1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

The size of relict breached relay zones has shown to have a potential influence on fault seal integrity, where breached relay zones that had large overlap areas and high throw amplitudes have a greater potential to fracture and allow fluids to flow along/across the fault zone.

, Abstract

Developing an accurate understanding of the ways in which faults have grown within a particular region and stratigraphy can aid risk management for CO storage sites. Areas of fault interaction lead to differences in the stress field, resulting in an increased strain, which is often accommodated by a high intensity of deformation bands and/or fracturing, dependent on host rock properties. These structures alter the permeability surrounding faults. Hence, detecting areas of interaction of structures throughout the fault growth history allows the identification of locations where high risk may occur in terms of the hydraulic properties of a fault zone. The Vette Fault Zone (VFZ), bounding the Alpha prospect within the potential CO Smeaheia storage site, Northern Horda Platform, is shown to have grown from a minimum of seven fault segments. By utilising a comparison with the adjacent Tusse Fault Zone (TFZ), we can identify potential areas of high risk, where fluids may have the ability to flow across or along the VFZ. The high seal strength of the TFZ holding back a large gas column is likely to be created by shale juxtaposition and smearing with cataclastic processes. The same could be assumed for the VFZ, associated with similar tectonics and displaced stratigraphy. However, rather than membrane breaching causing fluids to flow across the fault, potential areas of high risk have been identified at locations of relict breached relay zones, where the initial displacement of the intersecting faults and area of overlap was high. These areas appear to correspond with the location of hydrocarbon contact depth (spill point) along the TFZ. Using the same assumptions for the VFZ, we can observe one potential area of high risk, which lies within the area of suggested CO accumulation.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12807
2024-01-08
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/1/bre12807.html?itemId=/content/journals/10.1111/bre.12807&mimeType=html&fmt=ahah

References

  1. Allan, U. S. (1989). Model for hydrocarbon migration and entrapment within faulted structures. AAPG Bulletin, 73(7), 803–811.
    [Google Scholar]
  2. Antonellini, M., & Aydin, A. (1994). Effect of faulting on fluid flow in porous sandstones: Petrophysical properties. AAPG Bulletin, 78(3), 355–377.
    [Google Scholar]
  3. Aydin, A., & Eyal, Y. (2002). Anatomy of a normal fault with shale smear: Implications for fault seal. AAPG Bulletin, 86(8), 1367–1381.
    [Google Scholar]
  4. Badley, M. E., Price, J. D., Dahl, C. R., & Agdestein, T. (1988). The structural evolution of the northern Viking graben and its bearing upon extensional modes of basin formation. Journal of the Geological Society, 145(3), 455–472.
    [Google Scholar]
  5. Ballas, G., Fossen, H., & Soliva, R. (2015). Factors controlling permeability of cataclastic deformation bands and faults in porous sandstone reservoirs. Journal of Structural Geology, 76, 1–21.
    [Google Scholar]
  6. Barnett, J. A., Mortimer, J., Rippon, J. H., Walsh, J. J., & Watterson, J. (1987). Displacement geometry in the volume containing a single normal fault. AAPG Bulletin, 71(8), 925–937.
    [Google Scholar]
  7. Bell, R. E., Jackson, C. L., Elliott, G. M., Gawthorpe, R. L., Sharp, I. R., & Michelsen, L. (2014). Insights into the development of major rift‐related unconformities from geologically constrained subsidence modelling: Halten terrace, offshore mid Norway. Basin Research, 26(1), 203–224.
    [Google Scholar]
  8. Bense, V. F., & Van Balen, R. (2004). The effect of fault relay and clay smearing on groundwater flow patterns in the lower Rhine embayment. Basin Research, 16(3), 397–411.
    [Google Scholar]
  9. Berg, R. R. (1975). Capillary pressures in stratigraphic traps. AAPG Bulletin, 59(6), 939–956.
    [Google Scholar]
  10. Bertram, G. T., & Milton, N. J. (1988). Reconstructing basin evolution from sedimentary thickness; the importance of palaeobathymetric control, with reference to the North Sea. Basin Research, 1(4), 247–257.
    [Google Scholar]
  11. Birol, F. (2008). World energy outlook (Vol. 23, 329). International Energy Agency.
    [Google Scholar]
  12. Braathen, A., Midtkandal, I., Mulrooney, M. J., Appleyard, T. R., Haile, B. G., & van Yperen, A. E. (2018). Growth‐faults from delta collapse–structural and sedimentological investigation of the last chance delta, Ferron sandstone, Utah. Basin Research, 30(4), 688–707.
