1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117
PDF

Abstract

[

Maps showing the lateral variations in extension in A) the total crust, B) lower crust and C) upper crust based on the seismic profiles shown as black lines. C) shows the upper crustal extension with the same color scale as the lower and total crustal maps while D) shows the upper crustal extension with an enhanced color scale in order to demonstrate variations in brittle faulting across the area.

, Abstract

Tectonic subsidence on rifted, passive continental margins are largely controlled by patterns of extension and the nature of strain partitioning in the lithosphere. The Sunda Shelf, adjacent to the SW South China Sea, is characterized by deep basins linked to regional Cenozoic extension associated with propagating seafloor spreading caused by slab pull from the south. Analysis of seismic reflection profiles and drilled sections crossing the Nam Con Son and Cuu Long basins highlight Oligocene extension, with most of the thinning concentrated in the ductile mid‐lower crust. Upper crustal extension was modest and ductile flow is inferred to be directed northwestwards, towards the oceanic crust. Basin inversion occurred in the Mid Miocene, associated with the collision of the Dangerous Grounds Block and Borneo. Subsequent accelerated tectonic subsidence exceeded predictions from uniform extension models assumed to relate to extensional collapse after inversion. We correlate this to a period of faster erosion onshore driven by strong monsoon rains in Indochina and Peninsular Thailand at that time. Erosion of the onshore basement, inducing rock uplift and coupled with loading of the basins offshore, drives ductile mid‐lower crustal flow, likely to the northeast under Indochina, and/or to the west where Plio‐Pleistocene subsidence of the shelf is very slow. Significant sediment delivery from the Mekong River into the Cuu Long Basin began in the Late Miocene and migrated seawards as the basin filled. Mass balancing suggests that the basins of this part of the Sunda Shelf are filled through erosion of bedrock sources around the Gulf of Thailand. There is no need for sediment delivery from a major river draining the Tibetan Plateau to account for the deposited volumes.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12809
2024-01-09
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/1/bre12809.html?itemId=/content/journals/10.1111/bre.12809&mimeType=html&fmt=ahah

References

  1. Alqahtani, F. A., Jackson, C. A.‐L., Johnson, H. D., & Som, M. R. B. (2017). Controls on the geometry and evolution of humid‐tropical fluvial systems: Insights from 3D seismic geomorphological analysis of the Malay Basin, Sunda shelf, Southeast Asia. Journal of Sedimentary Research, 87(1), 17–40. https://doi.org/10.2110/jsr.2016.88
    [Google Scholar]
  2. An, A. R., Choi, S. H., Yu, Y., & Lee, D.‐C. (2017). Petrogenesis of late Cenozoic basaltic rocks from southern Vietnam. Lithos, 272‐273, 192–204. https://doi.org/10.1016/j.lithos.2016.12.008
    [Google Scholar]
  3. Barckhausen, U., Engels, M., Franke, D., Ladage, S., & Pubellier, M. (2014). Evolution of the South China Sea: Revised ages for breakup and seafloor spreading. Marine and Petroleum Geology, 58, 599–611. https://doi.org/10.1016/j.marpetgeo.2014.02.022
    [Google Scholar]
  4. Bott, M. H. P. (1992). Passive margins and their subsidence. Journal of the Geological Society, 149(5), 805–812. https://doi.org/10.1144/gsjgs.149.5.0805
    [Google Scholar]
  5. Braitenberg, C., Wienecke, S., & Wang, Y. (2006). Basement structures from satellite‐derived gravity field: South China Sea ridge. Journal of Geophysical Research: Solid Earth, 111(B5), B05407. https://doi.org/10.1029/2005JB003938
    [Google Scholar]
  6. Breitfeld, H. T., Hennig‐Breitfeld, J., BouDagher‐Fadel, M., Schmidt, W. J., Meyer, K., Reinprecht, J., Lukie, T., Cuong, T. X., Hall, R., Kollert, N., Gough, A., & Ismail, R. (2022). Provenance of Oligocene–Miocene sedimentary rocks in the Cuu Long and Nam Con Son basins, Vietnam and early history of the Mekong River. International Journal of Earth Sciences, 111(6), 1773–1804. https://doi.org/10.1007/s00531‐022‐02214‐0
    [Google Scholar]
  7. Brune, S., Heine, C., Clift, P. D., & Pérez‐Gussinyé, M. (2017). Rifted margin architecture and crustal rheology: Reviewing Iberia‐Newfoundland, central South Atlantic, and South China Sea. Marine and Petroleum Geology, 79, 257–281. https://doi.org/10.1016/j.marpetgeo.2016.10.018
    [Google Scholar]
  8. Buck, W. R. (1991). Modes of continental lithospheric extension. Journal of Geophysical Research, 96, 20161–20178. https://doi.org/10.1029/91JB01485
    [Google Scholar]
  9. Burton‐Johnson, A., & Cullen, A. B. (2022). Continental rifting in the South China Sea through extension and high heat flow: An extended history. Gondwana Research, 120, 235–263. https://doi.org/10.1016/j.gr.2022.07.015
    [Google Scholar]
  10. Carter, A., Roques, D., & Bristow, C. S. (2000). Denudation history of onshore Central Vietnam: Constraints on the Cenozoic evolution of the western margin of the South China Sea. Tectonophysics, 322, 265–277. https://doi.org/10.1016/S0040‐1951(00)00091‐3
    [Google Scholar]
