1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117
PDF

Abstract

[

The true marine parasequences parameter matrix (left) and the summary statistics for the posterior estimates from the MDN (top) and McMC (bottom). The statistics are the posterior mean, posterior standard deviation, and the travel time misfits.

, Abstract

Geological process models typically simulate a range of dynamic processes to evolve a base topography into a final two‐dimensional cross section or three‐dimensional geological scenario. In principle, process parameters may be updated to better align with observed geophysical or geological data. However, it is hard to find any process model realisations that fit all observations if data sets are complex and sparse in space or time because the simulations typically depend highly non‐linearly on base topography and dynamic parameters. As an alternative, geophysical probabilistic tomographic methods may be used to estimate the family of models of a target subsurface structure that are consistent both with information obtained from previous experiments and with new data (the Bayesian posterior probability distribution). However, this family seldom embodies geologically reasonable images. Here we show that the posterior distribution of tomographic images obtained from travel time data can be fully geological by injecting geological prior information into Bayesian inference and that we can do this near‐instantaneously by using trained mixture density networks (MDNs). We invoke two geological concepts as prior information about the possible depositional environment of an imaged target structure: a braided river system and a set of marine parasequences. Each concept is parameterised by the latent parameters of a generative adversarial network. Data from a target structure can then be used to infer the family of compatible latent parameter values using either geological concept using MDNs. Our near‐instantaneous MDN solutions closely resemble those found using relatively expensive Monte Carlo methods. We show that while the use of incorrect geological conceptual models provides significantly less accurate results, a classifier neural network can infer which geological conceptual model is most consistent with the data. It is thus demonstrated that even apparently barely related geophysical data may contain information about abstract geological concepts, and that geological conceptual models are key to creating reasonable images from geophysical data.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12811
2024-01-10
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/1/bre12811.html?itemId=/content/journals/10.1111/bre.12811&mimeType=html&fmt=ahah

