1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[

Sketch showing stratigraphy, shape and structure of Barreirinhas, Ceará and Potiguar Basins, highlighting their different tectono‐sedimentary evolution. Barreirinhas and Ceará Basins are considered to be failed rifts, Potiguar Basin formed as a result of Cretaceous rifting and subsequent post‐rift thermal sag.

, Abstract

Stratigraphy along the Brazilian Equatorial Margin is a crucial guide to the geodynamic history of rifting of Pangea and formation of the South Atlantic Ocean. Understanding the evolution of the Brazilian Equatorial Margin, which intersects the Saint Paul and Romanche Fracture Zones on the western margin of South Atlantic Ocean, is also key for reconstructing eustatic histories and natural resource exploration. In this study, we quantify the stratigraphic and subsidence histories of three sedimentary basins—Barreirinhas, Ceará, Potiguar—that sit within the margin. Stratigraphy was mapped using ca. 900‐line‐km of two‐dimensional seismic data. Biostratigraphic and check‐shot data from 23 wells drilled on the continental shelf, slope and in the distal parts of these basins were used to date and depth‐convert stratigraphy. Check‐shot data were also used to parameterise compaction. The mapped stratigraphy was backstripped to calculate subsidence histories for the basins. Subsidence curves were decompacted, water‐loaded and corrected for palaeo‐water depths using biostratigraphic data from well reports. The mapped stratigraphy of the Barreirinhas and Ceará Basins and theoretical subsidence curves indicate that stretching factors did not exceed 1.6. These values suggest that these basins can be regarded as failed rifts. In contrast, more distal stratigraphy mapped in the Potiguar Basin to the south indicates that it stretched by a factor of 5–6. Calculated subsidence histories indicate that this basin formed primarily because of Cretaceous rifting and Cretaceous to Recent post‐rift thermal sag, with amplitudes governed by the amount of initial stretching.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12810
2024-01-09
2024-04-28
Loading full text...

Full text loading...

References

  1. Alberoni, A. A. L., Jeck, I. K., Silva, C. G., & Torres, L. C. (2019). The new digital terrain model (DTM) of the Brazilian continental margin: Detailed morphology and revised undersea feature names. Geo‐Marine Letters, 40, 949–964. https://doi.org/10.1007/s00367‐019‐00606‐x
    [Google Scholar]
  2. Allen, P. A., & Allen, J. R. (2013). Basin analysis: Principles and application to petroleum play assessment. John Wiley & Sons.
    [Google Scholar]
  3. Arai, M. (2014). Aptian/Albian (Early Cretaceous) paleogeography of the South Atlantic: A paleontological perspective. Brazilian Journal of Geology, 44, 339–350.
    [Google Scholar]
  4. Arz, H. W., Pätzold, J., & Wefer, G. (1999). Climatic changes during the last deglaciation recorded in sediment cores from the northeastern Brazilian Continental Margin. Geo‐Marine Letters, 19(3), 209–218. https://doi.org/10.1007/s003670050111
    [Google Scholar]
  5. Aslanian, D., Moulin, M., Olivet, J.‐L., Unternehr, P., Matias, L., Bache, F., Rabineau, M., Nouzé, H., Klingelhoefer, F., Contrucci, I., & Labails, C. (2009). Brazilian and African passive margins of the central segment of the South Atlantic Ocean: Kinematic constraints. Tectonophysics (Special Issue: Role of Magmatism), 468, 98–112.
    [Google Scholar]
  6. Athy, L. F. (1930). Density, porosity, and compaction of sedimentary rocks. AAPG Bulletin, 14(1), 1–24. https://doi.org/10.1306/3D93289E‐16B1‐11D7‐8645000102C1865D
    [Google Scholar]
  7. Basile, C., Mascle, J., & Guiraud, R. (2005). Phanerozoic geological evolution of the equatorial Atlantic domain. Journal of African Earth Sciences, 43(1–3), 275–282. https://doi.org/10.1016/j.jafrearsci.2005.07.011
    [Google Scholar]
  8. Basilone, L. (2022). Jurassic–Cretaceous intraplatform basins from NW Sicily fold and thrust belt: Implications for oblique rifting of the Southern Tethyan margin. Sedimentary Geology, 440, 106255. https://doi.org/10.1016/j.sedgeo.2022.106255
    [Google Scholar]
  9. Beltrami, C. V., Alves, L. E. M., & Feijó, F. J. (1994). Bacia do Ceará. Boletim de Geociências da Petrobras, 8(1), 117–125.
