1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

The South Korea Plateau (SKP), a typical submarine plateau, preserves an important tectono‐sedimentary evolutionary record and represents a major frontier area for petroleum exploration in the East Sea (Sea of Japan). However, its tectonic mechanisms and their controls on sedimentary fill are underexplored. Here, we present the first integrated tectonostratigraphic framework of the SKP using reprocessed, two‐dimensional, seismic‐reflection profiles and borehole data. Four regional megasequence boundaries are interpreted, delineating four tectonostratigraphic packages: the syn‐rift (MS1), post‐rift phase 1 (MS2), post‐rift phase 2 (MS3) and syn‐compression (MS4) megasequences. We propose a four‐stage structural and sedimentary evolution model for the SKP based on the megasequences and structural development. Stage‐1 (latest Late Oligocene−Early Miocene): the SKP was rifted and extended through block faulting, resulting in the formation of rift basins dominated by fan‐delta and shallow‐lacustrine depositional systems. Stage‐2 (late Early Miocene−Middle Miocene): hemipelagic sedimentation prevailed with gravity‐controlled slope failures under a tectonically stable environment associated with slow thermal subsidence. Stage‐3 (late Middle Miocene−Late Miocene): continued thermal subsidence allowed the predominance of hemipelagic biogenic deposits accompanied by intermittent mass‐wasting‐induced turbidites and resulted in the development of a polygonal fault system. Stage‐4 (Early Pliocene−present): the SKP was influenced by E−W compression caused by an eastward movement of the Eurasian plate. Turbiditic and hemipelagic sedimentation was predominant with turbidity‐flow‐leveed channels derived from direct riverine input or through slope failures. Based on this tectonostratigraphic analysis, we reveal the variation in depositional systems and sand‐dispersal patterns for the SKP, highlighting potential targets for sandstone reservoirs: MS1, fan‐deltas and lacustrine‐fan turbidites; MS3, deepwater fan turbidites; and MS4, deepwater fan turbidites, channel‐levee complexes and turbidite frontal‐splay deposits. This study proposes a structural and sedimentary evolution model for the SKP that could enhance our understanding of reservoir potential for petroleum‐exploration in the future.

,

This study presents an intergrated tectonostratigraphic framework of the South Korea Plateau (SKP), East Sea using 2D seismic profiles and borehole data. Based on seismic stratigraphy analysis, we proposed a four‐stage structural and sedimentary evolution model of the SKP which provides a window into understanding potential targets for sandstone reservoirs.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12805
2024-01-08
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/1/bre12805.html?itemId=/content/journals/10.1111/bre.12805&mimeType=html&fmt=ahah

References

  1. Anastasio, D. J., Kodama, K. P., Parés, J. M., Hinnov, L. A., & Idleman, B. D. (2021). Internal and external modulation of folding rates with 104 to 105 year time resolutions from growth strata, Pico del Aguila, Spain. Geochemistry, Geophysics, Geosystems, 22, e2021GC009828.
    [Google Scholar]
  2. Bahk, J.‐J., Kim, G.‐Y., Chun, J.‐H., Kim, J.‐H., Lee, J. Y., Ryu, B.‐J., Lee, J.‐H., Son, B.‐K., & Collett, T. S. (2013). Characterization of gas hydrate reservoirs by integration of core and log data in the Ulleung Basin, East Sea. Marine and Petroleum Geology, 47, 30–42.
    [Google Scholar]
  3. Boyer, S. E. (1978). Structure and origin of grandfather mountain window, North Carolina. (PhD thesis). Johns Hopkins University, Baltimore, MD.
  4. Cartwright, J. (2011). Diagenetically induced shear failure of fine‐grained sediments and the development of polygonal fault systems. Marine and Petroleum Geology, 28, 1593–1610.
    [Google Scholar]
  5. Cartwright, J., James, D., & Bolton, A. (2003). The genesis of polygonal fault systems: A review. Geological Society, London, Special Publications, 216, 223–234.
    [Google Scholar]
  6. Catuneanu, O. (2006). Principles of Sequence Stratigraphy (pp. 375). Elsevier.
    [Google Scholar]
  7. Chough, S. K., & Barg, E. (1987). Tectonic history of Ulleung Basin margin, East Sea (Sea of Japan). Geology, 15, 45–48.
    [Google Scholar]
  8. Chough, S. K., Kwon, S.‐T., & Choi, D. K. (2000). Tectonic and sedimentary evolution of the Korean Peninsula: A review and new view. Earth Science Reviews, 52, 175–235.