    [Google Scholar]
  13. Braathen, A., Petrie, E., Nystuen, T., Sundal, A., Skurtveit, E., Zuchuat, V., Gutierrez, M., & Midtkandal, I. (2020). Interaction of deformation bands and fractures during progressive strain in monocline‐San Rafael swell, Central Utah, USA. Journal of Structural Geology, 141, 104219.
    [Google Scholar]
  14. Braathen, A., Tveranger, J., Fossen, H., Skar, T., Cardozo, N., Semshaug, S. E., Bastesen, E., & Sverdrup, E. (2009). Fault facies and its application to sandstone reservoirs. AAPG Bulletin, 93(7), 891–917.
    [Google Scholar]
  15. Bretan, P., Yielding, G., & Jones, H. (2003). Using calibrated shale gouge ratio to estimate hydrocarbon column heights. AAPG Bulletin, 87(3), 397–413.
    [Google Scholar]
  16. Cartwright, J., Bouroullec, R., James, D., & Johnson, H. (1998). Polycyclic motion history of some Gulf Coast growth faults from high‐resolution displacement analysis. Geology, 26(9), 819–822.
    [Google Scholar]
  17. Cartwright, J. A., Mansfield, C., & Trudgill, B. (1996). The growth of normal faults by segment linkage. Geological Society, London, Special Publications, 99(1), 163–177.
    [Google Scholar]
  18. Cartwright, J. A., Trudgill, B. D., & Mansfield, C. S. (1995). Fault growth by segment linkage: An explanation for scatter in maximum displacement and trace length data from the canyonlands grabens of SE Utah. Journal of Structural Geology, 17(9), 1319–1326.
    [Google Scholar]
  19. Chapman, T.J. & Meneilly, A.W. (1991). The displacement patterns associated with a reverse‐reactivated, normal growth fault. Geological Society, (Vol. 56, pp. 183–191). Special Publications.
    [Google Scholar]
  20. Childs, C., Holdsworth, R. E., Jackson, C. A. L., Manzocchi, T., Walsh, J. J., & Yielding, G. (2017). Introduction to the geometry and growth of normal faults. Geological Society, London, Special Publications, 439(1), 1–9.
    [Google Scholar]
  21. Childs, C., Manzocchi, T., Walsh, J.J., Bonson, C.G., Nicol, A. & Schöpfer, M.P. (2009). A geometric model of fault zone and fault rock thickness variations. Journal of Structural Geology, 31(2), 117–127.
    [Google Scholar]
  22. Childs, C., Watterson, J., & Walsh, J. J. (1995). Fault overlap zones within developing normal fault systems. Journal of the Geological Society, 152(3), 535–549.
    [Google Scholar]
  23. Cowie, P. A. (1998). A healing–reloading feedback control on the growth rate of seismogenic faults. Journal of Structural Geology, 20(8), 1075–1087.
    [Google Scholar]
  24. Cowie, P. A., & Scholz, C. H. (1992a). Displacement‐length scaling relationship for faults: Data synthesis and discussion. Journal of Structural Geology, 14(10), 1149–1156.
    [Google Scholar]
  25. Cowie, P. A., & Scholz, C. H. (1992b). Physical explanation for displacement‐length relationship of faults using a post‐yield fracture mechanics model. Journal of Structural Geology, 14, 1133–1148.
    [Google Scholar]
  26. Curewitz, D., & Karson, J. A. (1997). Structural settings of hydrothermal outflow: Fracture permeability maintained by fault propagation and interaction. Journal of Volcanology and Geothermal Research, 79(3–4), 149–168.
    [Google Scholar]
  27. Davatzes, N. C., & Aydin, A. (2003). Overprinting faulting mechanisms in high porosity sandstones of SE Utah. Journal of Structural Geology, 25(11), 1795–1813.
    [Google Scholar]
  28. Dawers, N. H., & Anders, M. H. (1995). Displacement‐length scaling and fault linkage. Journal of Structural Geology, 17(5), 607–614.
    [Google Scholar]
  29. Deng, C., Fossen, H., Gawthorpe, R. L., Rotevatn, A., Jackson, C. A., & FazliKhani, H. (2017). Influence of fault reactivation during multiphase rifting: The Oseberg area, northern North Sea rift. Marine and Petroleum Geology, 86, 1252–1272.