    [Google Scholar]
  10. Bertani, R. T., Costa, L. G., & Matos, R. M. D. (1990). Tectonic‐sedimentary evolution, structural style and oil habitat in the Potiguar Basin. In Origin and evolution of sedimentary basins (pp. 291–310). Petrobras (in Portuguese).
    [Google Scholar]
  11. Bertani, R. T., & Garcia Da Costa, I. (1988). Structural style and petroleum habitat related to tectonic evolution of Potiguar Basin, Brazil. In AAPG Conference: Annual meeting of the American Association of Petroleum Geologists, American Association of Petroleum Geologists (AAPG).
    [Google Scholar]
  12. Bessin, P., Guillocheau, F., Robin, C., Braun, J., Bauer, H., & Schrötter, J. M. (2017). Quantification of vertical movement of low elevation topography combining a new compilation of global sea‐level curves and scattered marine deposits (Armorican Massif, western France). Earth and Planetary Science Letters, 470, 25–36. https://doi.org/10.1016/j.epsl.2017.04.018
    [Google Scholar]
  13. Bullard, E. C., Everett, J. E., & Smith, A. G. (1965). The fit of the continents around the Atlantic. Symposium on continental drift. Philosophical Transactions. Royal Society of London, 258(Ser. A), 41–51.
    [Google Scholar]
  14. Chang, H. K., Kowsmann, R. O., & de Figueiredo, A. M. (1988). New concepts on the development of east Brazilian marginal basins. Episodes Journal of International Geoscience, 11(3), 194–202. https://doi.org/10.18814/epiiugs/1988/v11i3/007
    [Google Scholar]
  15. Channell, J. E. T., Erba, E., Nakanishi, M., & Tamaki, K. (1995). Late Jurassic–Early Cretaceous time scales and oceanic magnetic anomaly block models. In W. A.Berggren, D. V.Kent, M.‐P.Aubry, & J.Hardenbol (Eds.), Geochronology, time scales and global stratigraphic correlation (pp. 51–64). SEPM Spec. Publ.
    [Google Scholar]
  16. Christensen, N. I. (1982). Seismic velocities. In R. S.Carmichael (Ed.), Handbook of physical properties of rocks (pp. 1–228). CRC.
    [Google Scholar]
  17. Condé, V. C., Lana, C. C., Pessoa Neto, O. C., Roeesner, E. H., Morais Neto, J. M., & Dutra, D. C. (2007). Bacia do Ceará. Boletim de Geociências da Petrobras, 15(2), 347–355.
    [Google Scholar]
  18. Costa, I. G., Beltrami, C. V., & Alves, L. E. M. (1990). A evoluçao tectono‐sedimentare o habitat do óleo da Bacia do Ceará. Boletim de Geociências Petrobras, 4(1), 65–74.
    [Google Scholar]
  19. Cunha, A. A. S., & Koutsoukos, E. A. (1998). Calcareous nannofossils and planktic foraminifers in the upper Aptian of the Sergipe Basin, northeastern Brazil: Palaeoecological inferences. Palaeogeography, Palaeoclimatology, Palaeoecology, 142(3–4), 175–184. https://doi.org/10.1016/S0031‐0182(98)00065‐0
    [Google Scholar]
  20. de Sá, N. C., Ussami, N., & Molina, E. C. (1993). Gravity map of Brazil: 1. Representation of free‐air and Bouguer Anomalies. Journal of Geophysical Research: Solid Earth, 98(B2), 2187–2197. https://doi.org/10.1029/92JB00979
    [Google Scholar]
  21. De Castro, D. L., Bezerra, F. H., Sousa, M. O., & Fuck, R. A. (2012). Influence of Neoproterozoic tectonic fabric on the origin of the Potiguar Basin, northeastern Brazil and its links with West Africa based on gravity and magnetic data. Journal of Geodynamics, 54, 29–42. https://doi.org/10.1016/j.jog.2011.09.002
    [Google Scholar]
  22. de Souza, Z. S., Vasconcelos, P. M. D., Nascimento, M., Silveira, F., Paiva, H. S., Dias, L., Viegas, M. C. D., Galindo, A. C., & Oliveira, M. J. R. (2004). Geocronologia e geoquímica do magmatismo cretácico a terciário do NE do Brasil. XLII Congresso Brasileiro de Geologia, Araxa, Brasil, 17–22 October 2004.