    [Google Scholar]
  9. Chough, S. K., Shinn, Y. J., & Yoon, S. H. (2018). Regional strike‐slip and initial subsidence of Korea Plateau, East Sea: Tectonic implications for the opening of back‐arc basins. Geosciences Journal, 22, 533–547.
    [Google Scholar]
  10. Clemenceau, G. R., Colbert, J., & Edens, D. (2000). Production results from levee‐overbank turbidite sands at Ram/Powell Field, Deepwater Gulf of Mexico. In P.Weimer, R. M.Slatt, J.Coleman, N. C.Rosen, H.Nelson, A. H.Bouma, M. J.Styzen, & D. T.Lawrence (Eds.), Deep‐water reservoirs of the world, 20th annual research conference (pp. 241–251). Coast Society of the Society of Economic Paleontologists and Meneralogists Foundation.
    [Google Scholar]
  11. Cukur, D., Kim, S.‐P., Horozal, S., Ryu, B.‐J., Kim, G.‐Y., & Kong, G.‐S. (2015). Seismic stratigraphy and structural analysis of the western South Korea plateau (WSKP), East Sea. Quaternary International, 384, 145–159.
    [Google Scholar]
  12. Cukur, D., Um, I.‐K., Bahk, J.‐J., Chun, J.‐H., Horozal, S., Kim, S.‐R., Kong, G.‐S., Kim, K.‐O., & Kim, S.‐P. (2018). Seismic stratigraphy and structural characteristics of the northeastern continental margin of Korea in the East Sea (Sea of Japan). Marine and Petroleum Geology, 98, 706–717.
    [Google Scholar]
  13. Cukur, D., Um, I.‐K., Chun, J.‐H., Lee, G.‐S., Kong, G.‐S., Johnson, S. Y., & Horozal, S. (2021). Deepwater Debrites and linked megaturbidites in confined basins: An example from the Onnuri Basin, East Sea of Korea. Journal of Sedimentary Research, 91, 1–20.
    [Google Scholar]
  14. Dam, G., & Sønderholm, M. (2021). Tectonostratigraphic evolution, palaeogeography and main petroleum plays of the Nuussuaq Basin: An outcrop analogue for the Cretaceous–Palaeogene rift basins offshore West Greenland. Marine and Petroleum Geology, 129, 105047.
    [Google Scholar]
  15. Dasgupta, S. (2018). Sedimentary deformation features produced by differential compaction and buoyancy in the Offshore Palar Basin, East Coast of India. In A. A.Misra & S.Mukherjee (Eds.), Atlas of structural geological interpretation from seismic images (pp. 131–133). Wiley‐Blackwell.
    [Google Scholar]
  16. Dupré, S., Bertotti, G., & Cloetingh, S. (2007). Tectonic history along the South Gabon Basin: Anomalous early post‐rift subsidence. Marine and Petroleum Geology, 24, 151–172.
    [Google Scholar]
  17. Fossen, H. (2016). Structural geology (2nd ed.). Cambridge University Press.
    [Google Scholar]
  18. Gawthorpe, R. L., Leeder, M. R., Kranis, H., Skourtsos, E., Andrews, J. E., Henstra, G. A., Mack, G. H., Muravchik, M., Turner, J. A., & Stamatakis, M. (2018). Tectono‐sedimentary evolution of the Plio‐Pleistocene Corinth Rift, Greece. Basin Research, 30, 448–479.
    [Google Scholar]
  19. Ghalayini, R., & Eid, C. (2020). Using polygonal layer‐bound faults as tools to delimit clastic reservoirs in the Levant Basin offshore Lebanon. AAPG Bulletin, 104, 629–656.
    [Google Scholar]
  20. Gibson, J. R., Walsh, J. J., & Watterson, J. (1989). Modelling of bed contours and cross‐sections adjacent to planar normal faults. Journal of Structural Geology, 11, 317–328.
    [Google Scholar]
  21. Gong, C., Wang, Y., Zhu, W., Li, W., Xu, Q., & Zhang, J. (2011). The Central Submarine Canyon in the Qiongdongnan Basin, northwestern South China Sea: Architecture, sequence stratigraphy, and depositional processes. Marine and Petroleum Geology, 28, 1690–1702.
    [Google Scholar]
  22. Gupta, S., Cowie, P. A., Dawers, N. H., & Underhill, J. R. (1998). A mechanism to explain rift‐basin subsidence and stratigraphic patterns through fault‐array evolution. Geology, 26, 595–598.
