1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117
PDF

Abstract

[Abstract

The Gulf of Mexico is an intraplate oceanic basin where rifting commenced in the Late Triassic, leading to drifting and ensuing oceanic accretion by Middle‐Late Jurassic, which ceased by the Early Cretaceous. Its tectonic evolution encompasses multiple rifting phases dominated by orthogonal extension, variable magmatism and salt deposition. This complex tectonic history is recorded within the rifted margins of the Gulf of Mexico, including along the eastern part of the basin, where considerable uncertainty remains regarding the tectonic evolution and resulting crustal configuration. This study presents new insights into the crustal types and an updated tectonic framework for the Florida margin. An integrated analysis of seismic and potential field data allows us to characterize the nature of the crust, which shows wide zones of hyperextended continental crust, seaward dipping reflection (SDR) packages, exhumed mantle and magmatic crust. Our results propose elements that could improve the plate model of the Gulf of Mexico, by accounting for the polyphase nature of rifting, the counter‐clockwise rotation of the Yucatan block and the observed increase in magmatic supply.

,

This study utilizes regional scale 2D seismic reflection data and presents the crustal and tectonic map of the Florida margin in the Eastern Gulf of Mexico. We propose an updated tectonic model, where the formation of the Seaward Dipping Reflections (SDR) preceded the mantle exhumation and serprentinization. The latter could have been partly covered by an ustable state of magma supply prior to the seafloor spreading.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12812
2024-01-11
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/1/bre12812.html?itemId=/content/journals/10.1111/bre.12812&mimeType=html&fmt=ahah

References

  1. Alger, R. P., & Crain, E. R. (1966). Defining evaporite deposits with electrical well logs. In Second Symposium on Salt (Vol. 2, pp. 116–130). The Northern Ohio Geological Society.
    [Google Scholar]
  2. Babcock, C. V. (1970). Significance of probable age of basement rock in the Mobil, No. 1 FSL 224‐A well, Offshore Franklin County. Florida Department of Environmental Protection.
    [Google Scholar]
  3. Basile, C., Girault, I., Paquette, J. L., Agranier, A., Loncke, L., Heuret, A., & Poetisi, E. (2020). The Jurassic magmatism of the Demerara Plateau (offshore French Guiana) as a remnant of the Sierra Leone hotspot during the Atlantic rifting. Scientific Reports, 10(7486), 1–12. https://doi.org/10.1038/s41598‐020‐64333‐5
    [Google Scholar]
  4. Bassetto, M., Alkmim, F. F., Szatmari, P., & Mohriak, W. U. (2000). The oceanic segment of the Southern Brazilian margin: Morpho‐structural domains and their tectonic significance. In Geophysical monograph series (pp. 235–299). Blackwell Publishing Ltd. https://doi.org/10.1029/GM115p0235
    [Google Scholar]
  5. Bécel, A., Davis, J. K., Shuck, B. D., Van Avendonk, H. J. A., & Gibson, J. C. (2020). Evidence for a prolonged continental breakup resulting from slow extension rates at the eastern north American volcanic rifted margin. Journal of Geophysical Research: Solid Earth, 125(9), e2020JB020093. https://doi.org/10.1029/2020JB020093
    [Google Scholar]
  6. Bird, D. E., Burke, K., Hall, S. A., & Casey, J. F. (2005). Gulf of Mexico tectonic history: Hotspot tracks, crustal boundaries, and early salt distribution. AAPG Bulletin, 89(3), 311–328. https://doi.org/10.1306/10280404026
    [Google Scholar]
  7. Buffler, R., Schlager, W., Bowdler, J., Cotillon, P. H., Halley, R. B., Kinoshita, H., Magoon, L. B., III, Mcnulty, C. L., Patton, J. W., Pisciotto, K. A., Premoli Silva, I., Avello Suarez, O., Testarmata, M. M., Tyson, R. V., & Watkins, D. K. (1984). Site 538. Deep Sea Drilling Project, 77, 279–336. https://doi.org/10.2973/dsdp.proc.77.104.1984
    [Google Scholar]
  8. Buffler, R. T., & Sawyer, D. S. (1985). Distribution of crust and early history, Gulf of Mexico Basin. Gulf Coast Association of Geological Societies Transactions, 35, 333–344.
