https://doi.org/10.1111/j.1365‐3091.2009.01073.x
    [Google Scholar]
  132. Pyles, D. R. (2007). Architectural elements in a ponded submarine fan, Carboniferous Ross Sandstone, western Ireland. In T. H.Nilsen, R. D.Shew, G. S.Steffens, & J. R. J.Studlick (Eds.), Atlas of deep‐water outcrops: AAPG studies in geology (Vol. 56, pp. 206–209). AAPG.
    [Google Scholar]
  133. Pyles, D. R., Jennette, D. C., Tomasso, M., Beaubouef, R. T., & Rossen, C. (2010). Concepts learned from a 3D outcrop of a sinuous slope channel complex: Beacon Channel Complex, Brushy Canyon Formation, West Texas, U.S.A. Journal of Sedimentary Research, 80, 67–96.
    [Google Scholar]
  134. Raudkivi, A. J. (1963). Study of Sediment Ripple Formation. Journal of Hydraulic Engineering, 89, 15–34.
    [Google Scholar]
  135. Ricou, L. E. (1994). Tethys reconstructed: plates continental fragments and their boundaries since 260 Ma from Central America to South‐Eastern Asia. Geodinamica Acta, 7, 169–218. https://doi.org/10.1080/09853111.1994.11105266
    [Google Scholar]
  136. Rigakis, N., & Karakitsios, V. (1998). The source rock horizons of the Ionian basin (NW Greece). Marine and Petroleum Geology, 15, 593–617. https://doi.org/10.1016/S0264‐8172(98)00032‐4
    [Google Scholar]
  137. Robertson, A. H. F. (2004). Development of concepts concerning the genesis and emplacement of tethyan ophiolites in the eastern mediterranean and Oman regions. Earth‐Science Reviews, 66, 331–387. https://doi.org/10.1016/j.earscirev.2004.01.005
    [Google Scholar]
  138. Robertson, A. H. F., Clift, P. D., Degnan, P. J., & Jones, G. (1991). Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 87(1‐4), 289–343.
    [Google Scholar]
  139. Sabbatino, M., Tavani, S., Vitale, S., Ogata, K., Corradetti, A., Consorti, L., Arienzo, I., Cipriani, A., & Parente, M. (2021). Forebulge migration in the foreland basin system of the central‐southern Apennine fold‐thrust belt (Italy): New high‐resolution Sr‐isotope dating constraints. Basin Research, 33, 2817–2836. https://doi.org/10.1111/bre.12587
    [Google Scholar]
  140. Schwab, F. L. (1986). Sedimentary ‘Signatures’ of Foreland Basin Assemblages: Real or Counterfeit? In P. A.Allen & P.Homewood (Eds.), Foreland basins. https://doi.org/10.1002/9781444303810.ch21
    [Google Scholar]
  141. Schwans, P. (1995). Controls on sequence stacking and fluvial‐shallow marine architecture in a foreland basin. In J. C.Van Wagoner & G. T.Bertram (Eds.), Sequence stratigraphy of Foreland Basin deposits (Vol. 64, pp. 55–102). AAPG Bulletin.
    [Google Scholar]
  142. Simons, D. B., Richardson, E. V., NordinC. F.Jr. (1965) Sedimentary structures generated by flow in alluvial channels. In G.V Middleton (Ed.), Society of Economic Paleontologists and Mineralogists Special Publication 12, Society of Economic Paleontologists and Mineralogists Special Publication 12, pp. 34‐52. https://doi.org/10.2110/pec.65.08.0034
  143. Sinclair, H. D., & Allen, P. A. (1992). Vertical versus horizontal motions in the Alpine orogenic wedge: Stratigraphic response in the foreland basin. Basin Research, 4(3–4), 215–232. https://doi.org/10.1111/j.1365‐2117.1992.tb00046.x
    [Google Scholar]
  144. Smith, A. G., Woodcock, N. H., & Naylor, M. A. (1979). The structural evolution of a Mesozoic continental margin, Othris Mountains, Greece. Journal of the Geological Society, 136, 589–603.
    [Google Scholar]
  145. Sotiropoulos, S., Kamberis, E., Triantaphyllou, M. V., & Doutsos, T. (2003). Thrust sequences in the central part of the External Hellenides. Geological Magazine, 140, 661–668. https://doi.org/10.1017/S0016756803008367
    [Google Scholar]
  146. Sotiropoulos, S., Triantaphyllou, M., Kamberis, E., & Tsaila‐Monopolis, S. (2008). Paleogene terrigenous (flysch) sequences in Etoloakarnania region (W. Greece), plankton stratigraphy and paleoenvironmental implications. Geobios, 41, 415–433.
