1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

The equatorial margin of Brazil is an example of a rift margin with a complex landscape, dominated by an escarpment perpendicular to the continental margin, which testifies to an equally complex rift and post‐rift surface and tectonic evolution. This has been the focus of a long debate on the driving mechanism for post‐rift tectonics and on the amount of exhumation. This study contributes to this debate with new petrographic and thermochronologic data on 152 samples from three basins, Pará‐Maranhão, Barreirinhas and Ceará, on the offshore continental platform. Our detrital record goes back to the rift time at ca. 100 Ma ago and outlines three major evolutionary phases of a changing landscape: a rift phase, with the erosion of a moderate rift escarpment, a Late Cretaceous‐Palaeogene post‐rift phase of major drainage reorganization and significant vertical erosion and a Late Oligocene‐to‐Recent post‐rift phase of moderate vertical erosion and river headwater migration. We estimate that along the equatorial margin of Brazil, over a large onshore area, exhumation since the Late Cretaceous has totalled locally up to 2–2.5 km and since the late Oligocene did not exceed 1 km.

,

Since the Late Cretaceous, the equatorial margin of Brazil has undergone a rift phase, with the erosion of a moderate rift escarpment, a Late Cretaceous–Paleogene post‐rift phase, with major drainage reorganization and significant vertical erosion, and a Late Oligocene‐to‐Recent post‐rift phase, with moderate vertical erosion and river headwater migration.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12808
2024-01-08
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/1/bre12808.html?itemId=/content/journals/10.1111/bre.12808&mimeType=html&fmt=ahah

References

  1. Arthaud, M. H., Caby, R., Fuck, R. A., Dantas, E. L., & Parente, C. V. (2008). Geology of the northern Borborema Province, NE Brazil and its correlation with Nigeria, NW Africa. In R. J.Pankhurst, R. A. J.Trouw, B. B.Brito Neves, & M. J.De Wit (Eds.), West Gondwana: Pre‐Cenozoic correlations across the South Atlantic region (Vol. 29, pp. 49–67). Geological Society, London, Special Publications. https://doi.org/10.1144/SP294.4
    [Google Scholar]
  2. Arthaud, M. H., Fuck, R. A., Dantas, E. L., Santos, T. J. S., Caby, R., & Armstrong, R. (2015). The Neoproterozoic Ceará group, Ceará central domain, NE Brazil: Depositional age and provenance of detrital material. New insights from U‐Pb and Sm‐Nd geochronology. Journal of South American Earth Sciences, 58, 223–237. https://doi.org/10.1016/j.jsames.2014.09.007
    [Google Scholar]
  3. Belton, D. X., Brown, R. W., Kohn, B. P., Fink, D., & Farley, K. A. (2004). Quantitative resolution of the debate over antiquity of the central Australian landscape: Implications for the tectonic and geomorphic stability of cratonic interiors. Earth and Planetary Science Letters, 219, 21–34. https://doi.org/10.1016/S0012‐821X(03)00705‐2
    [Google Scholar]
  4. Bernet, M., Zattin, M., Garver, J. I., Brandon, M. T., & Vance, J. A. (2001). Steady‐state exhumation of the European Alps. Geology, 29(1), 35–38.
    [Google Scholar]
  5. Bezerra, F. H., Castro, D. L., Maia, R. P., Sousa, M. O. L., Moura‐Lima, E. N., Rossetti, D. F., Bertotti, G., Souza, Z. S., & Nogueira, F. C. C. (2020). Post‐rift stress field inversion in the Potiguar Basin, Brazil ‐ implications for T petroleum systems and evolution of the equatorial margin of South America. Marine and Petroleum Geology, 111, 88–104.
    [Google Scholar]
  6. Brandon, M. T. (1996). Probability density plot for fission‐track grain‐age samples. Radiation Measurement, 26, 663–676.
    [Google Scholar]
  7. Brandon, M. T., & Vance, J. (1992). New statistical methods for analysis of fission‐ track grain‐age distributions with applications to detrital zircon ages from the Olympic subduction complex, western Washington state. American Journal of Science, 292, 565–636.
    [Google Scholar]
  8. Campbell, K. E., Frailey, C. D., & Romero‐Pittman, L. (2006). The pan‐Amazonian Ucayali peneplain, late Neogene sedimentation in Amazonia, and the birth of the modern Amazon River system. Palaeogeography, Palaeoclimatology, Palaeoecology, 239, 166–219.