    [Google Scholar]
  9. Buffler, R. T., Schlager, W., & Pisciotto, K. A. (1984). Introduction and explanatory notes. (5–22). Initial reports DSDP, Leg 77, Ft. Lauderdale to San Juan.
  10. Burke, K., & Torsvik, T. H. (2004). Derivation of Large Igneous Provinces of the past 200 million years from long‐term heterogeneities in the deep mantle. Earth and Planetary Science Letters, 227(3–4), 531–538. https://doi.org/10.1016/J.EPSL.2004.09.015
    [Google Scholar]
  11. Christensen, N. I., & Mooney, W. D. (1995). Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research: Solid Earth, 100(B6), 9761–9788. https://doi.org/10.1029/95JB00259
    [Google Scholar]
  12. Christeson, G. L., Van Avendonk, H. J. A., Norton, I. O., Snedden, J. W., Eddy, D. R., Karner, G. D., & Johnson, C. A. (2014). Deep crustal structure in the eastern Gulf of Mexico. Journal of Geophysical Research: Solid Earth, 119(9), 6782–6801. https://doi.org/10.1002/2014JB011045
    [Google Scholar]
  13. Curry, M. A. E., Peel, F. J., Hudec, M. R., & Norton, I. O. (2018). Extensional models for the development of passive‐margin salt basins, with application to the Gulf of Mexico. Basin Research, 30(6), 1180–1199. https://doi.org/10.1111/bre.12299
    [Google Scholar]
  14. Dale, A. J. (2013). Crustal type, tectonic origin, and petroleum potential of The Bahamas carbonate platform. MSc Thesis, University of Houston.
    [Google Scholar]
  15. Deighton, I. C., Winter, F., & Chisari, D. (2017). Recent high resolution seismic, magnetic and gravity data throws new light on the early development of the Gulf of Mexico. In AAPG 2017 Annual Convention and Exhibition AAPG Datapages. AAPG Annual Meeting Abstracts, 2017.
    [Google Scholar]
  16. Ding, W., Sun, Z., Dadd, K., Fang, Y., & Li, J. (2018). Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes. Earth and Planetary Science Letters, 488, 115–125. https://doi.org/10.1016/j.epsl.2018.02.011
    [Google Scholar]
  17. Dix, C. H. (1955). Seismic velocities from surface measurements. Geophysics, 20(1), 68–86. https://doi.org/10.1190/1.1438126
    [Google Scholar]
  18. Dobson, L. M., & Buffler, R. T. (1997). Seismic stratigraphy and geologic history of Jurassic rocks, Northeastern Gulf of Mexico. AAPG Bulletin, 81(1), 100–120. https://doi.org/10.1306/522b42a3‐1727‐11d7‐8645000102c1865d
    [Google Scholar]
  19. Eddy, D. R., Van Avendonk, H. J. A., Christeson, G. L., & Norton, I. O. (2018). Structure and origin of the rifted margin of the northern Gulf of Mexico. Geosphere, 14(4), 1804–1817.