  11. Clark, M. K., & Royden, L. H. (2000). Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28, 703–706.
    [Google Scholar]
  12. Clift, P., Lin, J., & Barckhausen, U. (2002). Evidence of low flexural rigidity and low viscosity lower continental crust during continental break‐up in the South China Sea. Marine and Petroleum Geology, 19(8), 951–970. https://doi.org/10.1016/S0264‐8172(02)00108‐3
    [Google Scholar]
  13. Clift, P. D. (2006). Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth and Planetary Science Letters, 241(3–4), 571–580. https://doi.org/10.1016/j.epsl.2005.11.028
    [Google Scholar]
  14. Clift, P. D., Brune, S., & Quinteros, J. (2015). Climate changes control offshore crustal structure at South China Sea continental margin. Earth and Planetary Science Letters, 420, 66–72. https://doi.org/10.1016/j.epsl.2015.03.032
    [Google Scholar]
  15. Clift, P. D., Carter, A., Campbell, I. H., Pringle, M., Hodges, K. V., Lap, N. V., & Allen, C. M. (2006). Thermochronology of mineral grains in the Song Hong and Mekong Rivers, Vietnam. Geophysics, Geochemistry, Geosystems, 7(10), Q10005. https://doi.org/10.1029/2006GC001336
    [Google Scholar]
  16. Clift, P. D., Hodges, K., Heslop, D., Hannigan, R., Hoang, L. V., & Calves, G. (2008). Greater Himalayan exhumation triggered by early Miocene monsoon intensification. Nature Geoscience, 1, 875–880. https://doi.org/10.1038/ngeo351
    [Google Scholar]
  17. Clift, P. D., Lee, G. H., Nguyen, A. D., Barckhausen, U., Hoang, V. L., & Sun, Z. (2008). Seismic evidence for a dangerous grounds mini‐plate: No extrusion origin for the South China Sea. Tectonics, 27, TC3008. https://doi.org/10.1029/2007TC002216
    [Google Scholar]
  18. Clift, P. D., Lin, J., & ODP Leg 184 Scientific Party . (2001). Patterns of extension and magmatism along the continent‐ocean boundary, South China margin. In R. C. L.Wilson, R. B.Whitmarsh, B.Taylor, & N.Froitzheim (Eds.), Non‐volcanic rifting of continental margins: A comparison of evidence from land and sea. Special Publication (Vol. 187, pp. 489–510). Geological Society London. https://doi.org/10.1144/GSL.SP.2001.187.01.2
    [Google Scholar]
  19. Clift, P. D., Wan, S., & Blusztajn, J. (2014). Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 ma in the northern South China Sea: A review of competing proxies. Earth‐Science Reviews, 130, 86–102. https://doi.org/10.1016/j.earscirev.2014.01.002
    [Google Scholar]
  20. Cottam, M. A., Hall, R., & Ghani, A. A. (2013). Late cretaceous and Cenozoic tectonics of the Malay peninsula constrained by thermochronology. Journal of Asian Earth Sciences, 76, 241–257. https://doi.org/10.1016/j.jseaes.2013.04.029
    [Google Scholar]
  21. Cottam, M. A., Hall, R., Sperber, C., Kohn, B. P., Forster, M. A., & Batt, G. E. (2013). Neogene rock uplift and erosion in northern Borneo: Evidence from the Kinabalu granite, mount Kinabalu. Journal of the Geological Society, 170(5), 805–816. https://doi.org/10.1144/jgs2011‐130
    [Google Scholar]
  22. Cung, T. C., & Geissman, J. W. (2013). A review of the paleomagnetic data from cretaceous to lower tertiary rocks from Vietnam, Indochina and South China, and their implications for Cenozoic tectonism in Vietnam and adjacent areas. Journal of Geodynamics, 69, 54–64. https://doi.org/10.1016/j.jog.2011.11.008
    [Google Scholar]
  23. Davis, M., & Kusznir, N. J. (2004). Depth‐dependent lithospheric stretching at rifted continental margins. In G. D.Karner (Ed.), Proceedings of NSF rifted margins theoretical institute (pp. 92–136). Columbia University Press. https://doi.org/10.7312/karn12738‐005
    [Google Scholar]
  24. Doglioni, C., Barba, S., Carminati, E., & Riguzzi, F. (2011). Role of the brittle–ductile transition on fault activation. Physics of the Earth and Planetary Interiors, 184(3), 160–171. https://doi.org/10.1016/j.pepi.2010.11.005
    [Google Scholar]
  25. Donelick, R. A., O'Sullivan, P. B., & Ketcham, R. A. (2005). Apatite fission‐track analysis. Reviews in Mineralogy and Geochemistry, 58(1), 49–94. https://doi.org/10.2138/rmg.2005.58.3
    [Google Scholar]
  26. Dong, M., Zhang, J., Brune, S., Wu, S., Fang, G., & Yu, L. (2020). Quantifying Postrift lower crustal flow in the northern margin of the South China Sea. Journal of Geophysical Research: Solid Earth, 125(2), e2019JB018910. https://doi.org/10.1029/2019JB018910
    [Google Scholar]
  27. Driscoll, N. W., & Karner, G. D. (1998). Lower crustal extension across the northern Carnarvon basin, Australia: Evidence for an eastward dipping detachment. Journal of Geophysical Research, 103, 4975–4991. https://doi.org/10.1029/97JB03295