    [Google Scholar]
  23. Hiscott, R. N., & Aksu, A. E. (1996). Quaternary sedimentary processes and budgets in orphan southwestern Labrador Sea. Quaternary Research, 45, 160–175.
    [Google Scholar]
  24. Horozal, S., Kim, G.‐Y., Cukur, D., Bahk, J.‐J., Buchs, D., Ryu, B.‐J., Lee, G. H., & Kim, S.‐P. (2017). Sedimentary and structural evolution of the Eastern South Korea Plateau (ESKP), East Sea (Japan Sea). Marine and Petroleum Geology, 85, 70–88.
    [Google Scholar]
  25. Ingle, J. C., Jr. (1992). Subsidence of the Japan Sea: Stratigraphic evidence from ODP sites and onshore sections. In K.Tamaki, K.Suyehiro, & J.Allen (Eds.), Proceedings of the ocean drilling program: Scientific results (Vol. 127/128, pp. 1197–1218). Ocean Drilling Program.
    [Google Scholar]
  26. Jervey, M. T. (1988). Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. In C. K.Wiligus, B. S.Hastings, C. G. S. C.Kendall, H. W.Posamentier, C. A.Ross, & J. C.Van Wagoner (Eds.), Sea‐level changes: An integrated approach (Vol. 42, pp. 47–69). SEPM Special Publications.
    [Google Scholar]
  27. Joh, M. H., & Yoo, D. G. (2009). Plio‐Quaternary seismic stratigraphy and depositional history on the Southern Ulleung basin, East Sea. Journal of the Korean Society of Oceanography, 14, 90–101. [in Korean with English abstract].
    [Google Scholar]
  28. Jones, D. J. R., McCarthy, D. J., & Dodd, T. J. H. (2019). Tectonostratigraphy and the petroleum systems in the Northern sector of the North Falkland Basin, South Atlantic. Marine and Petroleum Geology, 103, 150–162.
    [Google Scholar]
  29. KIGAM . (2006). Research on stratigraphy and tectonics of southeastern Korean offshore using seismic exploration technologyOAA2004005‐2006(3), 332 p.
  30. Kim, G. B., Yoon, S. H., Chough, S. K., Kwon, Y. K., & Ryu, B. J. (2011). Seismic reflection study of acoustic basement in the South Korea Plateau, the Ulleung Interplain Gap, and the northern Ulleung Basin: Volcano‐tectonic implications for tertiary back‐arc evolution in the southern East Sea. Tectonophysics, 504, 43–56.
    [Google Scholar]
  31. Kim, G. B., Yoon, S. H., Sohn, Y. K., & Kwon, Y. K. (2013). Wave‐planation surfaces in the mid‐western East Sea (Sea of Japan): Indicators of subsidence history and paleogeographic evolution of back‐arc basin. Marine Geology, 344, 65–81.
    [Google Scholar]
  32. Kim, H.‐J., Lee, G. H., Choi, D.‐L., Jou, H.‐T., Li, Z., Zheng, Y., Kim, G.‐Y., Lee, S.‐H., & Kwon, Y. K. (2015). Back‐arc rifting in the Korea Plateau in the East Sea (Japan Sea) and the separation of the southwestern Japan Arc from the Korean margin. Tectonophysics, 638, 147–157.
    [Google Scholar]
  33. Kim, H.‐J., Lee, G. H., Jou, H.‐T., Cho, H.‐M., Yoo, H.‐S., Park, G.‐T., & Kim, J.‐S. (2007). Evolution of the eastern margin of Korea: Constraints on the opening of the East Sea (Japan Sea). Tectonophysics, 436, 37–55.
    [Google Scholar]
  34. Kim, H.‐J., Moon, S., Jou, H.‐T., Kim, K.‐H., & Yi, B. Y. (2022). Correlation of seismicity with faults in the South Korea plateau in the East Sea (Sea of Japan) and seismic hazard assessment. Frontiers in Earth Science, 10, 802052.
    [Google Scholar]
  35. Kim, K.‐J., Yoo, D.‐G., Kang, N.‐K., & Yi, B.‐Y. (2020). Tectonostratigraphic framework and depositional history of the Deepwater Ulleung Basin, East Sea/Sea of Japan. Basin Research, 32, 613–635.