    [Google Scholar]
  20. Eddy, D. R., Van Avendonk, H. J. A., Christeson, G. L., Norton, I. O., Karner, G. D., Johnson, C. A., & Snedden, J. W. (2014). Deep crustal structure of the northeastern Gulf of Mexico: Implications for rift evolution and seafloor spreading. Journal of Geophysical Research: Solid Earth, 119(9), 6802–6822. https://doi.org/10.1130/GES01662.1
    [Google Scholar]
  21. Erlich, R. N., & Pindell, J. (2020). Crustal origin of the West Florida Terrane, and detrital zircon provenance and development of accommodation during initial rifting of the southeastern Gulf of Mexico and western Bahamas. Geological Society, London, Special Publications, 504,77–118. https://doi.org/10.1144/sp504‐2020‐14
    [Google Scholar]
  22. Filina, I., Austin, J., Doré, T., Johnson, E., Minguez, D., Norton, I., Snedden, J., & Stern, R. J. (2022). Opening of the Gulf of Mexico: What we know, what questions remain, and how we might answer them. Tectonophysics, 822, 229150. https://doi.org/10.1016/j.tecto.2021.229150
    [Google Scholar]
  23. Filina, I., & Beutel, E. (2022). Geological and geophysical constraints guide new tectonic reconstruction of the Gulf of Mexico. Authorea Preprints. https://doi.org/10.1002/ESSOAR.10511463.1
    [Google Scholar]
  24. Filina, I., & Hartford, L. (2021). Subsurface structures along western Yucatan from integrated geophysical analysis. Marine and Petroleum Geology, 127, 104964. https://doi.org/10.1016/j.marpetgeo.2021.104964
    [Google Scholar]
  25. Filina, I., Liu, M., & Beutel, E. (2020). Evidence of ridge propagation in the eastern Gulf of Mexico from integrated analysis of potential fields and seismic data. Tectonophysics, 775, 228307. https://doi.org/10.1016/j.tecto.2019.228307
    [Google Scholar]
  26. Franke, D. (2013). Rifting, lithosphere breakup and volcanism: Comparison of magma‐poor and volcanic rifted margins. Marine and Petroleum Geology, 43, 63–87. https://doi.org/10.1016/j.marpetgeo.2012.11.003
    [Google Scholar]
  27. Gardner, G. H. F., Gardner, L. W., & Gregory, A. R. (1974). Formation velocity and density – the diagnostic basics for stratigraphic traps. Geophysics, 39(6), 770–780. https://doi.org/10.1190/1.1440465
    [Google Scholar]
  28. Gillard, M., Autin, J., & Manatschal, G. (2016). Fault systems at hyper‐extended rifted margins and embryonic oceanic crust: Structural style, evolution and relation to magma. Marine and Petroleum Geology, 76, 51–67. https://doi.org/10.1016/j.marpetgeo.2016.05.013
    [Google Scholar]
  29. Gillard, M., Autin, J., Manatschal, G., Sauter, D., Munschy, M., & Schaming, M. (2015). Tectonomagmatic evolution of the final stages of rifting along the deep conjugate Australian‐Antarctic magma‐poor rifted margins: Constraints from seismic observations. Tectonics, 34(4), 753–783. https://doi.org/10.1002/2015TC003850
    [Google Scholar]
  30. Hall, D. J. (1990). Gulf Coast‐East coast magnetic anomaly 1: Root of the main crustal decollement for the Appalachian‐Ouachita orogen. Geology, 18(9), 862–865. https://doi.org/10.1130/0091‐7613(1990)018<0862:GCECMA>2.3.CO;2
    [Google Scholar]
  31. Harry, D. L., & Sawyer, D. S. (1992). A dynamic model of extension in the Baltimore Canyon Trough Region. Tectonics, 11(2), 420–436. https://doi.org/10.1029/91TC03012
    [Google Scholar]
  32. Heatherington, A. L., & Mueller, P. A. (1991). Geochemical evidence for Triassic rifting in southwestern Florida. Tectonophysics, 188(3–4), 291–302. https://doi.org/10.1016/0040‐1951(91)90460‐A
    [Google Scholar]
  33. Heatherington, A. L., & Mueller, P. A. (1999). Lithospheric sources of North Florida, USA tholeiites and implications for the origin of the Suwannee terrane. Lithos, 46(2), 215–233. https://doi.org/10.1016/S0024‐4937(98)00063‐2
    [Google Scholar]
  34. Heatherington, A. L., & Mueller, P. A. (2003). Mesozoic igneous activity in the Suwannee terrane, southeastern USA: Petrogenesis and Gondwanan affinities. Gondwana Research, 6(2), 296–311. https://doi.org/10.1016/S1342‐937X(05)70979‐5
    [Google Scholar]
  35. Hoggard, M. J., Winterbourne, J., Czarnota, K., & White, N. (2017). Oceanic residual depth measurements, the plate cooling model, and global dynamic topography. Journal of Geophysical Research: Solid Earth, 122(3), 2328–2372. https://doi.org/10.1002/2016JB013457
    [Google Scholar]
  36. Holbrook, W. S., & Kelemen, P. B. (1993). Large igneous province on the US Atlantic margin and implications for magmatism during continental breakup. Nature, 364, 433–436.