    [Google Scholar]
  30. Dockrill, B., & Shipton, Z. K. (2010). Structural controls on leakage from a natural CO2 geologic storage site: Central Utah, USA. Journal of Structural Geology, 32(11), 1768–1782.
    [Google Scholar]
  31. Dreyer, T., Whitaker, M., Dexter, J., Flesche, H., Larsen, E. (2005). From spit system to tide dominated delta: integrated reservoir model of the upper Jurassic Sognefjord Formation on the Troll West Field. In: A.G.Doré, & B.Vining (Eds.), Petroleum Geology of North‐West Europe and Global Perspectives, Proceedings of the 6th Petroleum Geology Conference. (pp. 1–26). Geological Society of London.
    [Google Scholar]
  32. Duffy, O. B., Bell, R. E., Jackson, C. A. L., Gawthorpe, R. L., & Whipp, P. S. (2015). Fault growth and interactions in a multiphase rift fault network: Horda platform, Norwegian North Sea. Journal of Structural Geology, 80, 99–119.
    [Google Scholar]
  33. Færseth, R. B. (1996). Interaction of Permo‐Triassic and Jurassic extensional fault‐blocks during the development of the northern North Sea. Journal of the Geological Society, 153(6), 931–944.
    [Google Scholar]
  34. Færseth, R. B. (2006). Shale smear along large faults: Continuity of smear and the fault seal capacity. Journal of the Geological Society, 163(5), 741–751.
    [Google Scholar]
  35. Færseth, R. B., Gabrielsen, R. H., & Hurich, C. A. (1995). Influence of basement in structuring of the North Sea basin, offshore Southwest Norway. Norsk Geologisk Tidsskrift, 75(2–3), 105–119.
    [Google Scholar]
  36. Faleide, T. S., Braathen, A., Lecomte, I., Mulrooney, M. J., Midtkandal, I., Bugge, A. J., & Planke, S. (2021). Impacts of seismic resolution on fault interpretation: Insights from seismic modelling. Tectonophysics, 816, 229008.
    [Google Scholar]
  37. Ferrill, D. A., Morris, A. P., & McGinnis, R. N. (2012). Extensional fault‐propagation folding in mechanically layered rocks: The case against the frictional drag mechanism. Tectonophysics, 576, 78–85.
    [Google Scholar]
  38. Fisher, Q. J., & Knipe, R. (1998). Fault sealing processes in siliciclastic sediments. Geological Society, London, Special Publications, 147(1), 117–134.
    [Google Scholar]
  39. Fisher, Q. J., & Knipe, R. J. (2001). The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian continental shelf. Marine and Petroleum Geology, 18(10), 1063–1081.
    [Google Scholar]
  40. Fossen, H., & Rotevatn, A. (2016). Fault linkage and relay structures in extensional settings—A review. Earth‐Science Reviews, 154, 14–28.
    [Google Scholar]
  41. Fossen, H., Schultz, R. A., Shipton, Z. K., & Mair, K. (2007). Deformation bands in sandstone: A review. Journal of the Geological Society, 164(4), 755–769.
    [Google Scholar]
  42. Fossen, H., Soliva, R., Ballas, G., Trzaskos, B., Cavalcante, C., & Schultz, R. A. (2018). A review of deformation bands in reservoir sandstones: Geometries, mechanisms and distribution. Geological Society, London, Special Publications, 459(1), 9–33.
    [Google Scholar]
  43. Goldsmith, P. J. (2000), Exploration potential east of the Troll field, offshore Norway, after dry well 32/4‐1, In K.Ofstad, J. E.Kittilsen, & P.Alexander‐Marrack, (Eds.), Improving the exploration process by learning from the past: Oslo, Norway, (Vol. 9, pp. 65–97), Norwegian Petroleum Society Special Publication. https://doi.org/10.1016/S0928‐8937(00)80010‐7
    [Google Scholar]
  44. Gradstein, F. M., & Waters, C. N. (2016). Stratigraphic guide to the Cromer Knoll, Shetland and chalk groups, North Sea and Norwegian Sea. Newsletters on Stratigraphy, 49(1), 71–280.