    [Google Scholar]
  23. Dias, J. L. (1991). Análise Estratigráfica e Evolução da Fase Rift nas Bacias das Margens Leste e Sudeste do Brasil (Masters Dissertation). Universidade Federal do Rio de Janeiro.
    [Google Scholar]
  24. Dressel, I., Scheck‐Wenderoth, M., Cacace, M., Lewerenz, B., Götze, H.‐J., & Reichert, C. (2015). Reconstruction of the southwestern African continental margin by backward modeling. Marine and Petroleum Geology, 67, 544–555. https://doi.org/10.1016/j.marpetgeo.2015.06.006
    [Google Scholar]
  25. Eagles, G. (2007). New angles on South Atlantic opening. Geophysical Journal International, 168, 353–361.
    [Google Scholar]
  26. Elvsborg, A., & Dalode, J. (1985). Benin hydrocarbon potential looks promising. Oil Gas Journal, 83, 126–131.
    [Google Scholar]
  27. Fainstein, R., & Milliman, J. D. (1979). Structure and origin of three continental‐margin plateaus, northeastern Brazil. AAPG Bulletin, 63(2), 218–238. https://doi.org/10.1306/C1EA55DA‐16C9‐11D7‐8645000102C1865D
    [Google Scholar]
  28. Fernandes, V. M., & Roberts, G. G. (2020). Cretaceous to recent net continental uplift from paleobiological data: Insights into sub‐plate support. GSA Bulletin, 133(5–6), 1217–1236. https://doi.org/10.1130/B35739.1
    [Google Scholar]
  29. Granot, R., & Dyment, J. (2015). The cretaceous opening of the South Atlantic Ocean. Earth and Planetary Science Letters, 414, 156–163. https://doi.org/10.1016/j.epsl.2015.01.015
    [Google Scholar]
  30. Hayes, D. E., & Ewing, M. (1970). North Brazilian Ridge and adjacent continental margin. AAPG Bulletin, 54(11), 2120–2150. https://doi.org/10.1306/5D25CC75‐16C1‐11D7‐8645000102C1865D
    [Google Scholar]
  31. Heezen, B. C., Bunce, E. T., Hersey, J. B., & Tharp, M. (1964). Chain and romanche fracture zones. Deep Sea Research and Oceanographic Abstracts, 11, 11–33. https://doi.org/10.1016/0011‐7471(64)91079‐4
    [Google Scholar]
  32. Heine, C., Zoethout, J., & Müller, R. D. (2013). Kinematics of the South Atlantic rift. Solid Earth, 4(2), 215–253. https://doi.org/10.5194/se‐4‐215‐2013
    [Google Scholar]
  33. Houtz, R. E., Ludwig, W. J., Milliman, J. D., & Grow, J. A. (1977). Structure of the northern Brazilian continental margin. Geological Society of America Bulletin, 88(5), 711–719. https://doi.org/10.1130/0016‐7606(1977)88<711:SOTNBC>2.0.CO;2
    [Google Scholar]
  34. Huismans, R. S., & Beaumont, C. (2014). Rifted continental margins: The case for depth‐dependent extension. Earth and Planetary Science Letters, 407, 148–162. https://doi.org/10.1016/j.epsl.2014.09.032
    [Google Scholar]
  35. Jarvis, G. T., & McKenzie, D. (1980). Sedimentary basin formation with finite extension rates. Earth and Planetary Science Letters, 48, 42–52.