    [Google Scholar]
  37. Holbrook, W. S., Purdy, G. M., Sheridan, R. E., Glover, L., III, Talwani, M., Ewing, J., & Hutchinson, D. (1994). Seismic structure of the US Mid‐Atlantic continental margin. Journal of Geophysical Research, 99(B9), 17871–17891. https://doi.org/10.1029/94jb00729
    [Google Scholar]
  38. Hudec, M. R., Jackson, M. P. A., & Peel, F. J. (2013). Influence of deep Louann structure on the evolution of the northern Gulf of Mexico. AAPG Bulletin, 97(10), 1711–1735. https://doi.org/10.1306/04011312074
    [Google Scholar]
  39. Hudec, M. R., & Norton, I. O. (2019). Upper Jurassic structure and evolution of the Yucatán and Campeche subbasins, southern Gulf of Mexico. AAPG Bulletin, 103(5), 1133–1151. https://doi.org/10.1306/11151817405
    [Google Scholar]
  40. Hudec, M. R., Norton, I. O., Jackson, M. P. A., & Peel, F. J. (2013). Jurassic evolution of the Gulf of Mexico salt basin. AAPG Bulletin, 97(10), 1683–1710. https://doi.org/10.1306/04011312073
    [Google Scholar]
  41. Imbert, P. (2005). The Mesozoic opening of the Gulf of Mexico: Part 1, evidence for oceanic accretion during and after salt deposition. In Petroleum systems of divergent continental margin basins: 25th annual (pp. 1119–1150). Society of Economic Paleontologists and Mineralogists. https://doi.org/10.5724/gcs.05.25.1119
    [Google Scholar]
  42. Imbert, P., & Philippe, Y. (2005). The Mesozoic opening of the Gulf of Mexico: Part 2, integrating seismic and magnetic data into a general opening model. In Petroleum systems of divergent continental margin basins: 25th annual (pp. 1151–1190). Society of Economic Paleontologists and Mineralogists. https://doi.org/10.5724/gcs.05.25.1151
    [Google Scholar]
  43. Izquierdo‐Llavall, E., Ringenbach, J. C., Sapin, F., Rives, T., & Callot, J. P. (2022). Crustal structure and lateral variations in the Gulf of Mexico conjugate margins: From rifting to break‐up. Marine and Petroleum Geology, 136, 105484. https://doi.org/10.1016/J.MARPETGEO.2021.105484
    [Google Scholar]
  44. Klitgord, K. D., Popenoe, P., & Schouten, H. (1984). Florida: A Jurassic transform plate boundary. Journal of Geophysical Research: Solid Earth, 89(B9), 7753–7772. https://doi.org/10.1029/JB089iB09p07753
    [Google Scholar]
  45. Kneller, E. A., & Johnson, C. A. (2011). Plate kinematics of the Gulf of Mexico based on integrated observations from the central and South Atlantic. Gulf Coast Association of Geological Societies Transactions, 61, 283–299.
    [Google Scholar]
  46. Lin, P., Bird, D. E., & Mann, P. (2019). Crustal structure of an extinct, late Jurassic‐to‐earliest Cretaceous spreading center and its adjacent oceanic crust in the eastern Gulf of Mexico. Marine Geophysical Research, 40(3), 395–418. https://doi.org/10.1007/s11001‐019‐09379‐5
    [Google Scholar]
  47. Liu, M., Filina, I., & Mann, P. (2019). Crustal structure of Mesozoic rifting in the northeastern Gulf of Mexico from integration of seismic and potential fields data. Interpretation, 7(4), T857–T867. https://doi.org/10.1190/int‐2018‐0259.1
    [Google Scholar]
  48. Lundin, E. R., & Doré, A. G. (2017). The Gulf of Mexico and Canada Basin: Genetic siblings on either side of North America. GSA Today, 27(1), 4–11. https://doi.org/10.1130/GSATG274A.1
    [Google Scholar]
  49. MacRae, G., & Watkins, J. (1996). Desoto Canyon Salt Basin: Tectonic evolution and salts structural styles. Gulf Coast Association of Geological Societies Transactions, 46, 53–61.