References

  1. Aki, K., & Lee, W. (1976). Determination of three‐dimensional velocity anomalies under a seismic array using first p arrival times from local earthquakes: 1. A homogeneous initial model. Journal of Geophysical Research, 81(23), 4381–4399.
    [Google Scholar]
  2. Al‐Wazzan, H. A., Hawie, N., Al‐Haggan, H., Al‐Mershed, M. K., Al‐Sahlan, G., & Al‐Wadi, M. (2021). 3D forward stratigraphic modelling of the lower jurassic carbonate systems of Kuwait. Marine and Petroleum Geology, 123, 104699.
    [Google Scholar]
  3. Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. In International Conference on Machine Learning (pp. 214–223). PMLR.
    [Google Scholar]
  4. Arnold, D., Demyanov, V., Rojas, T., & Christie, M. (2019). Uncertainty quantification in reservoir prediction: Part 1—Model realism in history matching using geological prior definitions. Mathematical Geosciences, 51(2), 209–240.
    [Google Scholar]
  5. Arnold, R., & Curtis, A. (2018). Interrogation theory. Geophysical Journal International, 214(3), 1830–1846.
    [Google Scholar]
  6. Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4). Springer.
    [Google Scholar]
  7. Bodin, T., & Sambridge, M. (2009). Seismic tomography with the reversible jump algorithm. Geophysical Journal International, 178(3), 1411–1436.
    [Google Scholar]
  8. Bond, C., Lunn, R., Shipton, Z., & Lunn, A. (2012). What makes an expert effective at interpreting seismic images?Geology, 40(1), 75–78.
    [Google Scholar]
  9. Bond, C. E., Johnson, G., & Ellis, J. (2015). Structural model creation: The impact of data type and creative space on geological reasoning and interpretation. Geological Society, London, Special Publications, 421(1), 83–97.
    [Google Scholar]
  10. Borgomano, J., Lanteaume, C., Léonide, P., Fournier, F., Montaggioni, L. F., & Masse, J.‐P. (2020). Quantitative carbonate sequence stratigraphy: Insights from stratigraphic forward models. AAPG Bulletin, 104(5), 1115–1142.
    [Google Scholar]
  11. Brock, A., Donahue, J., & Simonyan, K. (2018). Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096.
  12. Burgess, P., Wright, V., & Emery, D. (2001). Numerical forward modelling of peritidal carbonate parasequence development: Implications for outcrop interpretation. Basin Research, 13(1), 1–16.
    [Google Scholar]
  13. Burgess, P. M., & Emery, D. J. (2004). Sensitive dependence, divergence and unpredictable behaviour in a stratigraphic forward model of a carbonate system. Geological Society, London, Special Publications, 239(1), 77–94.
    [Google Scholar]
  14. Courtade, S., Lejri, M., Dutra, H. P. L., & Tetzlaff, D. (2021). Reproducing sedimentary processes and architecture in turbidite deposits with forward stratigraphic modeling. In In 82nd EAGE Annual Conference & Exhibition (Vol. 2021, pp. 1–5). EAGE Publications BV.
    [Google Scholar]
  15. Curtis, A. (2012). The science of subjectivity. Geology, 40(1), 95–96.
    [Google Scholar]
  16. Curtis, A., & Lomax, A. (2001). Prior information, sampling distributions, and the curse of dimensionality. Geophysics, 66(2), 372–378.
    [Google Scholar]
  17. Curtis, A., & Wood, R. (2004). Optimal elicitation of probabilistic information from experts. Geological Society, London, Special Publications, 239(1), 127–145.
    [Google Scholar]
  18. Dietterich, T. G. (2000). Ensemble methods in machine learning. In Multiple Classifier Systems: First International Workshop, MCS 2000 Cagliari, Italy, June 21–23, 2000 Proceedings 1 (pp. 1–15). Springer.
    [Google Scholar]
  19. Dziewonski, A. M., & Woodhouse, J. H. (1987). Global images of the earth's interior. Science, 236(4797), 37–48.
    [Google Scholar]
  20. Earp, S., & Curtis, A. (2020). Probabilistic neural network‐based 2D travel‐time tomography. Neural Computing and Applications, 32(22), 17077–17095.
    [Google Scholar]
  21. Earp, S., Curtis, A., Zhang, X., & Hansteen, F. (2020). Probabilistic neural network tomography across Grane field (North Sea) from surface wave dispersion data. Geophysical Journal International, 223(3), 1741–1757.
    [Google Scholar]
  22. Feng, R., Luthi, S. M., Gisolf, D., & Angerer, E. (2018). Reservoir lithology classification based on seismic inversion results by hidden Markov models: Applying prior geological information. Marine and Petroleum Geology, 93, 218–229.
    [Google Scholar]
  23. Galetti, E., Curtis, A., Meles, G. A., & Baptie, B. (2015). Uncertainty loops in travel‐time tomography from nonlinear wave physics. Physical Review Letters, 114(14), 148501.
    [Google Scholar]
  24. Georgiadis, G., Chiuso, A., & Soatto, S. (2013). Texture compression. In 2013 Data Compression Conference (pp. 221–230). IEEE.