    [Google Scholar]
  9. Carlson, W. D., Donelick, R. A., & Ketcham, R. A. (1999). Variability of apatite fission‐track annealing kinetics: I. Experimental Results: The American Mineralogist, 84, 1213–1223. https://doi.org/10.2138/am‐1999‐0901
    [Google Scholar]
  10. Cavalcante, A. S. A. (2006). Evolução termocronológica do sistema de falhas Senador Pompeu – CE. (Master dissertation). Universidade Federal do Rio Grande do Norte, Natal (53 pp).
  11. Condé, V. C., Cunha, C. C., Pessoa Neto, O. C., Roesner, E. H., Morais Neto, J. M., & Dutra, D. C. (2007). Bacia do Ceará. Boletim de Geociências da Petrobras, Rio de Janeiro, 15(2), 347–355.
    [Google Scholar]
  12. Cordani, U. G., Brito Neves, B. B., Fuck, R. A., Porto, i. R., Thomaz Filho, A., & Cunha, F. M. B. (2009). Estudo preliminar de integração do Pré‐Cambriano com os eventos tectônicos das bacias sedimentares brasileiras (Republicação). Boletim de Geociências da Petrobras, Rio de Janeiro, 17(1), 133–204.
    [Google Scholar]
  13. Dickinson, W. R. (1985). Interpreting provenance relations from detrital modes of sandstones. In G. G.Zuffa (Ed.), Provenance of arenites (pp. 333–362). D. Reidel Publishing Company. https://doi.org/10.1007/978‐94‐017‐2809‐6_15
    [Google Scholar]
  14. Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., Knepp, R. A., Lindberg, F. A., & Ryberg, P. T. (1983). Provenance of north American Phanerozoic sandstones in relation to tectonic setting. GSA Bulletin, 94(2), 222–235.
    [Google Scholar]
  15. Donelick, R. A. (1999). Crystallographic orientation dependence of mean etchable fission‐track length in apatite: An empirical model and experimental observations. American Mineralogist, 76, 83–91.
    [Google Scholar]
  16. Feijó, F. J. (1994). Bacia de Barreirinhas. Boletim de Geociências da Petrobras, Rio de Janeiro, 8(1), 103–109.
    [Google Scholar]
  17. Folk, R. L. (1968). Petrology of sedimentary rocks. Hemphill Publishing Company.
    [Google Scholar]
  18. Galbraith, R. F. (1981). On statistical models for fission tracks counts. Mathematical Geology, 13, 471–478.
    [Google Scholar]
  19. Galbraith, R. F. (2005). Statistics for fission track analysis. CRC Press.
    [Google Scholar]
  20. Garcia, X., Julià, J., Nemocó, A. M., & Neukirch, M. (2019). Lithospheric thinning under the Araripe Basin (NE Brazil) from a long‐period magnetotelluric survey: Constraints for tectonic inversion. Gondwana Research, 68, 174–184.
    [Google Scholar]
  21. Garzanti, E. (2017). The maturity myth in sedimentology and provenance analysis. Journal of Sedimentary Research, 87, 353–365. https://doi.org/10.2110/jsr.2017.17
    [Google Scholar]
  22. Gazzi, P., Zuffa, G. G., Paganelli, L., & Gandolfi, G. (1973). Provenienza e dispersione litoranea delle sabbie delle spiagge adriatiche fra le foci dell'Isonzo e del Foglia: inquadramento regionale. Memorie Della Societa Geologica Italiana, 12, 1–37.
    [Google Scholar]
  23. Góes, A. M., & Feijó, F. J. (1994). Bacia do Parnaíba. Boletim de Geociências da Petrobras, Rio de Janeiro, 8(1), 57–67.
    [Google Scholar]
  24. Gurgel, S. P., Bezerra, F. H., Corrêa, A. C., Marques, F. O., & Maia, R. P. (2013). Cenozoic uplift and erosion of structural landforms in NE Brazil. Geomorphology, 186, 68–84.
    [Google Scholar]
  25. Harman, R., Gallagher, K., Brown, R., Razza, A., & Bizzi, L. (1998). Accelerated denudation and tectonic/geomorphic reactivation of the cratons of northeastern Brazil during the late Cretaceous. Journal of Geophysical Research – Solid Earth, 103(11), 27091–27105.