    [Google Scholar]
  36. Jovane, L., Figueiredo, J. J. P., Alves, D. P. V., Iacopini, D., Giorgioni, M., Vannucchi, P., De Moura, D. S., Bezerra, F. H. R., Vital, H., Rios, I. L. A., & Molina, E. C. (2016). Seismostratigraphy of the Ceará Plateau: Clues to decipher the Cenozoic evolution of Brazilian Equatorial Margin. Frontiers in Earth Science, 4, 90. https://doi.org/10.3389/feart.2016.00090
    [Google Scholar]
  37. Lana, C. C., & Roesner, E. H. (2002). Dinoflagellate biochronostratigraphy of the marine cretaceous section of the Ceará and Potiguar Basins, Brazilian Equatorial Margin. In Boletim 6° Simposio sobre o Cretáceo do Brasil/2° Simposio sobre el Cretacico de America del Sur (pp. 239–245). UNESP.
    [Google Scholar]
  38. Leckie, R. M., & Olson, H. C. (2003). Foraminifera as proxies for sea‐level change on siliciclastic margins. In H. C.Olson & R. M.Leckie (Eds.), Micropaleontologic proxies for sea‐level change and stratigraphic discontinuities (Vol. 75, pp. 5–20). SEPM Special Publication. https://doi.org/10.2110/pec.03.75.0005
    [Google Scholar]
  39. Leopoldino Oliveira, K. M., Bedle, H., Castelo Branco, R. M. G., de Souza, A. C. B., Nepomuceno Filho, F., Normando, M. N., de Almeida, N. M., & da Silva Barbosa, T. H. (2020). Seismic stratigraphic patterns and characterization of deepwater reservoirs of the Mundaú sub‐basin, Brazilian Equatorial Margin. Marine and Petroleum Geology, 116, 104310. https://doi.org/10.1016/j.marpetgeo.2020.104310
    [Google Scholar]
  40. Leyden, R. (1976). Salt distribution and crustal model for the Eastern Brazilian Margin. Anais da Academia Brasileira de Ciências, 48, 159–168.
    [Google Scholar]
  41. Lima, R. M. (2022). Caracterização Morfológica e Sedimentary do Talude Continental da Bacia do Ceará. Monografia de Graduação em Geologia, Universidade Federal do Ceará. 120p.
    [Google Scholar]
  42. Lodhia, B. H., Roberts, G. G., Fraser, A. J., Goes, S., Fishwick, S., & Jarvis, J. (2018). Continental margin subsidence from shallow mantle convection: Example from West Africa. Earth and Planetary Science Letters, 481, 350–360. https://doi.org/10.1016/j.epsl.2017.10.024
    [Google Scholar]
  43. Lopes, J. A., de Castro, D. L., & Bertotti, G. (2018). Quantitative analysis of the tectonic subsidence in the Potiguar Basin (NE Brazil). Journal of Geodynamics, 117, 60–74. https://doi.org/10.1016/j.jog.2018.04.008
    [Google Scholar]
  44. Maia de Almeida, N., Alves, T. M., Nepomuceno Filho, F., Freire, G. S. S., de Souza, A. C. B., Normando, M. N., Oliveira, K. M. L., & Barbosa, T. H. S. (2020). Tectono‐sedimentary evolution and petroleum systems of the Mundaú sub‐basin: A new deep‐water exploration frontier in equatorial Brazil. American Association of Petroleum Geologists Bulletin, 104, 795–824. https://doi.org/10.1306/07151917381
    [Google Scholar]
  45. Maia de Almeida, N., Alves, T. M., Nepomuceno Filho, F., Freire, G. S. S., Souza, A. C. B., Leopoldino Oliveira, K. M., Normando, M. N., & Barbosa, T. H. S. (2020). A three‐dimensional (3D) structural model for an oil‐producing basin of the Brazilian Equatorial Margin. Marine and Petroleum Geology, 122, 104599. https://doi.org/10.1016/j.marpetgeo.2020.104599
    [Google Scholar]
  46. Maia de Almeida, N., Freire, G. S. S., Morais, J. O., Ximenes Neto, A. R., & Abreu Neto, J. C. (2021). Plataforma Continental do Ceará. In H.Vital, M. S.Dias, & A. C.Bastos (Eds.), Plataforma Continental Brasileira, Série II. Programa de Geologia e Geofísica Marinha. 121p.