    [Google Scholar]
  28. Ehlers, T. A., & Farley, K. A. (2003). Apatite (U–Th)/He thermochronometry: Methods and applications to problems in tectonic and surface processes. Earth and Planetary Science Letters, 206(1), 1–14. https://doi.org/10.1016/S0012‐821X(02)01069‐5
    [Google Scholar]
  29. Franke, D., Barckhausen, U., Baristeas, N., Engels, M., Ladage, S., Lutz, R., Montano, J., Pellejera, N., Ramos, E. G., & Schnabel, M. (2011). The continent‐ocean transition at the southeastern margin of the South China Sea. Marine and Petroleum Geology, 28, 1187–1204. https://doi.org/10.1016/j.marpetgeo.2011.01.004
    [Google Scholar]
  30. Franke, D., Barckhausen, U., Heyde, I., Tingay, M., & Ramli, N. (2008). Seismic images of a collision zone offshore NW Sabah/Borneo. Marine and Petroleum Geology, 25(7), 606–624. https://doi.org/10.1016/j.marpetgeo.2007.11.004
    [Google Scholar]
  31. Franke, D., Savva, D., Pubellier, M., Steuer, S., Mouly, B., Auxietre, J.‐L., Meresse, F., & Chamot‐Rooke, N. (2014). The final rifting evolution in the South China Sea. Marine and Petroleum Geology, 58B, 704–720. https://doi.org/10.1016/j.marpetgeo.2013.11.020
    [Google Scholar]
  32. Froitzheim, N., & Rubatto, D. (1998). Continental breakup by detachment faulting: Field evidence and geochronological constraints (Tasna nappe, Switzerland). Terra Nova, 10(4), 171–176. https://doi.org/10.1046/j.1365‐3121.1998.00187.x
    [Google Scholar]
  33. Fyhn, M. B. W., Boldreel, L. O., & Nielsen, L. H. (2009). Geological development of the central and south Vietnamese margin: Implications for the establishment of the South China Sea, Indochinese escape tectonics and Cenozoic volcanism. Tectonophysics, 478(3–4), 184–214. https://doi.org/10.1016/j.tecto.2009.08.002
    [Google Scholar]
  34. Fyhn, M. B. W., Boldreel, L. O., & Nielsen, L. H. (2010). Escape tectonism in the Gulf of Thailand: Paleogene left‐lateral pull‐apart rifting in the Vietnamese part of the Malay Basin. Tectonophysics, 483(3), 365–376. https://doi.org/10.1016/j.tecto.2009.11.004
    [Google Scholar]
  35. Fyhn, M. B. W., Green, P. F., Bergman, S. C., Van Itterbeeck, J., Tri, T. V., Dien, P. T., Abatzis, I., Thomsen, T. B., Chea, S., Pedersen, S. A. S., Mai, L. C., Tuan, H. A., & Nielsen, L. H. (2016). Cenozoic deformation and exhumation of the Kampot Fold Belt and implications for South Indochina tectonics. Journal of Geophysical Research: Solid Earth, 121(7), 5278–5307. https://doi.org/10.1002/2016JB012847
    [Google Scholar]
  36. Gallagher, K., Brown, R., & Johnson, C. (1998). Fission track analysis and its applications to geological problems. Annual Review of Earth and Planetary Sciences, 26(1), 519–572.
    [Google Scholar]
  37. Gilley, L. D., Harrison, T. M., Leloup, P. H., Ryerson, F. J., Lovera, O. M., & Wang, J. H. (2003). Direct dating of left‐lateral deformation along the Red River shear zone, China and Vietnam. Journal of Geophysical Research, 108, 2127. https://doi.org/10.1029/2001JB001726
    [Google Scholar]
  38. Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (2020). Geologic time scale 2020 (1358). Elsevier Science. ISBN: 9780128243619.
    [Google Scholar]
  39. Hall, R. (1996). Reconstructing Cenozoic SE Asia. In R.Hall & D. J.Blundell (Eds.), Tectonic evolution of Southeast Asia. Special Publication (Vol. 106, pp. 203–224). Geological Society. https://doi.org/10.1144/GSL.SP.1996.106.01.11
    [Google Scholar]
  40. Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer‐based reconstructions and animations. Journal of Asian Earth Sciences, 20, 353–434. https://doi.org/10.1016/S1367‐9120(01)00069‐4
    [Google Scholar]
  41. Hall, R., & Morley, C. K. (2004). Sundaland basins. In P.Clift, P.Wang, W.Kuhnt, & D. E.Hayes (Eds.), Continent‐Ocean interactions within the east Asian marginal seas. Geophysical Monograph (Vol. 149, pp. 55–85). American Geophysical Union. https://doi.org/10.1029/149GM04
    [Google Scholar]
  42. Hinz, K., Fritsch, J., Kempter, E. H. K., Mohammad, A. M., Meyer, J., Mohamed, D., Vosberg, H., Weber, J., & Benavidez, J. (1989). Thrust tectonics along the north‐western continental margin of Sabah/Borneo. Geologische Rundschau, 78(3), 705–730. https://doi.org/10.1007/BF01829317
    [Google Scholar]
  43. Hinz, K., & Schlüter, H. U. (1985). Geology of the dangerous grounds, South China Sea, and the continental margin of Southwest Palawan: Results of Sonne cruises SO‐23 and SO‐27. Energy, 10, 297–315.