    [Google Scholar]
  147. Southard, J. B. (1991). Experimental determination of bedform stability. Annual Review of Earth and Planetary Sciences, 19, 423–455. https://doi.org/10.1146/annurev.ea.19.050191.002231
    [Google Scholar]
  148. Sprague, A.R., Sullivan, M.D., Campion, K.M., Jensen, G.N., Goulding, F.J., Garfield, T.R., Sickafoose, D.K., Rossen, C. & Jeannette, D.C. (2002) The physical stratigraphy of deep‐water strata: A hierarchical approach to the analysis of genetically‐related stratigraphic elements for improved reservoir prediction. National AAPG/SEPM Meeting Abstracts, Houston, TX, 10–13.
  149. Spychala, Y. T., Hodgson, D. M., Flint, S. S., & Mountney, N. P. (2015). Constraining the sedimentology and stratigraphy of submarine intraslope lobe deposits using exhumed examples from the Karoo Basin, South Africa. Sedimentary Geology, 322, 67–81.
    [Google Scholar]
  150. Spychala, Y. T., Hodgson, D. M., Prélat, A., Kane, I. A., Flint, S. S., & Mountney, N. P. (2017). Frontal and lateral submarine lobe fringes: Comparing sedimentary facies, architecture and flow processes. Journal of Sedimentary Research, 87(1), 75–96. https://doi.org/10.31223/osf.io/48b2j
    [Google Scholar]
  151. Spychala, Y. T., Hodgson, D. M., Stevenson, C. J., & Flint, S. S. (2017). Aggradational lobe fringes: The influence of subtle intrabasinal seabed topography on sediment gravity flow processes and lobe stacking patterns. Sedimentology, 64, 582–608. https://doi.org/10.31223/osf.io/vmykj
    [Google Scholar]
  152. Stanbrook, S. D., & Bentley, M. (2022). Practical turbidite interpretation: The role of relative confinement in understanding reservoir architectures. Marine and Petroleum Geology, 135, 105372. https://doi.org/10.1016/j.marpetgeo.2021.105372
    [Google Scholar]
  153. Stevenson, C. J., Talling, P. J., Wynn, R. B., Masson, D. G., Hunt, J. E., Frenz, M., Akhmetzhanhov, A., & Cronin, B. T. (2013). The flows that left no trace: Very large volume turbidity currents that bypassed sediment through submarine channels without eroding the sea floor. Marine and Petroleum Geology, 41, 186–205.
    [Google Scholar]
  154. Stow, D.A.V., (1986). Deep clastic seas. In Reading, H.G. (ed.), Sedimentary environments and facies (2nd edn, pp. 399–444). Blackwell Scientific.
    [Google Scholar]
  155. Stow, D. A. V., & Bowen, A. J. (1978). Origin of lamination in deep sea, fine‐grained sediments. Nature, 274, 324–328. https://doi.org/10.1038/274324a0
    [Google Scholar]
  156. Stow, D. A. V., & Bowen, A. J. (1980). A physical model for the transport and sorting of fine‐grained sediment by turbidity currents. Sedimentology, 27, 31–46. https://doi.org/10.1111/j.1365‐3091.1980.tb01156.x
    [Google Scholar]
  157. Stow, D. A. V., & Johansson, M. (2000). Deep‐water massive sands: Nature, origin and hydrocarbon implications. Marine and Petroleum Geology, 17(2), 145–174. https://doi.org/10.1016/s0264‐8172(99)00051‐3
    [Google Scholar]
  158. Stow, D. A. V., & Piper, D. J. W. (1984). Deep‐water fine‐grained sediments: Facies models. In D. A. V.Stow & D. J. W.Piper (Eds.), Fine‐grained sediments: Deep‐water processes and facies (Vol. 15, pp. 611–646). Geological Society Special Publication. https://doi.org/10.1144/GSL.SP.1984.015.01.38
    [Google Scholar]
  159. Straub, K. M., & Pyles, D. R. (2012). Quantifying the hierarchical organization of compensation in submarine fans using surface statistics. Journal of Sedimentary Research, 82, 889–898.