    [Google Scholar]
  36. Kim, K.‐R., Lee, S. H., Park, K.‐A., Park, J. J., Suh, Y.‐S., Lee, D.‐K., Kang, D.‐J., & Chang, K.‐I. (2015). Chapter 1. General introduction. In K. I.Chang, C. I.Zhang, C.Park, D. J.Kang, S. J.Ju, S. H.Lee, & M.Wimbush (Eds.), Oceanography of the East Sea (Japan Sea) (pp. 1–19). Springer.
    [Google Scholar]
  37. Kim, Y., Yi, S., Jun, C.‐P., Lee, E., & Kim, G. Y. (2020). New findings on palynofacies characteristics of semi‐enclosed deep‐sea environments in the East Sea over 2 million years. Scientific Reports, 10, 16432.
    [Google Scholar]
  38. Kim, Y., Yi, S., Kim, G.‐Y., Lee, E., & Kong, S. (2019). Palynological study of paleoclimate and paleoceanographic changes in the Eastern South Korea Plateau, East Sea, during the Plio‐Pleistocene climate transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 520, 18–29.
    [Google Scholar]
  39. King, J. J., & Cartwright, J. A. (2020). Ultra‐slow throw rates of polygonal fault systems. Geology, 48, 473–477.
    [Google Scholar]
  40. Kwon, Y. K., Yoon, S. H., & Chough, S. K. (2009). Seismic stratigraphy of the western South Korea plateau, East Sea: Implications for tectonic history and sequence development during back‐arc evolution. Geo‐Marine Letters, 29, 181–189.
    [Google Scholar]
  41. Lallemand, S., & Jolivet, L. (1986). Japan Sea: A pull‐apart basin?Earth and Planetary Science Letters, 76, 375–389.
    [Google Scholar]
  42. Lee, G. H., & Suk, B. C. (1998). Latest Neogene‐quaternary seismic stratigraphy of the Ulleung Basin, East Sea (Sea of Japan). Marine Geology, 146, 205–224.
    [Google Scholar]
  43. Lee, G. H., Kim, H. J., Han, S. J., & Kim, D. C. (2001). Seismic stratigraphy of the deep Ulleung Basin in the East Sea (Japan Sea) back‐arc basin. Marine and Petroleum Geology, 18, 615–634.
    [Google Scholar]
  44. Lee, G. H., Yoon, Y. H., Nam, B. H., Lim, H. H., Kim, Y. S., Kim, H. J., & Lee, K. S. (2011). Structural evolution of the southwestern margin of the Ulleung Basin, East Sea (Japan Sea) and tectonic implications. Tectonophysics, 502, 293–307.
    [Google Scholar]
  45. Leila, M., Yasser, A., Bastawesy, M., & El Mahmoudi, A. (2022). Seismic stratigraphy, sedimentary facies analysis and reservoir characteristics of the Middle Jurassic syn‐rift sediments in Salam Oil Field, north Western Desert, Egypt. Marine and Petroleum Geology, 136, 105466.
    [Google Scholar]
  46. Misra, A. A. (2018). Normal faulting related to differential compaction on the 85° E Ridge in the Bay of Bengal, India. In A. A.Misra & S.Mukherjee (Eds.), Atlas of structural geological interpretation from seismic images (pp. 107–111). Wiley‐Blackwell.
    [Google Scholar]
  47. Mitchum, R. M., Vail, P. R., & Sangree, J. B. (1977). Seismic stratigraphy and global changes of sea level, part 6: Stratigraphic interpretation of seismic reflection patterns in depositional sequences. In C. E.Payton (Ed.), Seismic stratigraphy application to hydrocarbon exploration (Vol. 26, pp. 117–133). American Association of Petroleum Geologists Memoir.
    [Google Scholar]
  48. Park, Y., Kang, N., Yi, B., Lee, G., & Yoo, D. (2022). Tectonostratigraphic framework in the Eastern Korean Continental Margin, East Sea: Implication for evolution of the Hupo Basin. Basin Research, 34, 797–823.
    [Google Scholar]
  49. Piper, D. J. W., & Savoye, B. (1993). Processes of late Quaternary turbidity current flow and deposition on the Var deep‐sea fan, north‐West Mediterranean Sea. Sedimentology, 40, 557–582.
    [Google Scholar]
  50. Pirmez, C., & Flood, R. D. (1997). Morphology and structure of Amazon Channel. In R. D.Flood, D. J. W.Piper, A.Klaus, & L. C.Peterson (Eds.), Proceedings of the ocean drilling program: Scientific results (p. 155). Ocean Drilling Program.