    [Google Scholar]
  47. Maia de Almeida, N., Vital, H., & Gomes, M. P. (2015). Morphology of submarine canyons along the continental margin of the Potiguar Basin, NE Brazil. Marine and Petroleum Geology, 68, 307–324. https://doi.org/10.1016/j.marpetgeo.2015.08.035
    [Google Scholar]
  48. Matenco, L., Bertotti, G., Cloetingh, S. A. P. L., & Dinu, C. (2003). Subsidence analysis and tectonic evolution of the external Carpathian–Moesian Platform region during Neogene times. Sedimentary Geology, 156(1–4), 71–94. https://doi.org/10.1016/S0037‐0738(02)00283‐X
    [Google Scholar]
  49. Matos, R. M. D. (1992). The northeastern Brazilian rift system. Tectonics, 11, 766–791. https://doi.org/10.1029/91TC03092
    [Google Scholar]
  50. Matos, R. M. D. (1999). History of the northeast Brazilian rift system: Kinematic implications for the break–up between Brazil and West Africa. Geological Society, London, Special Publication, 153, 55–73. https://doi.org/10.1144/GSL.SP.1999.153.01.04
    [Google Scholar]
  51. Matos, R. M. D. (2000). Tectonic evolution of the equatorial South Atlantic. In W.Mohriak & M.Taiwani (Eds.), Atlantic rifts and continental margins, Geophysical Monograph Series (Vol. 115, pp. 331–354). American Geophysical Union. https://doi.org/10.1029/GM115p0331
    [Google Scholar]
  52. McKenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters, 40(1), 25–32. https://doi.org/10.1016/0012‐821X(78)90071‐7
    [Google Scholar]
  53. Milani, E. J., & Thomaz Filho, A. (2000). Sedimentary basins of South America. In U. G.Cordani, E. J.Milani, A.Thomaz Filho, & D. A.Campos (Eds.), Tectonic evolution of South America (Vol. 31, pp. 389–449). 31 International Geological Congress. https://rigeo.cprm.gov.br/handle/doc/19419
    [Google Scholar]
  54. Milliman, J. D., & Farnsworth, K. L. (2011). River discharge to the coastal ocean: A global synthesis. Cambridge University Press. https://doi.org/10.1017/CBO9780511781247
    [Google Scholar]
  55. Mizusaki, A. M. P., Thomaz‐Filho, A., Milani, E. J., & De Césero, P. (2002). Mesozoic and Cenozoic igneous activity and its tectonic control in northeastern Brazil. Journal of South American Earth Sciences, 15(2), 183–198. https://doi.org/10.1016/S0895‐9811(02)00014‐7
    [Google Scholar]
  56. Mohriak, W., Nemčok, M., & Enciso, G. (2008). South Atlantic divergent margin evolution: Rift‐border uplift and salt tectonics in the basins of SE Brazil. Geological Society, London, Special Publications, 294(1), 365–398. https://doi.org/10.1144/SP294.19
    [Google Scholar]
  57. Montenegro, C. G. L., Gomes, M. P., de Castro, D. L., Perez, Y. A., & Oliveira, D. C. (2021). The Barreirinhas Basin internal architecture and the evidence of transform movements along the Romanche Fracture Zone, Brazilian Equatorial Margin. Journal of South American Earth Sciences, 107(September 2020), 103049. https://doi.org/10.1016/j.jsames.2020.103049
    [Google Scholar]
  58. Morais Neto, J. M., Pessoa Neto, O. C. P., Lana, C. C., & Zalán, P. V. (2003). Bacias Sedimentares Brasileiras: Bacia do Ceará. Informativo da Fundação Paleontológica Phoenix, 57, 1–6.