    [Google Scholar]
  26. Heine, C., Zoethout, J., & Müller, R. D. (2013). Kinematics of the South Atlantic rift. Solid Earth, 4, 215–253. https://doi.org/10.5194/se‐4‐215‐2013
    [Google Scholar]
  27. Hurford, A. J. (1990). Standardization of fission track dating calibration: Recommendation by the Fission Track working Group of the I.U.G.S. Subcommission on Geochronology. Chemical Geology, 80, 171–178.
    [Google Scholar]
  28. Hurford, A. J., & Green, P. F. (1983). A guide to fission track dating calibration. Chemical Geology (Isotope Geosciences Section), 1, 285–317.
    [Google Scholar]
  29. Japsen, P., Chalmers, J. A., Green, P. F., & Bonow, J. M. (2012). Elevated, passive continental margins: Not rift shoulders, but expressions of episodic, post‐rift burial and exhumation. Global and Planetary Change, 90‐91, 73–86. https://doi.org/10.1016/j.gloplacha.2011.05.004
    [Google Scholar]
  30. Jelinek, A. R., Chemale, F., Jr., van der Beek, P. A., Guadagnin, F., Cupertino, J. A., & Viana, A. R. (2014). Denudation history and landscape evolution of the northern East‐Brazilian continental margin from apatite fission‐track thermochronology. Journal of South American Earth Sciences, 54, 158–181.
    [Google Scholar]
  31. Ketcham, R. J., Donelick, R. A., & Carlson, W. D. (1999). Variability of apatite fission‐track annealing kinetics: III. Extrapolation to geologic time scales. American Mineralogist, 48, 1235–1255.
    [Google Scholar]
  32. Lima, M. G. (2008). A História do Intemperismo na Província Borborema Oriental, Nordeste do Brasil: Implicações Paleoclimáticas e Tectônicas. (Doctoral Thesis). Univ. Fed. Rio Grande do Norte.
  33. Maia, R., & Bezerra, F. H. (2020). Structural geomorphology in Northeastern Brazil. Springer International Publishing. https://doi.org/10.1007/978‐3‐030‐13311‐5_2
    [Google Scholar]
  34. Malusá, M. G., Resentini, A., & Garzanti, E. (2016). Hydraulic sorting and mineral fertility bias in detrital geochronology. Gondwana Research, 31, 1–19. https://doi.org/10.1016/j.gr.2015.09.002
    [Google Scholar]
  35. Matos, R. M. D. (1992). The northeastern Brazilian rift system. Tectonics, 11, 766–791.
    [Google Scholar]
  36. Milani, E. J., & Thomaz Filho, A. (2000). Sedimentary basins of South America. In U. G.Cordani, E. J.Milani, T.homaz Filho, & D. A.Campos (Eds.), Tectonic evolution of South America (pp. 389–449). 31st International Geological Congress, Rio de Janeiro.
    [Google Scholar]
  37. Mizusaki, A. M. P., Thomaz Filho, A., Milani, E. J., & Césero, P. (2002). Mesozoic and Cenozoic igneous activity and its tectonic control in the northeastern region of Brazil, South America. Journal of South America Earth Sciences, 15, 183–198.
    [Google Scholar]
  38. Mojzeszowicz, A. G. (2009). Evolução da tectônica ruptil no Nordeste do Brasil baseada na termocronologia por traço de fissão em apatita. (Master thesis). UNESP, Rio Claro, Brasil, (64 pp).
  39. Morais Neto, J. M., Green, P. F., Karner, G. D., & Alkmim, F. F. (2008). Age of the Serra do Martins Formation, Borborema Plateau, northeastern Brazil: Constraints from apatite and zircon fission track analysis. Boletim de Geociências da Petrobras, 16(1), 23–52.
    [Google Scholar]
  40. Morais Neto, J. M., Hegarty, K. A., & Karner, G. D. (2005–2006). Abordagem preliminar sobre paleotemperatura e evolução do relevo da Bacia do Araripe, Nordeste do Brasil, a partir da análise de traços de fissão em apatita. Boletim de Geociências da Petrobras, 14(1), 113–118.