    [Google Scholar]
  45. Halland, E. K., Johansen, W. T., & Riis, F. (2011). CO2 storage atlas: Norwegian North Sea, Norwegian petroleum directorate. http://www.npd.no/no/Publikasjoner/Rapporter/CO2‐lagringsatlas
  46. Holgate, N. E., Jackson, C. A. L., Hampson, G. J., & Dreyer, T. (2013). Sedimentology and sequence stratigraphy of the middle–upper jurassic krossfjord and fensfjord formations, troll field, northern North Sea. Petroleum Geoscience, 19(3), 237–258.
    [Google Scholar]
  47. Huggins, P., Watterson, J., Walsh, J. J., & Childs, C. (1995). Relay zone geometry and displacement transfer between normal faults recorded in coal‐mine plans. Journal of Structural Geology, 17(12), 1741–1755.
    [Google Scholar]
  48. Isaksen, G. H., & Ledje, K. H. I. (2001). Source rock quality and hydrocarbon migration pathways within the greater Utsira high area, Viking graben, Norwegian North Sea. AAPG Bulletin, 85(5), 861–883.
    [Google Scholar]
  49. Jackson, C. A. L., Bell, R. E., Rotevatn, A., & Tvedt, A. B. (2017). Techniques to determine the kinematics of synsedimentary normal faults and implications for fault growth models. Geological Society, London, Special Publications, 439(1), 187–217.
    [Google Scholar]
  50. Jackson, C. A. L., & Rotevatn, A. (2013). 3D seismic analysis of the structure and evolution of a salt‐influenced normal fault zone: A test of competing fault growth models. Journal of Structural Geology, 54, 215–234.
    [Google Scholar]
  51. Jackson, C. A. L., Gawthorpe, R. L., & Sharp, I. R. (2006). Style and sequence of deformation during extensional fault‐propagation folding: Examples from the Hammam Faraun and El‐Qaa fault blocks, Suez Rift, Egypt. Journal of Structural Geology, 28(3), 519–535.
    [Google Scholar]
  52. Justwan, H., Dahl, B. (2005). Quantitative hydrocarbon potential mapping and organo‐facies study in the Greater Balder area, Norwegian North Sea. 2005. In: A.G.Dore, A. & Vinino, (Eds.), Petroleum Geology, (pp. 1317–1329). Northwest Europe and global prospective e Proceedings of the 6th Petroleum Geology Conference.
    [Google Scholar]
  53. Karolytė, R., Johnson, G., Yielding, G., & Gilfillan, S. M. (2020). Fault seal modelling–the influence of fluid properties on fault sealing capacity in hydrocarbon and CO2 systems. Petroleum Geoscience, 26, 481–497.
    [Google Scholar]
  54. Lauritsen, H., Kassold, S., Meneguolo, R., & Furre, A. (2018). Assessing potential influence of nearby hydrocarbon production on CO2 storage at Smeaheia. In Fifth CO2 geological storage workshop (Vol. 2018, pp. 1–5). European Association of Geoscientists & Engineers.
    [Google Scholar]
  55. Lewis, M. M., Jackson, C. A. L., & Gawthorpe, R. L. (2013). Salt‐influenced normal fault growth and forced folding: The Stavanger fault system, North Sea. Journal of Structural Geology, 54, 156–173.
    [Google Scholar]
  56. Lindsay, N. G., Murphy, F. C., Walsh, J. J., & Watterson, J. (1993). Outcrop studies of shale smears on fault surfaces. In S.Flint & I.Bryant (Eds.), The geological modelling of hydrocarbon reservoirs and outcrop analogues (Vol. 15, pp. 113–123). Blackwell Scientific Publications.
    [Google Scholar]
  57. Lyon, P. J., Boult, P. J., Hillis, R. R., & Mildren, S. D. (2005). Sealing by shale gouge and subsequent seal breach by reactivation: A case study of the Zema Prospect. Otway Basin.
    [Google Scholar]
  58. Michie, E. A., Alaei, B., & Braathen, A. (2022). Assessing the accuracy of fault interpretation using machine‐learning techniques when risking faults for CO2 storage site assessment. Interpretation, 10(1), T73–T93.
    [Google Scholar]
  59. Michie, E. A., Mulrooney, M. J., & Braathen, A. (2021). Fault interpretation uncertainties using seismic data, and the effects on fault seal analysis: A case study from the Horda platform, with implications for CO2 storage. Solid Earth, 12(6), 1259–1286.