    [Google Scholar]
  44. Hoang, N., & Flower, M. (1998). Petrogenesis of Cenozoic basalts from Vietnam: Implication for origins of a ‘diffuse Igneous Province’. Journal of Petrology, 39(3), 369–395. https://doi.org/10.1093/petroj/39.3.369
    [Google Scholar]
  45. Hoang, N., Flower, M. F. J., & Carlson, R. W. (1996). Major, trace element, and isotopic compositions of Vietnamese basalts: Interaction of hydrous EM1‐rich asthenosphere with thinned Eurasian lithosphere. Geochimica et Cosmochimica Acta, 60(22), 4329–4351. https://doi.org/10.1016/S0016‐7037(96)00247‐5
    [Google Scholar]
  46. Hobbs, K. (2020). Characterizing peridotite xenoliths from southern Vietnam: Insight into the underlying lithospheric mantle [MS Thesis]. (89). University of Nebraska.
    [Google Scholar]
  47. Hopper, J. R., & Buck, W. R. (1996). The effect of lower crustal flow on continental extension and passive margin formation. Journal of Geophysical Research: Solid Earth, 101(B9), 20175–20194. https://doi.org/10.1029/96JB01644
    [Google Scholar]
  48. Huang, H., Klingelhoefer, F., Qiu, X., Li, Y., & Wang, P. (2021). Seismic imaging of an Intracrustal deformation in the northwestern margin of the South China Sea: The role of a ductile layer in the crust. Tectonics, 40(2), e2020TC006260. https://doi.org/10.1029/2020TC006260
    [Google Scholar]
  49. Huchon, P., Nguyen, T. N. H., & Chamot‐Rooke, N. (1998). Finite extension across the South Vietnam basins from 3D gravimetric modelling: Relation to South China Sea kinematics. Marine and Petroleum Geology, 15, 619–634. https://doi.org/10.1016/S0264‐8172(98)00031‐2
    [Google Scholar]
  50. Huchon, P., Nguyen, T. N. H., & Chamot‐Rooke, N. (2001). Propagation of continental break‐up in the south‐western South China Sea. In R. C. L.Wilson, R. B.Whitmarsh, B.Taylor, & N.Froitzheim (Eds.), Non‐volcanic rifting of continental margins: A comparison of evidence from land and sea. Special Publication (Vol. 187, pp. 31–50). Geological Society. https://doi.org/10.1144/GSL.SP.2001.187.01.03
    [Google Scholar]
  51. Huismans, R., & Beaumont, C. (2011). Depth‐dependent extension, two‐stage breakup and cratonic underplating at rifted margins. Nature, 473, 74–79. https://doi.org/10.1038/nature09988
    [Google Scholar]
  52. Hutchison, C. S. (2005). Geology of north‐West Borneo: Sarawak, Brunei and Sabah (448). Elsevier. ISBN: 044455890X.
    [Google Scholar]
  53. Hutchison, C. S. (2010). The north‐West Borneo trough. Marine Geology, 271, 32–43. https://doi.org/10.1016/j.margeo.2010.01.007
    [Google Scholar]
  54. Hutchison, C. S., Bergman, S. C., Swauger, D. A., & Graves, J. E. (2000). A Miocene collisional belt in North Borneo: Uplift mechanism and isostatic adjustment quantified by thermochronology. Journal of the Geological Society, 157, 783–793. https://doi.org/10.1144/jgs.157.4.783
    [Google Scholar]
  55. Jagodziński, R., Sternal, B., Stattegger, K., & Szczuciński, W. (2020). Sediment distribution and provenance on the continental shelf off the Mekong River, SE Vietnam: Insights from heavy mineral analysis. Journal of Asian Earth Sciences, 196, 104357. https://doi.org/10.1016/j.jseaes.2020.104357
    [Google Scholar]
  56. Jahn, B. M., Zhou, X. H., & Li, J. L. (1990). Formation and tectonic evolution of southeastern China and Taiwan: Isotopic and geochemical constraints. Tectonophysics, 183, 145–160. https://doi.org/10.1016/0040‐1951(90)90413‐3
    [Google Scholar]
  57. Kassa, S., Tsegab, H., Sum, C. W., & CheeMeng, C. (2019). Fission‐track data and U–Pb dating of granites from Cameron Highland, peninsular Malaysia: Evidence to comprehend exhumation episodes. Data in Brief, 25, 104162. https://doi.org/10.1016/j.dib.2019.104162
    [Google Scholar]
  58. Krähenbuhl, R. (1991). Magmatism, tin mineralization and tectonics of the Main range, Malaysian peninsula: Consequences for the plate tectonic model of Southeast Asia based on Rb‐Sr, K‐Ar and fission track data. Geological Society of Malaysia Bulletin, 29, 1–100. https://doi.org/10.7186/bgsm29199101
    [Google Scholar]
  59. Kusznir, N. J., Marsden, G., & Egan, S. S. (1991). A flexural cantilever simple shear/pure shear model of continental extension. In A. M.Roberts, G.Yielding, & B.Freeman (Eds.), The geometry of Normal faults. Special Publication (Vol. 56, pp. 41–61). Geological Society. https://doi.org/10.1144/GSL.SP.1991.056.01.0
    [Google Scholar]
  60. Lavier, L. L., & Manatschal, G. (2006). A mechanism to thin the continental lithosphere at magma‐poor margins. Nature, 440(7082), 324–328. https://doi.org/10.1038/nature04608