    [Google Scholar]
  50. Marton, G., & Buffler, R. T. (1994). Jurassic reconstruction of the Gulf of Mexico Basin. Taylor & Francis Group. https://doi.org/10.1080/00206819409465475
    [Google Scholar]
  51. Marton, G.L., & Buffler, R. (2016, September 6–9). International Convention and Exhibition. In AAPG/SEG international conference & exhibition, Cancun, Mexico. AAPG Datapages, Inc.
    [Google Scholar]
  52. Marton, G. L., & Buffler, R. T. (1999). Chapter 3 Jurassic—early cretaceous tectono‐paleogeographic evolution of the southeastern gulf of Mexico basin. In Sedimentary basins of the world (pp. 63–91). Elsevier. https://doi.org/10.1016/S1874‐5997(99)80037‐9
    [Google Scholar]
  53. McDermott, C., Collier, J. S., Lonergan, L., Fruehn, J., & Bellingham, P. (2019). Seismic velocity structure of seaward‐dipping reflectors on the South American continental margin. Earth and Planetary Science Letters, 521, 14–24. https://doi.org/10.1016/j.epsl.2019.05.049
    [Google Scholar]
  54. McDermott, C., Lonergan, L., Collier, J. S., McDermott, K. G., & Bellingham, P. (2018). Characterization of seaward‐dipping reflectors along the South American Atlantic margin and implications for continental breakup. Tectonics, 37(9), 3303–3327. https://doi.org/10.1029/2017TC004923
    [Google Scholar]
  55. Menzies, M. A., Klemperer, S. L., Ebinger, C. J., & Baker, J. (2002). Characteristics of volcanic rifted margins (pp. 1–14). Geological Society of America Special Paper Boulder, Colorado.
    [Google Scholar]
  56. Meyer, B., Saltus, R., & Chulliat, A. (2017). EMAG2: Earth Magnetic Anomaly Grid (2‐arc‐minute resolution) Version 3 (p. 5194). National Centers for Environmental Information, NOAA. https://doi.org/10.7289/V5H70CVX
    [Google Scholar]
  57. Mickus, K., Stern, R. J., Keller, G. R., & Anthony, E. Y. (2009). Potential field evidence for a volcanic rifted margin along the Texas Gulf Coast. Geology, 37(5), 387–390. https://doi.org/10.1130/G25465A.1
    [Google Scholar]
  58. Minguez, D., Gerald Hensel, E., & Johnson, E. A. E. (2020). A fresh look at Gulf of Mexico Tectonics: Testing rotations and breakup mechanisms from the perspective of seismically constrained potential fields modelling and plate kinematics. Interpretation, 8(4), SS31–SS45. https://doi.org/10.1190/int‐2019‐0256.1
    [Google Scholar]
  59. Mjelde, R., Raum, T., Myhren, B., Shimamura, H., Murai, Y., Takanami, T., Karpuz, R., & Næss, U. (2005). Continent‐ocean transition on the Vøring Plateau, NE Atlantic, derived from densely sampled ocean bottom seismometer data. Journal of Geophysical Research: Solid Earth, 110(5), 1–19. https://doi.org/10.1029/2004JB003026
    [Google Scholar]
  60. Müller, R. D., Zahirovic, S., Williams, S. E., Cannon, J., Seton, M., Bower, D. J., Tetley, M. G., Heine, C., Le Breton, E., Liu, S., Russell, S. H. J., Yang, T., Leonard, J., & Gurnis, M. (2019). A global plate model including lithospheric deformation along major rifts and orogens since the triassic. Tectonics, 38(6), 1884–1907. https://doi.org/10.1029/2018TC005462
    [Google Scholar]
  61. Nemčok, M., Sinha, S. T., Stuart, C. J., Welker, C., Choudhuri, M., Sharma, S. P., Misra, A. A., Sinha, N., & Venkatraman, S. (2013). East Indian margin evolution and crustal architecture: Integration of deep reflection seismic interpretation and gravity modelling. Geological Society Special Publication, 369(1), 477–496. https://doi.org/10.1144/SP369.6