    [Google Scholar]
  60. Mondol, N. H., Fawad, M., & Park, J. (2018). Petrophysical analysis and rock physics diagnostics of Sognefjord formation in the Smeaheia area, northern North Sea. In Fifth CO2 geological storage workshop (Vol. 2018, pp. 1–5). European Association of Geoscientists & Engineers.
    [Google Scholar]
  61. Morley, C. K., Nelson, R. A., Patton, T. L., & Munn, S. G. (1990). Transfer zones in the East African rift system and their relevance to hydrocarbon exploration in rifts. AAPG Bulletin, 74(8), 1234–1253.
    [Google Scholar]
  62. Mulrooney, M. J., Osmond, J. L., Skurtveit, E., Faleide, J. I., & Braathen, A. (2020). Structural analysis of the Smeaheia fault block, a potential CO2 storage site, northern Horda platform, North Sea. Marine and Petroleum Geology. https://doi.org/10.1016/j.marpetgeo.2020.104598
    [Google Scholar]
  63. Nicol, A., & Childs, C. (2018). Cataclasis and silt smear on normal faults in weakly lithified turbidites. Journal of Structural Geology, 117, 44–57.
    [Google Scholar]
  64. Nicol, A., Walsh, J., Berryman, K., & Nodder, S. (2005). Growth of a normal fault by the accumulation of slip over millions of years. Journal of Structural Geology, 27(2), 327–342.
    [Google Scholar]
  65. Nicol, A., Walsh, J., Childs, C., & Manzocchi, T. (2020). The growth of faults. In T.David & B.Christian (Eds.), Understanding faults. (pp. 221–255). Elsevier.
    [Google Scholar]
  66. Nicol, A., Walsh, J. J., Villamor, P., Seebeck, H., & Berryman, K. R. (2010). Normal fault interactions, paleoearthquakes and growth in an active rift. Journal of Structural Geology, 32(8), 1101–1113.
    [Google Scholar]
  67. Nicol, A., Watterson, J., Walsh, J. J., & Childs, C. (1996). The shapes, major axis orientations and displacement patterns of fault surfaces. Journal of Structural Geology, 18(2–3), 235–248.
    [Google Scholar]
  68. Nybakken, S., & Bäckstrøm, S. A. (1989). Shetland group: Stratigraphic subdivision and regional correlation in the Norwegian North Sea. In J.D.Collinson (Ed.), Correlation in hydrocarbon exploration (pp. 253–269). Springer.
    [Google Scholar]
  69. Ogata, K., Senger, K., Braathen, A., & Tveranger, J. (2014). Fracture corridors as seal‐bypass systems in siliciclastic reservoir‐cap rock successions: Field‐based insights from the Jurassic entrada formation (SE Utah, USA). Journal of Structural Geology, 66, 162–187.
    [Google Scholar]
  70. Osmond, J. L., Mulrooney, M. J., Holden, N., Skurtveit, E., Faleide, J. I., & Braathen, A. (2022). Structural traps and seals for expanding CO2 storage in the northern Horda platform, North Sea. AAPG Bulletin, 106(9), 1711–1752.
    [Google Scholar]
  71. Patruno, S., Hampson, G. J., Jackson, C. A. L., & Whipp, P. S. (2015). Quantitative progradation dynamics and stratigraphic architecture of ancient shallow‐marine clinoform sets: A new method and its application to the upper Jurassic Sognefjord formation, troll field, offshore Norway. Basin Research, 27(4), 412–452.
    [Google Scholar]
  72. Peacock, D. C. P., & Sanderson, D. J. (1991). Displacements, segment linkage and relay ramps in normal fault zones. Journal of Structural Geology, 13(6), 721–733.
    [Google Scholar]
  73. Peacock, D. C. P., & Sanderson, D. J. (1994). Geometry and development of relay ramps in normal fault systems. AAPG Bulletin, 78(2), 147–165.
    [Google Scholar]
  74. Petersen, K., Clausen, O. R., & Korstgård, J. A. (1992). Evolution of a salt‐related listric growth fault near the D‐1 well, block 5605, Danish North Sea: Displacement history and salt kinematics. Journal of Structural Geology, 14(5), 565–577.
    [Google Scholar]
  75. Rider, M. (2000). The geological interpretation of well logs (second ed., pp. 126–128). Rider–French Consulting Ltd.
    [Google Scholar]
  76. Ringrose, P. S., Thorsen, R., Zweigel, P., Nazarian, B., Furre, A. K., Paasch, B., Thompson, N., & Karstad, P. I. (2017). Ranking and risking alternative CO2 storage sites offshore Norway. In Fourth sustainable earth sciences conference (Vol. 2017, pp. 1–5). European Association of Geoscientists & Engineers.