    [Google Scholar]
  61. Lee, G. H., Lee, K., & Watkins, J. S. (2001). Geologic evolution of the Cuu Long and Nam Con Son basins, offshore southern Vietnam, South China Sea. AAPG Bulletin, 85(6), 1055–1082. https://doi.org/10.1306/8626CA69‐173B‐11D7‐8645000102C1865D
    [Google Scholar]
  62. Lee, T. T., & Lawver, L. A. (1995). Cenozoic plate reconstruction of Southeast Asia. Tectonophysics, 251, 85–138. https://doi.org/10.1016/0040‐1951(95)00023‐2
    [Google Scholar]
  63. Lei, C., Alves, T. M., Ren, J., Pang, X., Yang, L., & Liu, J. (2019). Depositional architecture and structural evolution of a region immediately inboard of the locus of continental breakup (Liwan sub‐basin, South China Sea). GSA Bulletin, 131(7–8), 1059–1074. https://doi.org/10.1130/b35001.1
    [Google Scholar]
  64. Li, C.‐F., Li, J., Ding, W., Franke, D., Yao, Y., Shi, H., Pang, X., Cao, Y., Lin, J., Kulhanek, D. K., Williams, T., Bao, R., Briais, A., Brown, E. A., Chen, Y., Clift, P. D., Colwell, F. S., Dadd, K. A., Hernández‐Almeida, I., … Zhao, X. (2015). Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. Journal of Geophysical Research, 120, 1377–1399. https://doi.org/10.1002/2014JB011686
    [Google Scholar]
  65. Li, C.‐F., Lin, J., Kulhanek, D. K., Williams, T., Bao, R., Briais, A., Brown, E. A., Chen, Y., Clift, P. D., Colwell, F. S., Dadd, K. A., Ding, W.‐W., Hernández‐Almeida, I., Huang, X.‐L., Hyun, S., Jiang, T., Koppers, A. A. P., Li, Q., Liu, C., … Zhao, X. (2015). Site U1433. In Proceedings of the International Ocean Discovery Program, 349: South China Sea Tectonics. International Ocean Discovery Program. https://doi.org/10.14379/iodp.proc.349.105.2015
    [Google Scholar]
  66. Li, C.‐F., Xu, X., & Expedition 349 Scientific Party . (2014). Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP expedition 349. Geochemistry, Geophysics, Geosystems, 15, 4958–4983. https://doi.org/10.1002/2014GC005567
    [Google Scholar]
  67. Li, J., Zhang, Y., Dong, S., & Johnston, S. T. (2014). Cretaceous tectonic evolution of South China: A preliminary synthesis. Earth‐Science Reviews, 134, 98–136. https://doi.org/10.1016/j.earscirev.2014.03.008
    [Google Scholar]
  68. Li, L., Clift, P. D., & Nguyen, H. T. (2013). The sedimentary, magmatic and tectonic evolution of the southwestern South China Sea revealed by seismic stratigraphic analysis. Marine Geophysical Research, 34, 393–406. https://doi.org/10.1007/s11001‐013‐9171‐y
    [Google Scholar]
  69. Li, L., Clift, P. D., Stephenson, R., & Nguyen, H. T. (2014). Non‐uniform hyper‐extension in advance of seafloor spreading on the Vietnam continental margin and the SW South China Sea. Basin Research, 26, 106–134. https://doi.org/10.1111/bre.12045
    [Google Scholar]
  70. Lin, A. T., & Watts, A. B. (2002). Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research, 107(B9), 2185. https://doi.org/10.1029/2001JB000669
    [Google Scholar]
  71. Lister, G. S., Etheridge, M. A., & Symonds, P. A. (1986). Detachment faulting and the evolution of passive continental margins. Geology, 14, 246–250. https://doi.org/10.1130/0091‐7613(1986)14<246:DFATEO>2.0.CO;2
    [Google Scholar]
  72. Lister, G. S., Etheridge, M. A., & Symonds, P. A. (1991). Detachment models for the formation of passive continental margins. Tectonics, 10, 1038–1064. https://doi.org/10.1029/90TC01007
    [Google Scholar]
  73. Lithgow Bertelloni, C., & Gurnis, M. (1997). Cenozoic subsidence and uplift of continents from time‐varying dynamic topography. Geology, 25, 735–738. https://doi.org/10.1130/0091‐7613(1997)025<0735:CSAUOC>2.3.CO;2
    [Google Scholar]
  74. Liu, C., Clift, P. D., Giosan, L., Miao, Y., Warny, S., & Wan, S. (2019). Paleoclimatic evolution of the SW and NE South China Sea and its relationship with spectral reflectance data over various age scales. Palaeogeography, Palaeoclimatology, Palaeoecology, 525, 25–43. https://doi.org/10.1016/j.palaeo.2019.02.019
    [Google Scholar]
  75. Liu, C., Clift, P. D., Murray, R. W., Blusztajn, J., Ireland, T., Wan, S., & Ding, W. (2017). Geochemical evidence for initiation of the modern Mekong Delta in the southwestern South China Sea after 8 ma. Chemical Geology, 451, 38–54. https://doi.org/10.1016/j.chemgeo.2017.01.008
    [Google Scholar]
  76. Lunt, P. (2019). A new view of integrating stratigraphic and tectonic analysis in South China Sea and North Borneo basins. Journal of Asian Earth Sciences, 177, 220–239. https://doi.org/10.1016/j.jseaes.2019.03.009