    [Google Scholar]
  59. Moulin, M., Aslanian, D., & Unternehr, P. (2010). A new starting point for the south and equatorial Atlantic Ocean. Earth Science Reviews, 98(1–2), 1–37. https://doi.org/10.1016/j.earscirev.2009.08.001
    [Google Scholar]
  60. Moura, D. S. D., Molina, E. C., Marangoni, Y. R., & Jovane, L. (2019). Gravity and magnetic constraints on the crustal structure of the Ceará Plateau, Brazilian Equatorial Margin. Frontiers in Earth Science, 7, 309. https://doi.org/10.3389/feart.2019.00309
    [Google Scholar]
  61. Nürnberg, D., & Müller, R. D. (1991). The tectonic evolution of the South Atlantic from Late Jurassic to present. Tectonophysics, 191, 27–53.
    [Google Scholar]
  62. Nace, T. E., Baker, P. A., Dwyer, G. S., Silva, C. G., Rigsby, C. A., Burns, S. J., Giosan, L., Otto‐Bliesner, B., Liu, Z., & Zhu, J. (2014). The role of North Brazil current transport in the paleoclimate of the Brazilian Nordeste margin and paleoceanography of the western tropical Atlantic during the late quaternary. Palaeogeography, Palaeoclimatology, Palaeoecology, 415, 3–13. https://doi.org/10.1016/j.palaeo.2014.05.030
    [Google Scholar]
  63. Nittrouer, C. A., & DeMaster, D. J. (1996). The Amazon shelf setting: Tropical, energetic, and influenced by a large river. Continental Shelf Research, 16, 553–573.
    [Google Scholar]
  64. Perlingeiro, G., Vasconcelos, P. M., Knesel, K. M., Thiede, D. S., & Cordani, U. G. (2013). 40Ar/39Ar geochronology of the Fernando de Noronha Archipelago and implications for the origin of alkaline volcanism in the NE Brazil. Journal of Volcanology and Geothermal Research, 249, 140–154. https://doi.org/10.1016/j.jvolgeores.2012.08.017
    [Google Scholar]
  65. Pessoa Neto, O. C., Soares, U., Silva, J. G., Roesner, E. H., Florencio, C. P., & Souza, C. A. V. (2007). Bacia Potiguar. Boletim de Geociências da Petrobras, 15(2), 357–369.
    [Google Scholar]
  66. Pletsch, T., Erbacher, J., Holbourn, A. E., Kuhnt, W., Moullade, M., Oboh‐Ikuenobede, F. E., Söding, E., & Wagner, T. (2001). Cretaceous separation of Africa and South America: The view from the West African margin (ODP Leg 159). Journal of South American Earth Sciences, 14(2), 147–174. https://doi.org/10.1016/S0895‐9811(01)00020‐7
    [Google Scholar]
  67. Rabinowitz, P. D., & LaBrecque, J. (1979). The Mesozoic South Atlantic Ocean and evolution of its continental margins. Journal of Geophysical Research: Solid Earth, 84(B11), 5973–6002. https://doi.org/10.1029/JB084iB11p05973
    [Google Scholar]
  68. Regali, M. S. (1989). Sistemática, bioestratigrafia e paleogeografia do gênero Elateropolienites Herngreen 1973 na margem equatorial brasileira. Boletim IG‐USP. Publicação Especial, 7, 145–153.
    [Google Scholar]
  69. Silva, A. C. (1966). Considerações sobre o Quaternário do Rio Grande do Norte. Natal, UFRN. Arquivos do Instituto de Antropologia da UFRN, 2(1/2), 275–301.
    [Google Scholar]
  70. Soares Júnior, A. V., Costa, J. B. S., & Hasui, Y. (2008). Evolução da margem atlântica equatorial do Brasil: três fases distensivas. Geociências, 27(4), 427–437.