    [Google Scholar]
  77. Rippon, J. H. (1984). Contoured patterns of the throw and hade of normal faults in the coal measures (Westphalian) of north‐east Derbyshire. Proceedings of the Yorkshire Geological Society, 45(3), 147–161.
    [Google Scholar]
  78. Roberts, A. M., Kusznir, N. J., Yielding, G., & Beeley, H. (2019). Mapping the bathymetric evolution of the northern North Sea: From Jurassic synrift archipelago through cretaceous–tertiary post‐rift subsidence. Petroleum Geoscience, 25(3), 306–321.
    [Google Scholar]
  79. Rogelj, J., Den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F., Riahi, K., & Meinshausen, M. (2016). Paris agreement climate proposals need a boost to keep warming well below 2°C. Nature, 534(7609), 631–639.
    [Google Scholar]
  80. Rotevatn, A., Fossen, H., Hesthammer, J., Aas, T. E., & Howell, J. A. (2007). Are relay ramps conduits for fluid flow? Structural analysis of a relay ramp in arches National Park, Utah. Geological Society, London, Special Publications, 270(1), 55–71.
    [Google Scholar]
  81. Rotevatn, A., Jackson, C. A. L., Tvedt, A. B., Bell, R. E., & Blækkan, I. (2019). How do normal faults grow?Journal of Structural Geology, 125, 174–184.
    [Google Scholar]
  82. Rotevatn, A., Kristensen, T. B., Ksienzyk, A. K., Wemmer, K., Henstra, G. A., Midtkandal, I., Grundvåg, S. A., & Andresen, A. (2018). Structural inheritance and rapid rift‐length establishment in a multiphase rift: The East Greenland rift system and its Caledonian orogenic ancestry. Tectonics, 37(6), 1858–1875.
    [Google Scholar]
  83. Rotevatn, A., Tveranger, J., Howell, J. A., & Fossen, H. (2009). Dynamic investigation of the effect of a relay ramp on simulated fluid flow: Geocellular modelling of the delicate arch ramp, Utah. Petroleum Geoscience, 15(1), 45–58.
    [Google Scholar]
  84. Schlische, R. W. (1995). Geometry and origin of fault‐related folds in extensional settings. AAPG Bulletin, 79(11), 1661–1678.
    [Google Scholar]
  85. Schowalter, T. T. (1979). Mechanics of secondary hydrocarbon migration and entrapment. AAPG Bulletin, 63(5), 723–760.
    [Google Scholar]
  86. Schueller, S., Braathen, A., Fossen, H., & Tveranger, J. (2013). Spatial distribution of deformation bands in damage zones of extensional faults in porous sandstones: Statistical analysis of field data. Journal of Structural Geology, 52, 148–162.
    [Google Scholar]
  87. Serck, C. S., & Braathen, A. (2019). Extensional fault and fold growth: Impact on accommodation evolution and sedimentary infill. Basin Research, 31(5), 967–990.
    [Google Scholar]
  88. Shipton, Z. K., Evans, J. P., & Thompson, L. B. (2005). The geometry and thickness of deformation‐band fault core and its influence on sealing characteristics of deformation‐band fault zones.
  89. Smith, D. A. (1966). Theoretical considerations of sealing and non‐sealing faults. AAPG Bulletin, 50(2), 363–374.
    [Google Scholar]
  90. Sperrevik, S., Gillespie, P. A., Fisher, Q. J., Halvorsen, T., & Knipe, R. J. (2002). Empirical estimation of fault rock properties. In G.Koestler Andreas, & R.Hunsdale (Eds.), Norwegian petroleum society special publications (Vol. 11, pp. 109–125). Elsevier.
    [Google Scholar]
  91. Statoil . (2016). Subsurface Evaluation of Smeaheia as part of 2016 Feasibility study on CO2 storage in the Norwegian Continental Shelf. OED 15/1785. Document A–Underground report Smeaheia (Internal Report–Available on Request Only).
  92. Sundal, A., Hellevang, H., Miri, R., Dypvik, H., Nystuen, J. P., & Aagaard, P. (2014). Variations in mineralization potential for CO2 related to sedimentary facies and burial depth–a comparative study from the North Sea. Energy Procedia, 63, 5063–5070.