    [Google Scholar]
  160. Strecker, M. R., Hilley, G. E., Bookhagen, B., & Sobel, E. R. (2012). Structural, geomorphic, and depositional characteristics of contiguous and broken foreland basins: Examples from the eastern flanks of the Central Andes in Bolivia and NW Argentina. In C.Busby & A. A.Pérez (Eds.), Tectonics of sedimentary basins (pp. 508–521). Wiley‐Blackwell. https://doi.org/10.1002/9781444347166.ch25
    [Google Scholar]
  161. Sumner, E. J., Amy, L. A., & Talling, P. J. (2008). Deposit structure and processes of sand deposition from decelerating sediment suspensions. Journal of Sedimentary Research, 78(8), 529–547. https://doi.org/10.2110/jsr.2008.062
    [Google Scholar]
  162. Sumner, E. J., Talling, P. J., Amy, L. A., Wynn, R. B., Stevenson, C. J., & Frenz, M. (2012). Facies architecture of individual basin‐plain turbidites: Comparison with existing models and implications for flow processes. Sedimentology, 59, 1850–1887. https://doi.org/10.1111/j.1365‐3091.2012.01329.x
    [Google Scholar]
  163. Sylvester, Z., & Lowe, D. R. (2004). Textural trends in turbidites and slurry beds from the Oligocene flysch of the East Carpathians, Romania. Sedimentology, 51, 945–972. https://doi.org/10.1111/j.1365‐3091.2004.00653.x
    [Google Scholar]
  164. Talling, P. J., Amy, L. A., & Wynn, R. B. (2007b). New insights into the evolution of large volume turbidity currents; comparison of turbidite shape and previous modelling results. Sedimentology, 54, 737–769. https://doi.org/10.1111/j.1365‐3091.2007.00858.x
    [Google Scholar]
  165. Talling, P. J., Amy, L. A., Wynn, R. B., Blackbourn, G., & Gibson, O. (2007c). Turbidity current evolution deducedfrom extensive thin turbidites: Marnoso‐arenacea Formation (Miocene), Italian Apennines. Journal of Sedimentary Research, 77, 172–196. https://doi.org/10.2110/jsr.2007.018
    [Google Scholar]
  166. Talling, P. J., Malgesini, G., Sumner, E. J., Amy, L. A., Felletti, F., Blackbourn, G., Nutt, C., Wilcox, C., Harding, I. C., & Akbari, S. (2012). Planform geometry, stacking pattern, and extra‐basinal origin of low‐strength and higher‐strength cohesive debris flow deposits in the Marnoso‐Arenacea Formation. Geosphere, 8, 1207–1230. https://doi.org/10.1130/GES00734.1
    [Google Scholar]
  167. Talling, P. J., Masson, D. G., Sumner, E. J., & Malgesini, G. (2012). Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59, 1937–2003. https://doi.org/10.1111/j.1365‐3091.2012.01353.x
    [Google Scholar]
  168. Talling, P. J., Peakall, J., Sparks, R. S. J., Cofaigh, C. Ó., Dowdeswell, J. A., Felix, M., Wynn, R. B., Baas, J. H., Hogg, A. J., Masson, D. G., Taylor, J., & Weaver, P. P. E. (2002). Experimental constraints on shear mixing rates and processes: implications for the dilution of submarine debris flows. Geological Society, London, Special Publications, 203, 89–103. https://doi.org/10.1144/GSL.SP.2002.203.01.06
    [Google Scholar]
  169. Tserolas, P., Maravelis, A. G., Tsochandaris, N., Pasadakis, N., & Zelilidis, A. (2019). Organic geochemistry of the Upper Miocene‐Lower Pliocene sedimentary rocks in the Hellenic Fold and Thrust Belt, NW Corfu Island, Ionian Sea, NW Greece. Marine and Petroleum Geology, 106, 17–29. https://doi.org/10.1016/j.marpetgeo.2019.04.033
    [Google Scholar]
  170. Twichell, D. C., Cross, V. A., Hanson, A. D., Buck, B. J., Zybala, J. G., & Rudin, M. J. (2005). Seismic architecture and lithofacies of turbidites in Lake Mead (Arizona and Nevada, U.S.A.), an analogue for topographically complex basins. Journal of Sedimentary Research, 75(1), 134–148. https://doi.org/10.2110/jsr.2005.011
    [Google Scholar]
  171. Vamvaka, A., Kilias, A., Mountrakis, D., & Papaoikonomou, J. (2006). Geometry and structural evolution of the Mesohellenic Trough (Greece): a new approach. Geological Society, London, Special Publications, 260, 521–538. https://doi.org/10.1144/GSL.SP.2006.260.01.22
    [Google Scholar]
  172. Vakalas, I. (2003). Evolution of foreland basins in Western Greece. Ph.D. Thesis, University of Patras, Patras, Greece.
  173. Velić, J., Malvić, T., Cvetković, M., & Velić, I. (2015). Stratigraphy and petroleum geology of the Croatian part of the Adriaticbasin. Journal of Petroleum Geology, 38(3), 281–300. https://doi.org/10.1111/jpg.12611
    [Google Scholar]
  174. Wang, Y., Straub, K. M., & Hajek, E. A. (2011). Scale‐dependent compensational stacking: An estimate of autogenic time scales in channelized sedimentary deposits. Geology, 39, 811–814. https://doi.org/10.1130/G32068.1
    [Google Scholar]
  175. Walker, R. G. (1965). The origin and significance of the internal sedimentary structures of turbidites. Proceedings of the Yorkshire Geological Society, 35, 1–32. https://doi.org/10.1144/PYGS.35.1.1
    [Google Scholar]
  176. Walker, R. G. (1975). Generalized Facies Models for Resedimented Conglomerates of Turbidite Association. GSA Bulletin, 86(6), 737–748. https://doi.org/10.1130/0016‐7606(1975)86<737:GFMFRC>2.0.CO;2
    [Google Scholar]
  177. Walker, R. G. (1978). Deep‐water sandstone facies and ancient submarine fans: models for exploration for stratigraphic traps. AAPG Bulletin, 62(6), 932–966. https://doi.org/10.1306/2F9182E3‐16CE‐11D7‐8645000102C1865D
    [Google Scholar]
  178. Walker, T. R. (1967). Formation of red beds in modern and ancient deserts. Geological Society of America Bulletin, 78, 353–368.