    [Google Scholar]
  41. Morais Neto, J. M., Hegarty, K. A., Karner, G. D., & Alkmim, F. F. (2009). Timing and mechanisms for the generation and modification of the anomalous topography of the Borborema Province, northeastern Brazil. Marine and Petroleum Geology, 26(7), 1070–1086.
    [Google Scholar]
  42. Morais Neto, J. M., Pessoa Neto, O. C., Lana, C. C., & Zalán, P. V. (2003). Bacias Sedimentares Brasileiras: Bacia do Ceará. Fundação Paleontológica Phoenix, 57, 1–6.
    [Google Scholar]
  43. Morais Neto, J. M., & Vasconcelos, P. M. (2010). Thermochronological controls on the exhumation of the Eastern Borborema Province, Northeastern Brazil. In Conference: 2010 AGU Meeting of the Americas at: Foz Do Iguaçu, Brazil Volume: EOS Trans. AGU, (Vol. 91). Meet. Am. Suppl., Abstract T12A‐03.
  44. Morais Neto, J. M., Vasconcelos, P. M., & Stone, J. (2010). Cosmogenic 10Be constraints on the denudation history of the Borborema Province, Northeastern Brazil. In Conference: 2010 AGU Meeting of the Americas at: Foz do Iguaçu, Brazil Volume: EOS Trans. AGU, 91(26), Meet. Am. Suppl., Abstract T21B‐13.
  45. Morais Neto, J. M., Vasconcelos, P. M., Stone, J., & Lima, M. D. (2012). Denudation patterns in the Borborema Province, northeastern Brazil: Constraints from cosmogenic 10Be isotope analysis. IUGS/AGC, 34th International Geological Congress, Brisbane, Proceedings, 2722.
  46. Morton, A. C. (1999). Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology, 124, 3–29.
    [Google Scholar]
  47. Motta Garcia, M. D. G., Santos, T. J. S., & Amaral, W. S. (2014). Provenance and tectonic setting of neoproterozoic supracrustal rocks from the Ceará central domain, Borborema Province (NE Brazil): Constraints from geochemistry and detrital zircon ages. International Geology Review, 56(4), 481–500. https://doi.org/10.1080/00206814.2013.875489
    [Google Scholar]
  48. Nascimento, M. A., Galindo, A. C., & Medeiros, V. C. (2015). Ediacaran to Cambrian magmatic suites in the Rio Grande do Norte domain, extreme northeastern Borborema Province (NE of Brazil): Current knowledge. Journal of South American Earth Sciences, 58, 281–299. https://doi.org/10.1016/j.jsames.2014.09.008
    [Google Scholar]
  49. Nóbrega, M. A., Sá, J. M., Bezerra, F. H., Hadler Neto, J. C., Iunes, P. J., Guedes, S., Tello Saenz, C. A., Hackspacher, P. C., & Lima‐Filho, F. P. (2005). The use of apatite fission track thermochronology to constrain fault movements and sedimentary basin evolution in northeastern Brazil. Radiation Measurements, 39, 627–633. https://doi.org/10.1016/j.radmeas.2004.12.006
    [Google Scholar]
  50. Pessoa Neto, O. C. (2003). Estratigrafia de Sequências da Plataforma mista neogênica na Bacia Potiguar, Margem Equatorial Brasileira. Revista Brasileira de Geociencias, 33, 263–278.
    [Google Scholar]
  51. Peulvast, J.‐P., & Bétard, F. (2021). Morphostratigraphic constraints and low temperature thermochronology: Lessons from a review of recent geological and geomorphological studies in Northeast Brazil. Journal of South American Sciences, 111, 103464. https://doi.org/10.1016/j.jsames.2021.103464
    [Google Scholar]
  52. Peulvast, J.‐P., Bétard, F., & Lageat, Y. (2009). Long‐term landscape evolution and denudation rates in shield and platform areas: A morphostratigraphic approach. Géomorphologie Relief, Processes, Environment, 15, 95–108. https://doi.org/10.4000/geomorphologie.7540
    [Google Scholar]
  53. Reiners, P. W., & Brandon, M. T. (2006). Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences, 34, 419–466.
    [Google Scholar]
  54. Rossetti, D. F., Bezerra, F. H., & Dominguez, J. M. (2013). Late Oligocene‐Miocene transgressions along the equatorial and eastern margins of Brazil. Earth Science Reviews, 123, 87–112.