    [Google Scholar]
  77. Madon, M. B. (1997). Analysis of tectonic subsidence and heat flow in the Malay Basin (offshore peninsular Malaysia). Bulletin of the Geological Society of Malaysia, 41, 95–108. https://doi.org/10.7186/bgsm41199709
    [Google Scholar]
  78. Madon, M. B., & Watts, A. B. (1998). Gravity anomalies, subsidence history and the tectonic evolution of the Malay and Penyu basins (offshore peninsular Malaysia). Basin Research, 10(4), 375–392. https://doi.org/10.1046/j.1365‐2117.1998.00074.x
    [Google Scholar]
  79. Maggi, A., Jackson, J. A., McKenzie, D., & Priestley, K. (2000). Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology, 28, 495–498. https://doi.org/10.1130/0091‐7613(2000)28<495:EFDEET>2.0.CO;2
    [Google Scholar]
  80. Matthews, S. J., Fraser, A. J., Lowe, S., Todd, S. P., & Peel, F. J. (1997). Structure, stratigraphy and petroleum geology of the SE Nam con Son Basin, offshore Vietnam. In A. J.Fraser, S. J.Matthews, & R. W.Murphy (Eds.), Petroleum geology of Southeast Asia. Special Publication (Vol. 126, pp. 89–106). Geological Society. https://doi.org/10.1144/GSL.SP.1997.126.01.07
    [Google Scholar]
  81. McKenzie, D., Nimmo, F., Jackson, J. A., Gans, P. B., & Miller, E. L. (2000). Characteristics and consequences of flow in the lower crust. Journal of Geophysical Research: Solid Earth, 105(B5), 11029–11046. https://doi.org/10.1029/1999JB900446
    [Google Scholar]
  82. McKenzie, D. P. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40, 25–32. https://doi.org/10.1016/0012‐821X(78)90071‐7
    [Google Scholar]
  83. Miao, Y., Warny, S., Clift, P. D., Liu, C., & Gregory, M. (2017). Evidence of continuous Asian summer monsoon weakening as a response to global cooling over the last 8 ma. Gondwana Research, 52(Supplement C), 48–58. https://doi.org/10.1016/j.gr.2017.09.003
    [Google Scholar]
  84. Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S., & Wright, J. D. (2020). Cenozoic Sea‐level and cryospheric evolution from deep‐sea geochemical and continental margin records. Science Advances, 6(20), eaaz1346. https://doi.org/10.1126/sciadv.aaz1346
    [Google Scholar]
  85. Morley, C., & Searle, M. P. (2017). Regional tectonics, structure and evolution of the Andaman ‐ Nicobar islands from ophiolite formation and obduction to collision and back‐arc spreading. In P. C.Bandopadnyay & A.Carter (Eds.), The Andaman‐Nicobar accretionary ridge. Memoir (Vol. 47, pp. 51–74). Geological Society. https://doi.org/10.1144/M47
    [Google Scholar]
  86. Morley, C. K. (2015). Five anomalous structural aspects of rift basins in Thailand and their impact on petroleum systems. In F. L.Richards, N. J.Richardson, S. J.Rippington, R. W.Wilson, & C. E.Bond (Eds.), Industrial structural geology: Principles, techniques and integration. Special Publications (Vol. 421, pp. 143–168). Geological Society of London. https://doi.org/10.1144/SP421.2
    [Google Scholar]
  87. Morley, C. K. (2016). Major unconformities/termination of extension events and associated surfaces in the South China seas: Review and implications for tectonic development. Journal of Asian Earth Sciences, 120, 62–86. https://doi.org/10.1016/j.jseaes.2016.01.013
    [Google Scholar]
  88. Morley, C. K., Promrak, W., Apuanram, W., Chaiyo, P., Chantraprasert, S., Ong, D., Suphawajruksakul, A., Thaemsiri, N., & Tingay, M. (2022). A major Miocene Deepwater mud canopy system: The North Sabah–Pagasa wedge, northwestern Borneo. Geosphere, 19(1), 291–334. https://doi.org/10.1130/ges02518.1
    [Google Scholar]
  89. Morley, C. K., & Racey, A. (2011). Tertiary stratigraphy. In M. F.Ridd, A. J.Barber, & M. J.Crow (Eds.), The geology of Thailand (pp. 223–270). Geological Society.
    [Google Scholar]
  90. Morley, C. K., & Westaway, R. (2006). Subsidence in the super‐deep Pattani and Malay basins of Southeast Asia: A coupled model incorporating lower‐ crustal flow in response to post‐rift sediment loading. Basin Research, 18, 51–84. https://doi.org/10.1111/j.1365‐2117.2006.00285.x
    [Google Scholar]
  91. Morley, R. J., & Morley, H. P. (2013). Mid Cenozoic freshwater wetlands of the Sunda region. Journal of Limnology, 72(2), 18–35. https://doi.org/10.4081/jlimnol.2013.s2.e2
    [Google Scholar]
  92. Morley, R. J., Swiecicki, T., & Pham, D. T. T. (2011). A sequence stratigraphic framework for the sunda region, based on integration of biostratigraphic, lithological and seismic data from Nam Con Son basin, Vietnam. 35th annual convention. Indonesian Petroleum Association, pp. IPA11‐G‐002.