    [Google Scholar]
  51. Posamentier, H. W., Jervey, M. T., & Vail, P. R. (1988). Eustatic controls on clastic deposition I—Conceptual framework. In C. K.Wiligus, B. S.Hastings, C. G. S. C.Kendall, H. W.Posamentier, C. A.Ross, & J. C.Van Wagoner (Eds.), Sea‐level changes: An integrated approach (Vol. 42, pp. 109–124). SEPM Special Publication.
    [Google Scholar]
  52. Posamentier, H. W., & Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. Journal of Sedimentary Research, 73, 367–388.
    [Google Scholar]
  53. Richards, P. C., & Hillier, B. V. (2000). Post‐drilling analysis of the north Falkland Basin—Part 2: Petroleum system and future prospects. Journal of Petroleum Geology, 23, 273–292.
    [Google Scholar]
  54. Roberts, D.G., & Bally, A.W. (2012). Regional Geology and Tectonics: Phanerozoic Rift Systems and Sedimentary Basins. Elsevier.
    [Google Scholar]
  55. Salomon‐Mora, L. E., Aranda‐Garcia, M., & Roman‐Ramos, J. R. (2009). Contractional growth faulting in the Mexican ridges, Gulf of Mexico. In C.Bartolini & J. R.Ramán Ramos (Eds.), Petroleum systems in the Southern Gulf of Mexico (Vol. 90, pp. 93–115). American Association of Petroleum Geologists Memoir.
    [Google Scholar]
  56. Sangree, J. B., & Widmier, J. M. (1977). Seismic stratigraphy and global changes of sea level, part 9: Seismic interpretation of clastic depositional facies. In C. E.Payton (Ed.), Seismic stratigraphy application to hydrocarbon exploration (Vol. 26, pp. 165–184). American Association of Petroleum Geologists Memoir.
    [Google Scholar]
  57. Schwarz, S., & Wood, L. (2016). Drainage systems in rift basins: Implications for reservoir quality. AAPG Annual Convention & Exhibition.
    [Google Scholar]
  58. Shanley, K. W., & McCabe, P. J. (1994). Perspectives on the sequence stratigraphy of continental strata. Geological Society of America Bulletin, 78, 544–568.
    [Google Scholar]
  59. Sun, Q., Jackson, C. A. L., Magee, C., & Xie, X. (2020). Deeply buried ancient volcanoes control hydrocarbon migration in the South China Sea. Basin Research, 32, 146–162.
    [Google Scholar]
  60. Tada, R., Murray, R. W., Alvarez Zarikian, C. A., Anderson, W. T. Jr, Bassetti, M.‐A., Brace, B. J., Clemens, S. C., da Costa Gurgel, M. H., Dickens, G. R., Dunlea, A. G., Gallagher, S. J., Giosan, L., Henderson, A. C. G., Holbourn, A. E., Ikehara, K., Irino, T., Itaki, T., Karasuda, A., Kinsley, C. W., … Ziegler, M. (2015). Site 1430. In R.Tada, R. W.Murray, C. A.Alvarez Zarikian, & Expedition 346 Scientists (Eds.), Proceedings of the Integrated Ocean Drilling Program (Vol. 346, pp. 1–113). Integrated Ocean Drilling Program.
    [Google Scholar]
  61. Taira, A. (2001). Tectonic evolution of the Japanese Island Arc System. Annual Review of Earth and Planetary Sciences, 29, 109–134.
    [Google Scholar]
  62. Tamaki, K. (1988). Geological structure of the Japan Sea and its tectonic implications. Bulletin of the Geological Survey of Japan, 39, 269–365.
    [Google Scholar]
  63. Tamaki, K. (1995). Opening tectonics of the Japan Sea. In B.Taylor (Ed.), Backarc Basins: Tectonics and magmatism (pp. 407–420). Plenum Press.
    [Google Scholar]
  64. Tamaki, K., & Honza, E. (1985). Incipient subduction and deduction along the eastern margin of the Japan Sea. Tectonophysics, 119, 381–406.
    [Google Scholar]
  65. Tamaki, K., Suyehiro, K., Allan, J., Ingle, J. C., Jr., & Pisciotto, K. A. (1992). Tectonic synthesis and implications of Japan Sea ODP drilling. In K.Tamaki, K.Suyehiro, & J.Allen (Eds.), Proceedings of the ocean drilling program: Scientific results (pp. 1333–1348). Ocean Drilling Program 127/128.