    [Google Scholar]
  25. González, E. F., Mukerji, T., & Mavko, G. (2008). Seismic inversion combining rock physics and multiple‐point geostatistics. Geophysics, 73(1), R11–R21.
    [Google Scholar]
  26. Goodfellow, I. (2016). NIPS 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160.
  27. Goodfellow, I., Pouget‐Abadie, J., Mirza, M., Xu, B., Warde‐Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Advances in Neural Information Processing Systems, 27. https://doi.org/10.48550/arXiv.1406.2661
    [Google Scholar]
  28. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. (2017). Improved training of wasserstein GANs. arXiv Preprint arXiv:1704.00028.
  29. Haberland, C., Ryberg, T., Riedel, M., & Bauer, K. (2023). Bayesian seismic travel‐time cross‐hole tomography in vertically transversely isotropic media. Journal of Applied Geophysics, 209, 104917.
    [Google Scholar]
  30. Hamon, Y., Bachaud, P., Granjeon, D., Bemer, E., & Carvalho, A. M. A. (2021). Integration of diagenesis in basin‐scale, stratigraphic forward models using reactive transport modeling: Input and scaling issues. Marine and Petroleum Geology, 124, 104832.
    [Google Scholar]
  31. Hill, J., Tetzlaff, D., Curtis, A., & Wood, R. (2009). Modeling shallow marine carbonate depositional systems. Computers & Geosciences, 35(9), 1862–1874.
    [Google Scholar]
  32. Jetchev, N., Bergmann, U., & Vollgraf, R. (2016). Texture synthesis with spatial generative adversarial networks. arXiv preprint arXiv:1611.08207.
  33. Kaipio, J., & Somersalo, E. (2007). Statistical inverse problems: Discretization, model reduction and inverse crimes. Journal of Computational and Applied Mathematics, 198(2), 493–504.
    [Google Scholar]
  34. Kang, M., & Park, J. (2020). ContraGAN: Contrastive learning for conditional image generation. In Conference on Neural Information Processing Systems (NeurIPS). Curran Associates, Inc.
    [Google Scholar]
  35. Kang, M., Shim, W., Cho, M., & Park, J. (2021). Rebooting ACGAN: Auxiliary classifier GANs with stable training. In Conference on Neural Information Processing Systems (NeurIPS). Curran Associates, Inc.
    [Google Scholar]
  36. Kass, R. E., & Wasserman, L. (1996). The selection of prior distributions by formal rules. Journal of the American Statistical Association, 91(435), 1343–1370.
    [Google Scholar]
  37. Laloy, E., Hérault, R., Jacques, D., & Linde, N. (2018). Training‐image based geostatistical inversion using a spatial generative adversarial neural network. Water Resources Research, 54(1), 381–406.
    [Google Scholar]
  38. Lee, D. S., Stevenson, V. M., Johnston, P. F., & Mullen, C. (1995). Time‐lapse crosswell seismic tomography to characterize flow structure in the reservoir during the thermal stimulation. Geophysics, 60(3), 660–666.
    [Google Scholar]
  39. Lochbühler, T., Vrugt, J. A., Sadegh, M., & Linde, N. (2015). Summary statistics from training images as prior information in probabilistic inversion. Geophysical Journal International, 201(1), 157–171.
    [Google Scholar]
  40. Masiero, I., Burgess, P., Hollis, C., Manifold, L., Gawthorpe, R., Lecomte, I., Marshall, J., & Rotevatn, A. (2021). Syn‐rift carbonate platforms in space and time: Testing and refining conceptual models using stratigraphic and seismic numerical forward modelling. Geological Society, London, Special Publications, 509(1), 179–203.
    [Google Scholar]
  41. Meier, U., Curtis, A., & Trampert, J. (2007a). A global crustal model constrained by nonlinearised inversion of fundamental mode surface waves. Geophysical Research Letters, 34, L16304.
    [Google Scholar]
  42. Meier, U., Curtis, A., & Trampert, J. (2007b). Global crustal thickness from neural network inversion of surface wave data. Geophysical Journal International, 169(2), 706–722.
    [Google Scholar]
  43. Meier, U., Trampert, J., & Curtis, A. (2009). Global variations of temperature and water content in the mantle transition zone from higher mode surface waves. Earth and Planetary Science Letters, 282(1–4), 91–101.
    [Google Scholar]
  44. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092.
    [Google Scholar]
  45. Moja, S. S., Asfaw, Z. G., & Omre, H. (2019). Bayesian inversion in hidden Markov models with varying marginal proportions. Mathematical Geosciences, 51(4), 463–484.
    [Google Scholar]
  46. Mosegaard, K., & Tarantola, A. (1995). Monte Carlo sampling of solutions to inverse problems. Journal of Geophysical Research: Solid Earth, 100(B7), 12431–12447.
    [Google Scholar]