  93. Murray, M. R., & Dorobek, S. L. (2004). Sediment supply, tectonic subsidence, and basin‐filling patterns across the southwestern South China Sea during Pliocene to recent time. In P.Clift, P.Wang, W.Kuhnt, & D.Hayes (Eds.), Continent‐ocean interactions within east Asian marginal seas. Geophysical Monograph (Vol. 149, pp. 235–254). American Geophysical Union. https://doi.org/10.1029/149GM13
    [Google Scholar]
  94. Nachtergaele, S., Glorie, S., Morley, C., Charusiri, P., Kanjanapayont, P., Vermeesch, P., Carter, A., Ranst, G. V., & Grave, J. D. (2020). Cenozoic tectonic evolution of southeastern Thailand derived from low‐temperature thermochronology. Journal of the Geological Society, 177(2), 395–411. https://doi.org/10.1144/jgs2018‐167
    [Google Scholar]
  95. Nie, J., Ruetenik, G., Gallagher, K., Hoke, G., Garzione, C. N., Wang, W., Stockli, D., Hu, X., Wang, Z., Wang, Y., Stevens, T., Danišík, M., & Liu, S. (2018). Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation. Nature Geoscience, 11(12), 944–948. https://doi.org/10.1038/s41561‐018‐0244‐z
    [Google Scholar]
  96. Nissen, S. S., Hayes, D. E., Buhl, P., Diebold, J., Yao, B., Zeng, W., & Chen, Y. (1995). Deep penetration seismic soundings across the northern margin of the South China Sea. Journal of Geophysical Research, 100(B11), 22407–22433.
    [Google Scholar]
  97. Peltzer, G., & Tapponnier, P. (1988). Formation and evolution of strike‐slip faults, rifts, and basins during the India‐Asia collision: An experimental approach. Journal of Geophysical Research, 93, 15085–15117.
    [Google Scholar]
  98. Pérez‐Gussinyé, M., Morgan, J. P., Reston, T. J., & Ranero, C. R. (2006). The rift to drift transition at non‐volcanic margins: Insights from numerical modelling. Earth and Planetary Science Letters, 244(1–2), 458–473. https://doi.org/10.1016/j.epsl.2006.01.059
    [Google Scholar]
  99. Pubellier, M., & Morley, C. K. (2013). The basins of Sundaland (SE Asia): Evolution and boundary conditions. Marine and Petroleum Geology, 58, 555–578. https://doi.org/10.1016/j.marpetgeo.2013.11.019
    [Google Scholar]
  100. Reiners, P. W. (2005). Zircon (U‐Th)/He Thermochronometry. Reviews in Mineralogy & Geochemistry, 58, 151–179. https://doi.org/10.2138/rmg.2005.58.6
    [Google Scholar]
  101. Replumaz, A., & Tapponnier, P. (2003). Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks. Journal of Geophysical Research, 108(B6), 2285. https://doi.org/10.1029/2001JB000661
    [Google Scholar]
  102. Reston, T. J., Krawczyk, C. M., & Klaeschen, D. (1996). The S‐reflector west of Galicia (Spain): Evidence from prestack depth migration for detachment faulting during continental breakup. Journal of Geophysical Research, 101(B4), 8075–8091. https://doi.org/10.1029/95JB03466
    [Google Scholar]
  103. Roques, D., Rangin, C., & Huchon, P. (1997). Geometry and sense of motion along the Vietnam margin: Onshore/offshore Da Nang area. Bulletin de la Société Géologique de France, 168, 413–422.
    [Google Scholar]
  104. Royden, L., & Keen, C. E. (1980). Rifting processes and thermal evolution of the continental margin of eastern Canada determined from subsidence curves. Earth and Planetary Science Letters, 51, 714–717. https://doi.org/10.1016/0012‐821X(80)90216‐2
    [Google Scholar]
  105. Rutter, E. H. (1986). On the nomenclature of mode of failure transitions in rocks. Tectonophysics, 122(3), 381–387. https://doi.org/10.1016/0040‐1951(86)90153‐8
    [Google Scholar]
  106. Sarr, A. C., Husson, L., Sepulchre, P., Pastier, A. M., Pedoja, K., Elliot, M., Arias‐Ruiz, C., Solihuddin, T., Aribowo, S., & Susilohadi. (2019). Subsiding Sundaland. Geology, 47(2), 119–122. https://doi.org/10.1130/G45629.1
    [Google Scholar]
  107. Sautter, B., Pubellier, M., Králiková Schlögl, S., Matenco, L., Andriessen, P., & Mathew, M. (2019). Exhumation of west Sundaland: A record of the path of India?Earth‐Science Reviews, 198, 102933. https://doi.org/10.1016/j.earscirev.2019.102933
    [Google Scholar]
  108. Schmidt, W. J., Hoang, B. H., Handschy, J. W., Hai, V. T., Cuong, T. X., & Tung, N. T. (2019). Tectonic evolution and regional setting of the Cuu Long Basin, Vietnam. Tectonophysics, 757, 36–57. https://doi.org/10.1016/j.tecto.2019.03.001
    [Google Scholar]
  109. Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391(6662), 37–42. https://doi.org/10.1038/34097
    [Google Scholar]
  110. Sclater, J. G., & Christie, P. A. F. (1980). Continental stretching: An explanation of the post mid‐cretaceous subsidence of the Central North Sea basin. Journal of Geophysical Research, 85, 3711–3739. https://doi.org/10.1029/JB085iB07p03711
    [Google Scholar]
  111. Sleep, N. H. (1990). Hotspots and mantle plumes: Some phenomenology. Journal of Geophysical Research, 95, 6715–6736. https://doi.org/10.1029/JB095iB05p06715
    [Google Scholar]
  112. Southeast Asian Research Group . (2022). Heatflow. SE Asia Heatflow Database. Royal Holloway, University of London. http://searg.rhul.ac.uk/current‐research/heat‐flow/
    [Google Scholar]
  113. Su, D., White, N., & McKenzie, D. (1989). Extension and subsidence of the Pearl River mouth basin, northern South China Sea. Basin Research, 2, 205–222. https://doi.org/10.1111/j.1365‐2117.1989.tb00036.x
    [Google Scholar]
  114. Sun, Z., Zhong, Z., Keep, M., Zhou, D., Cai, D., Li, X., Wu, S., & Jiang, J. (2009). 3D analogue modeling of the South China Sea: A discussion on breakup pattern. Journal of Asian Earth Sciences, 34(4), 544–556. https://doi.org/10.1016/j.jseaes.2008.09.002
    [Google Scholar]
  115. Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R., & Cobbold, P. R. (1982). Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10, 611–616. https://doi.org/10.1130/0091‐7613(1982)10<611:PETIAN>2.0.CO;2
    [Google Scholar]
  116. Tjia, H. D., & Liew, K. K. (1996). Changes in tectonic stress field in northern Sunda shelf basins. In R.Hall & D.Blundell (Eds.), Tectonic evolution of Southeast Asia. Special Publications (Vol. 106, pp. 291–306). Geological Society. https://doi.org/10.1144/GSL.SP.1996.106.01.19
    [Google Scholar]
  117. Upton, D. R. (1999). A regional fission track study of Thailand: Implications for thermal history and denudation [Ph.D. Thesis]. (312). University of London.