    [Google Scholar]
  66. Vail, P. R. (1987). Seismic stratigraphy interpretation using sequence stratigraphy. Part 1: Seismic stratigraphy interpretation procedure. AAPG Studies in Geology, 27, 1–10.
    [Google Scholar]
  67. Vail, P. R., Mitchum, R. M. J., Todd, R. G., Widmier, J. W., Thomson, S., Sangree, J. B., Bubb, J. N., & Hatlelid, W. G. (1977). Seismic stratigraphy and global change of sea level. In C. E.Payton (Ed.), Seismic stratigraphy—Applications to hydrocarbon exploration (Vol. 26, pp. 49–212). American Association of Petroleum Geologists.
    [Google Scholar]
  68. Van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M., Vail, P. R., Sarg, J. F., Loutit, T. S., & Hardenbol, J. (1988). An overview of the fundamentals of sequence stratigraphy and key definitions. In C. K.Wiligus, B. S.Hastings, C. G. S. C.Kendall, H. W.Posamentier, C. A.Ross, & J. C.Van Wagoner (Eds.), Sea‐level changes: An integrated approach (Vol. 42, pp. 39–46). SEPM Special Publication.
    [Google Scholar]
  69. Wang, R., Ji, Y., Colombera, L., Mountney, N. P., Yuan, B., Li, D., Song, H., & Zhou, S. (2021). Axial and transverse depositional systems of a syn‐rift basin fill (Bohai Bay Basin, China). Marine and Petroleum Geology, 128, 105045.
    [Google Scholar]
  70. Weimer, P., Slatt, R. M., & Bouroullec, R. (2007). Introduction to the petroleum geology of deepwater settings. American Association of Petroleum Geologists.
    [Google Scholar]
  71. Xie, X. N., Műller, R. D., Li, S. T., Gong, Z. S., & Steinberger, B. (2006). Origin of the anomalous subsidence along the northern South China Sea margin and its relationship to dynamic topography. Marine and Petroleum Geology, 23, 745–765.
    [Google Scholar]
  72. Yang, S.‐Y., & Kim, J. W. (2014). Pliocene basin‐floor fan sedimentation in the Bay of Bengal (offshore Northwest Myanmar). Marine and Petroleum Geology, 49, 45–58.
    [Google Scholar]
  73. Yarbuh, I., & Contreras, J. (2017). The interplay between deformation, erosion and sedimentation in the deep‐water Mexican ridges foldbelt, western Gulf of Mexico basin. Basin Research, 29(S1), 446–464.
    [Google Scholar]
  74. Yoo, D. G., Kim, K. J., Kang, N. K., Yi, B. Y., & Cho, M. H. (2017). Plio–Quaternary seismic stratigraphy and depositional history of the Ulleung Basin, East Sea: Association with debris‐flow activity. Quaternary International, 459, 69–88.
    [Google Scholar]
  75. Yoon, S. H., & Chough, S. K. (1995). Regional strike slip in the eastern continental margin of Korea and its tectonic implications for the evolution of Ulleung Basin, East Sea (Sea of Japan). Geological Society of America Bulletin, 107, 83–97.
    [Google Scholar]
  76. Yoon, S. H., Sohn, Y. K., & Chough, S. K. (2014). Tectonic, sedimentary, and volcanic evolution of a back‐arc basin in the East Sea (Sea of Japan). Marine Geology, 352, 70–88.
    [Google Scholar]
  77. Zhang, Y., Xia, S., Cao, J., Zhao, F., Fan, C., Xu, H., & Wan, K. (2020). Extensional tectonics and post‐rift magmatism in the southern South China Sea: New constraints from multi‐channel seismic data. Marine and Petroleum Geology, 117, 104396.
    [Google Scholar]
  78. Zhao, F., Wu, S., Sun, Q., Huuse, M., Li, W., & Wang, Z. (2014). Submarine volcanic mounds in the Pearl River Mouth Basin, northern South China Sea. Marine Geology, 355, 162–172.
    [Google Scholar]
  79. Zhou, Y., Ji, Y., Pigott, J. D., Meng, Q., & Wan, L. (2014). Tectono‐stratigraphy of Lower Cretaceous Tanan sub‐basin, Tamtsag Basin, Mongolia: Sequence architecture, depositional systems and controls on sediment infill. Marine and Petroleum Geology, 49, 176–202.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12805
Loading
/content/journals/10.1111/bre.12805
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error