    [Google Scholar]
  71. Souza, A. C. B., Nascimento, D. R., Jr., Nepomuceno Filho, F., Batezelli, A., Santos, F. H., Leopoldino Oliveira, K. M., & Maia de Almeida, N. (2021). Sequence stratigraphy and organic geochemistry: An integrated approach to understand the anoxic events and paleoenvironmental evolution of the Ceará Basin, Brazilian Equatorial Margin. Marine and Petroleum Geology, 129(2021), 105074. https://doi.org/10.1016/j.marpetgeo.2021.105074
    [Google Scholar]
  72. Souza‐Lima, W., & Hamsi, G. P., Jr. (2003). Bacias sedimentares brasileiras: Bacias da margem continental. Phoenix, 50, 1–4.
    [Google Scholar]
  73. Steckler, M. S., & Watts, A. B. (1978). Subsidence of the Atlantic‐type continental margin off New York. Earth and Planetary Science Letters, 41(1), 1–13. https://doi.org/10.1016/0012‐821X(78)90036‐5
    [Google Scholar]
  74. Tavares, A. C., de Castro, D. L., Clausen, O. R., Bezerra, F. H., Sousa, M. O., Gomes, M. P., Vital, H., & de Oliveira, D. C. (2022). Continental‐scale structural heritage from rift extension to postrift inversion: Implications for the central Brazilian Equatorial Margin evolution. Tectonophysics, 837, 229446. https://doi.org/10.1016/j.tecto.2022.229446
    [Google Scholar]
  75. Thomaz Filho, A., Mizusaki, A. M. P., & Antonioli, L. (2008). Magmatismo nas bacias sedimentares brasileiras e sua influência na geologia do petróleo. Brazilian Journal of Geology, 38(2), 128–137.
    [Google Scholar]
  76. Torsvik, T. H., Rousse, S., Labails, C., & Smethurst, M. A. (2009). A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophysical Journal International, 177, 1315–1333. https://doi.org/10.1111/j.1365‐246X.2009.04137.x
    [Google Scholar]
  77. Trosdtorf, I., Jr., Zalán, P., Figueiredo, J., & Soares, E. F. (2007). Barreirinhas Basin. Boletim de Geociencias da Petrobras, 15(2), 331–339.
    [Google Scholar]
  78. Ussami, N., de Sá, N. C., & Molina, E. C. (1993). Gravity map of Brazil: 2. Regional and residual isostatic anomalies and their correlation with major tectonic provinces. Journal of Geophysical Research: Solid Earth, 98(B2), 2199–2208. https://doi.org/10.1029/92JB01398
    [Google Scholar]
  79. Van Hinte, J. E. (1978). Geohistory analysis—Application of micropaleontology in exploration geology. AAPG Bulletin, 62(2), 201–222. https://doi.org/10.1306/C1EA4815‐16C9‐11D7‐8645000102C1865D
    [Google Scholar]
  80. Vital, H. (2014). The north and northeast Brazilian tropical shelves. Geological Society, London, Memoirs, 41(1), 35–46. https://doi.org/10.1144/M41.4
    [Google Scholar]
  81. Vital, H., Gomes, M. P., Tabosa, W. F., Frazão, E. P., Santos, C. L. A., & Plácido Júnior, J. S. (2010). Characterization of the Brazilian continental shelf adjacent to Rio Grande do Norte state, NE Brazil. Brazilian Journal of Oceanography, 58, 43–54.
    [Google Scholar]
  82. Wagreich, M., & Schmid, H. P. (2002). Backstripping dip‐slip fault histories: Apparent slip rates for the Miocene of the Vienna Basin. Terra Nova, 14(3), 163–168. https://doi.org/10.1046/j.1365‐3121.2002.00404.x
    [Google Scholar]
  83. Wyllie, M. R. J., Gregory, A. R., & Gardner, L. W. (1956). Elastic wave velocities in heterogeneous and porous media. Geophysics, 21(1), 41–70. https://doi.org/10.1190/1.1438217
    [Google Scholar]
  84. Xie, X., & Heller, P. L. (2009). Plate tectonics and basin subsidence history. Geological Society of America Bulletin, 121(1–2), 55–64. https://doi.org/10.1130/B26398.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12810
Loading
/content/journals/10.1111/bre.12810
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): backstrip; Brazilian Equatorial Margin; Cenozoic; Cretaceous; rift; sedimentary basin; subsidence

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error