    [Google Scholar]
  118. Vail, P. R., Mitchum, R. M., Todd, R. G., Widmier, J. M., Thompson, S. I., Sangree, J. B., Bubb, J. N., & Hatlelid, W. G. (1977). Seismic stratigraphy and global changes of sea‐level. In C. E.Payton (Ed.), Seismic stratigraphy–applications to hydrocarbon exploration. Memoir (Vol. 26, pp. 49–212). American Association of Petroleum Geologists. https://doi.org/10.1306/M26490C3
    [Google Scholar]
  119. Van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M., Vail, P. R., Sarg, J. F., Loutit, T. S., Hardenbol, J., Wilgus, C. K., Hastings, B. S., Posamentier, H., Wagoner, J. V., Ross, C. A., & Kendall, C. G. S. C. (1988). An overview of the fundamentals of sequence stratigraphy and key definitions. In Sea‐level changes: An integrated approach (Vol. 42). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.88.01.0039
    [Google Scholar]
  120. Vu, A. T., Fyhn, M. B. W., Xuan, C. T., Nguyen, T. T., Hoang, D. N., Pham, L. T., & Van, H. N. (2017). Cenozoic tectonic and stratigraphic development of the central Vietnamese continental margin. Marine and Petroleum Geology, 86, 386–401. https://doi.org/10.1016/j.marpetgeo.2017.06.001
    [Google Scholar]
  121. Walsh, J., Watterson, J., & Yielding, G. (1991). The importance of small‐scale faulting in regional extension. Nature, 351, 391–393. https://doi.org/10.1038/351391a0
    [Google Scholar]
  122. Westaway, R. (1994). Re‐evaluation of extension across the Pearl River Mouth Basin, South China Sea: Implications for continental lithosphere deformation mechanisms. Journal of Structural Geology, 16, 823–838. https://doi.org/10.1016/0191‐8141(94)90148‐1
    [Google Scholar]
  123. Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., de Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., … Zachos, J. C. (2020). An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science, 369(6509), 1383–1387. https://doi.org/10.1126/science.aba6853
    [Google Scholar]
  124. Wheeler, P., & White, N. (2000). Quest for dynamic topography: Observations from Southeast Asia. Geology, 28(11), 963–966. https://doi.org/10.1130/0091‐7613(2000)28<963:QFDTOF>2.0.CO;2
    [Google Scholar]
  125. White, R. S. (1999). The lithosphere under stress. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 357(1753), 901–915. https://doi.org/10.1098/rsta.1999.0357
    [Google Scholar]
  126. Wu, Y., Ding, W., Clift, P. D., Li, J., Yin, S., Fang, Y., & Ding, H. (2019). Sedimentary budget of the northwest sub‐basin, South China Sea: Controlling factors and geological implications. International Geology Review, 62, 1–18. https://doi.org/10.1080/00206814.2019.1597392
    [Google Scholar]
  127. Wu, Y., Ding, W., Sun, Z., Dong, C., & Fang, Y. (2018). Sedimentary budget of the southwest sub‐basin, South China Sea: Controlling factors and geological implications. Geological Journal, 53(6), 3082–3092. https://doi.org/10.1002/gj.3145
    [Google Scholar]
  128. Xie, Z., Sun, L., Pang, X., Zheng, J., & Sun, Z. (2017). Origin of the Dongsha event in the South China Sea. Marine Geophysical Research, 38(4), 357–371. https://doi.org/10.1007/s11001‐017‐9321‐8
    [Google Scholar]
  129. Zhang, X., Ye, X., Lv, J., Sun, J., & Wang, X. (2018). Crustal structure revealed by a deep seismic sounding profile of Baijing‐Gaoming‐Jinwan in the Pearl River Delta. Journal of Ocean University of China, 17(1), 186–194. https://doi.org/10.1007/s11802‐018‐3489‐7
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12809
Loading
/content/journals/10.1111/bre.12809
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): inversion; Mekong River; sediment budget; South China Sea; Subsidence

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error