    [Google Scholar]
  93. Takahashi, M. (2003). Permeability change during experimental fault smearing. Journal of Geophysical Research: Solid Earth, 108(B5).
    [Google Scholar]
  94. Thorsen, C. E. (1963). Age of growth faulting in Southeast Louisiana. Gulf Coast Association of Geological Societies Transactions, 13, 103–110.
    [Google Scholar]
  95. Torabi, A., Alaei, B., & Libak, A. (2019). Normal fault 3D geometry and displacement revisited: Insights from faults in the Norwegian Barents Sea. Marine and Petroleum Geology, 99, 135–155.
    [Google Scholar]
  96. Torabi, A., & Fossen, H. (2009). Spatial variation of microstructure and petrophysical properties along deformation bands in reservoir sandstones. AAPG Bulletin, 93(7), 919–938.
    [Google Scholar]
  97. Torabi, A., Fossen, H., & Braathen, A. (2013). Insight into petrophysical properties of deformed sandstone reservoirs. AAPG Bulletin, 97(4), 619–637.
    [Google Scholar]
  98. Trudgill, B., & Cartwright, J. (1994). Relay‐ramp forms and normal‐fault linkages, canyonlands National Park, Utah. Geological Society of America Bulletin, 106(9), 1143–1157.
    [Google Scholar]
  99. Walsh, J. J., Bailey, W. R., Childs, C., Nicol, A., & Bonson, C. G. (2003). Formation of segmented normal faults: A 3‐D perspective. Journal of Structural Geology, 25(8), 1251–1262.
    [Google Scholar]
  100. Walsh, J. J., Nicol, A., & Childs, C. (2002). An alternative model for the growth of faults. Journal of Structural Geology, 24(11), 1669–1675.
    [Google Scholar]
  101. Walsh, J. J., & Watterson, J. (1988). Analysis of the relationship between displacements and dimensions of faults. Journal of Structural Geology, 10(3), 239–247.
    [Google Scholar]
  102. Walsh, J. J., & Watterson, J. (1991). Geometric and kinematic coherence and scale effects in normal fault systems. Geological Society, London, Special Publications, 56(1), 193–203.
    [Google Scholar]
  103. Walsh, J. J., Watterson, J., Childs, C., & Nicol, A. (1996). Ductile strain effects in the analysis of seismic interpretations of normal fault systems. Geological Society, London, Special Publications, 99(1), 27–40.
    [Google Scholar]
  104. Watts, N. L. (1987). Theoretical aspects of cap‐rock and fault seals for single‐and two‐phase hydrocarbon columns. Marine and Petroleum Geology, 4(4), 274–307.
    [Google Scholar]
  105. Whipp, P. S., Jackson, C. L., Gawthorpe, R. L., Dreyer, T., & Quinn, D. (2014). Normal fault array evolution above a reactivated rift fabric; a subsurface example from the northern Horda platform, Norwegian North Sea. Basin Research, 26(4), 523–549.
    [Google Scholar]
  106. Wu, L., Thorsen, R., Ottesen, S., Meneguolo, R., Hartvedt, K., Ringrose, P., & Nazarian, B. (2021). Significance of fault seal in assessing CO2 storage capacity and containment risks—An example from the Horda platform, northern North Sea. Petroleum Geoscience, 27. https://doi.org/10.1144/petgeo2020‐102
    [Google Scholar]
  107. Yielding, G. (2002). Shale gouge ratio—Calibration by geohistory. In G.Koestler Andreas, & R.Hunsdale (Eds.), Norwegian petroleum society special publications (Vol. 11, pp. 1–15). Elsevier.
    [Google Scholar]
  108. Yielding, G., Badley, M. E., & Freeman, B. (1991). Seismic reflections from normal faults in the northern North Sea. Geological Society, London, Special Publications, 56(1), 79–89.
    [Google Scholar]
  109. Yielding, G., Bretan, P., & Freeman, B. (2010). Fault seal calibration: A brief review. Geological Society, London, Special Publications, 347(1), 243–255.
    [Google Scholar]
  110. Yielding, G., Freeman, B., & Needham, D. T. (1997). Quantitative fault seal prediction. AAPG Bulletin, 81(6), 897–917.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12807
Loading
/content/journals/10.1111/bre.12807
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): CO2 storage; fault growth; fault seal; risk assessment; Smeaheia

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error