    [Google Scholar]
  179. Wezel, F. C. (1973). Diacronismo degli eventi geologicioligo‐miocenici nelle Maghrebidi. Revista Mineraria Siciliana, Anno XXIV. N, 142–144, 219–232.
    [Google Scholar]
  180. Winn, R. D., Jr., & Dott, R. H., Jr. (1979). Deep‐water fan‐channel conglomerate of late Cretaceous age, southern Chile. Sedimentology, 26, 203–228.
    [Google Scholar]
  181. WynnR.B., BettB.J., EvansA.J., GriffithsF., HuvenneV.A.L., JonesA.R., PalmerM.R., Dove, D., Howe, J.A, Boyd, T.J. & MAREMAP Partners . (2012). Investigating the feasibility of utilizing AUV and Glider technology for mapping and monitoring of the UK MPA network. Final Report for Defra Project MBO118, National Oceanography Centre and MAREMAP, pp. 25–36.
  182. Zakaria, A. A., Johnson, H. D., Jackson, C. A. L., & Tongkul, F. (2013). Sedimentary facies analysis and depositional model of the Palaeogene West Crocker submarine fan system, NW Borneo. Journal of Asian Earth Sciences, 76, 283–300.
    [Google Scholar]
  183. Zelilidis, A., Kontopoulos, N., Avramidis, P., & Piper, P. (1998). Tectonic and sedimentological evolution of the Pliocene–Quaternary basins of Zakynthos island, Greece: case study of the transition from compressional to extensional tectonics. Basin Research, 10, 393–408. https://doi.org/10.1046/j.1365‐2117.1998.00075.x
    [Google Scholar]
  184. Zelilidis, A., Maravelis, A. G., Tserolas, P., & Konstantopoulos, P. A. (2015). An overview of the petroleum systems in the Ionian zone, onshore NW Greece and Albania. Journal of Petroleum Geology, 38(3), 331–347. https://doi.org/10.1111/jpg.12614
    [Google Scholar]
  185. Zelilidis, A., Papatheodorou, G., Maravelis, A. G., Christodoulou, D., Tserolas, P., Fakiris, E., Dimas, X., Georgiou, N., & Ferentinos, G. (2016). Interplay of thrust, back‐thrust, strike‐slip and salt tectonics in a Fold and Thrust Belt system: An example from Zakynthos Island, Greece. International Journal of Earth Sciences, 105, 2111–2132. https://doi.org/10.1007/s00531‐016‐1299‐y
    [Google Scholar]
  186. Zelilidis, A., Piper, D. J. W., & Kontopoulos, N. (2002). Sedimentation and basin evolution of the Oligocene‐Miocene Mesohellenic basin, Greece. AAPG Bulletin, 86, 161–182. https://doi.org/10.1306/61EEDA6C‐173E‐11D7‐8645000102C1865D
    [Google Scholar]
  187. Zelilidis, A., Piper, D., Vakalas, I., Avramidis, P., & Getsos, K. (2003). Oil and gas plays in Albania: Do equivalent plays exist in Greece?Journal of Petroleum Geology, 26, 29–48. https://doi.org/10.1111/j.1747‐5457.2003.tb00016.x
    [Google Scholar]
  188. Zelilidis, A., Vakalas, J., Barkooky, A., Darwish, M., & Tewfik, N. (2008). Impact of transfer faults and intrabasinal highs in basin evolution and sedimentation processes. Application to potencial hydrocarbon fields development. Advanced Science Letters, 1, 104–113.
    [Google Scholar]
  189. Zoumpouli, E., Maravelis, A. G., Iliopoulos, G., Botziolis, C., Zygouri, V., & Zelilidis, A. (2022). Re‐evaluation of the Ionian Basin evolution during the late Cretaceous to Eocene (Aetoloakarnania area, Western Greece). Geosciences, 12(3), 106. https://doi.org/10.3390/geosciences12030106
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12804
Loading
/content/journals/10.1111/bre.12804
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): aggradation; foreland basin; Greece; Palaeogene; Pindos; progradation

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error