  47. Mosser, L., Dubrule, O., & Blunt, M. J. (2020). Stochastic seismic waveform inversion using generative adversarial networks as a geological prior. Mathematical Geosciences, 52(1), 53–79.
    [Google Scholar]
  48. Nawaz, M. A., & Curtis, A. (2016). Bayesian inversion of seismic attributes for geological facies using a hidden Markov model. Geophysical Journal International, 208(2), 1184–1200.
    [Google Scholar]
  49. Otoo, D., & Hodgetts, D. (2021). Porosity and permeability prediction through forward stratigraphic simulations using GPM™ and Petrel™: Application in shallow marine depositional settings. Geoscientific Model Development, 14(4), 2075–2095.
    [Google Scholar]
  50. Paola, C. (2000). Quantitative models of sedimentary basin filling. Sedimentology, 47, 121–178.
    [Google Scholar]
  51. Podvin, P., & Lecomte, I. (1991). Finite difference computation of traveltimes in very contrasted velocity models: A massively parallel approach and its associated tools. Geophysical Journal International, 105(1), 271–284.
    [Google Scholar]
  52. Polson, D., & Curtis, A. (2010). Dynamics of uncertainty in geological interpretation. Journal of the Geological Society, 167(1), 5–10.
    [Google Scholar]
  53. Rawlinson, N., & Sambridge, M. (2004). Multiple reflection and transmission phases in complex layered media using a multistage fast marching method. Geophysics, 69(5), 1338–1350.
    [Google Scholar]
  54. Richard, M. D., & Lippmann, R. P. (1991). Neural network classifiers estimate bayesian a posteriori probabilities. Neural Computation, 3(4), 461–483.
    [Google Scholar]
  55. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training GANs. Advances in Neural Information Processing Systems, 29, 2234–2242.
    [Google Scholar]
  56. Snieder, S., Griffiths, C. M., Owen, A., Hartley, A. J., & Howell, J. A. (2021). Stratigraphic forward modelling of distributive fluvial systems based on the Huesca system, Ebro basin, northern Spain. Basin Research, 33(6), 3137–3158.
    [Google Scholar]
  57. Song, S., Mukerji, T., & Hou, J. (2021a). Bridging the gap between geophysics and geology with generative adversarial networks. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–11.
    [Google Scholar]
  58. Song, S., Mukerji, T., & Hou, J. (2021b). GANSim: Conditional facies simulation using an improved progressive growing of generative adversarial networks (GANs). Mathematical Geosciences, 53(7), 1413–1444.
    [Google Scholar]
  59. Sonnenfeld, M. D., & Cross, T. A. (1993). Volumetric partitioning and facies differentiation within the permian Upper San Andres Formation of Last Chance Canyon, Guadalupe Mountains, New Mexico. In Carbonate sequence stratigraphy: Recent developments and applications. American Association of Petroleum Geologists.
    [Google Scholar]
  60. Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation (Vol. 89). SIAM.
    [Google Scholar]
  61. Taroudakis, M., & Smaragdakis, C. (2016). Ocean acoustic tomography using a three‐phased probabilistic model‐based inversion scheme. Proceedings of the 22nd International Congress on Acoustics, by MCI Group.
    [Google Scholar]
  62. Tetzlaff, D. (2023). Stratigraphic forward modeling software package for research and education. arXiv preprint arXiv:2302.05272. https://wsoftc.com
  63. Tetzlaff, D. M., & Harbaugh, J. W. (1989). Simulating clastic sedimentation. Van Nostrand Reinhold Co. Inc.
    [Google Scholar]
  64. Tsekhmistrenko, M., Sigloch, K., Hosseini, K., & Barruol, G. (2021). A tree of Indo‐African mantle plumes imaged by seismic tomography. Nature Geoscience, 14(8), 612–619.
    [Google Scholar]
  65. Zhang, X., & Curtis, A. (2020). Seismic tomography using variational inference methods. Journal of Geophysical Research: Solid Earth, 125(4), e2019JB018589.
    [Google Scholar]
  66. Zhang, X., & Curtis, A. (2022). Interrogating probabilistic inversion results for subsurface structural information. Geophysical Journal International, 229(2), 750–757.
    [Google Scholar]
  67. Zhao, X., Curtis, A., & Zhang, X. (2022). Interrogating subsurface structures using probabilistic tomography: An example assessing the volume of Irish sea basins. Journal of Geophysical Research: Solid Earth, 127(4), e2022JB024098.
    [Google Scholar]
  68. Zhao, Z., Singh, S., Lee, H., Zhang, Z., Odena, A., & Zhang, H. (2020). Improved consistency regularization for GANs. arXiv preprint arXiv:2002.04724.
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12811
Loading
/content/journals/10.1111/bre.12811
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): forward stratigraphic modelling; geological process modelling; imaging; inversion

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error