    [Google Scholar]
  55. Ruiz, G. M. H., Seward, D., & Winkler, W. (2004). Detrital thermochronology ‐ a new perspective on hinterland tectonics, an example from the Andean Amazon Basin, Ecuador. Basin Research, 16, 413–430. https://doi.org/10.1111/j.1365‐2117.2004.00239.x
    [Google Scholar]
  56. Sacek, V., Morais Neto, J. M., Vasconcelos, P. M., & Carmo, I. O. (2019). Numerical modelling of weathering, erosion, sedimentation and uplift in a triple junction divergent margin. Geochemistry, Geophysics, Geosystems, 20(5), 2334–2354. https://doi.org/10.1029/2018GC008124
    [Google Scholar]
  57. Soares, E. F., Zalán, P. V., Figueiredo, J. J. P., & Trosdtorf, I., Jr. (2007). Bacia do Pará‐Maranhão. Boletim de Geociências da Petrobras, Rio de Janeiro, 15(2), 321–329.
    [Google Scholar]
  58. Souza, Z. S., Vilalva, J. C. J., Dantas, E. L., Lafon, J.‐M., Silveira, F. V., & Oliveira, J. L. (2022). Petrogenesis and tectonics of Eocene‐Oligocene phonolites of Mecejana, Ceará, NE Brazil: The role of the Fernando de Noronha fracture zone, equatorial Atlantic. Journal of Petrology, 63, 1–32. https://doi.org/10.1093/petrology/egac051
    [Google Scholar]
  59. Trosdtorf, I., Jr., Zalán, P. V., Figueiredo, J. J. P., & Soares, E. F. (2007). Bacia do Barreirinhas. Boletim de Geociências da Petrobras, Rio de Janeiro, 15(2), 331–339.
    [Google Scholar]
  60. Turner, J. P., Green, P. F., Holford, S. P., & Lawrence, S. R. (2008). Thermal history of the Rio Muni (West Africa)‐NE Brazil margins during continental breakup. Earth and Planetary Science Letters, 270(3–4), 354–367.
    [Google Scholar]
  61. Vasconcelos, P. M., Farley, K. A., Stone, J., Piacentini, T., & Fifield, L. K. (2019). Stranded landscapes in the humid tropics: Earth's oldest land surfaces. Earth and Planetary Science Letters, 519, 152–164. https://doi.org/10.1016/j.epsl.2019.04.014
    [Google Scholar]
  62. Vermeesch, P. (2004). How many grains are needed for a provenance study?Earth and Planetary Science Letters, 224, 441–451.
    [Google Scholar]
  63. Vermeesch, P. (2019). Statistics for fission track thermochonrology. In: Fission‐track thermochronology and its application to geology. In Springer textbooks in earth sciences, geography and environment (pp. 109–122). Springer. https://doi.org/10.1007/978‐3‐319‐89421‐8_6
    [Google Scholar]
  64. Vermeesch, P. (2021). Maximum depositional age estimation revisited. Geoscience Frontiers, 12, 843–850.
    [Google Scholar]
  65. Watts, A. B., Tozer, B., Daly, M. C., & Smith, J. (2018). A comparative study of the Parnaíba, Michigan and Congo cratonic basins. In M. C.Daly, R. A.Fuck, J.Julià, D. I. M.MacDonald, & A. B.Watts (Eds.), Cratonic Basin formation: A case study of the Parnaíba Basin of Brazil (Vol. 472, –66). Geological Society, Special Publications. https://doi.org/10.1144/SP472.6
    [Google Scholar]
  66. Wittman, H., von Blanckenburg, F., Maurice, L., Guyot, J.‐L., Filizola, N., & Kubik, P. W. (2011). Sediment production and delivery in the Amazon River basin quantified by in situ–produced cosmogenic nuclides and recent river loads. GSA Bulletin, 123(5/6), 934–950. https://doi.org/10.1130/B30317.1
    [Google Scholar]
  67. Zuffa, G. G. (1985). Optical analyses of arenites: Influence of methodology on compositional results. In G. G.Zuffa (Ed.), Provenance of arenites (pp. 165–189). NATO‐ASI.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12808
Loading
/content/journals/10.1111/bre.12808
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error