    [Google Scholar]
  62. Nguyen, L. C., & Mann, P. (2016). Gravity and magnetic constraints on the Jurassic opening of the oceanic Gulf of Mexico and the location and tectonic history of the Western Main transform fault along the eastern continental margin of Mexico. Interpretation, 4(1), SC23–SC33. https://doi.org/10.1190/INT‐2015‐0110.1
    [Google Scholar]
  63. Norcliffe, J. R., Paton, D. A., Mortimer, E. J., McCaig, A. M., Nicholls, H., Rodriguez, K., Hodgson, N., & Van Der Spuy, D. (2018). Laterally confined volcanic successions (LCVS); recording rift‐jumps during the formation of magma‐rich margins. Earth and Planetary Science Letters, 504, 53–63. https://doi.org/10.1016/j.epsl.2018.09.033
    [Google Scholar]
  64. Paton, D. A., Pindell, J., McDermott, K., Bellingham, P., & Horn, B. (2017). Evolution of seaward‐dipping reflectors at the onset of oceanic crust formation at volcanic passive margins: Insights from the South Atlantic. Geology, 45(5), 439–442. https://doi.org/10.1130/G38706.1
    [Google Scholar]
  65. Peron‐Pinvidic, G., Manatschal, G., & Osmundsen, P. T. (2013). Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts. Marine and Petroleum Geology, 43, 21–47. https://doi.org/10.1016/j.marpetgeo.2013.02.002
    [Google Scholar]
  66. Pindell, J., & Dewey, J. F. (1982). Permo‐Triassic reconstruction of western Pangea and the evolution of the Gulf of Mexico/Caribbean region. Tectonics, 1(2), 179–211.
    [Google Scholar]
  67. Pindell, J., Graham, R., & Horn, B. (2014). Rapid outer marginal collapse at the rift to drift transition of passive margin evolution, with a Gulf of Mexico case study. Basin Research, 26(6), 701–725. https://doi.org/10.1029/TC001i002p00179
    [Google Scholar]
  68. Pindell, J., & Heyn, T. (2022). Dynamo‐thermal subsidence and sag–salt section deposition as magma‐rich rifted margins move off plume centres along incipient lines of break‐up. Journal of the Geological Society, 179(5), jgs2021‐095. https://doi.org/10.1144/JGS2021‐095
    [Google Scholar]
  69. Pindell, J., & Kennan, L. (2001). Kinematic evolution of the Gulf of Mexico and Caribbean. In Transactions of the Gulf Coast Section Society of Economic Paleontologists and Mineralogists (GCSSEPM) 21st annual Bob F. Perkins Research conference, petroleum systems of deep‐water basins (pp. 193–220).
    [Google Scholar]
  70. Pindell, J., Miranda, E. C., Cerón, A., & Hernandez, L. (2016). Aeromagnetic map constrains Jurassic–early cretaceous Synrift, break up, and rotational seafloor spreading history in the Gulf of Mexico. In Mesozoic of the Gulf rim and beyond: new progress in science and exploration of the Gulf of Mexico basin (pp. 123–153). Gulf Coast Section SEPM. https://doi.org/10.5724/gcs.15.35.0123
    [Google Scholar]
  71. Pindell, J., Radovich, B., & Horn, B. W. (2011). Western Florida: A new exploration frontier in the US Gulf of Mexico. GeoExPro, 8, 37–40.
    [Google Scholar]
  72. Pindell, J., Villagómez, D., Molina‐Garza, R., Graham, R., & Weber, B. (2021). A revised synthesis of the rift and drift history of the Gulf of Mexico and surrounding regions in the light of improved age dating of the Middle Jurassic salt. Geological Society, London, Special Publications, 504(1), 29–76.
    [Google Scholar]
  73. Pindell, J., Weber, B., Elrich, W.‐H., Cossey, S., Bitter, M., Molina, R., Graham, R., & Elrich, R. (2019). Strontium isotope dating of evaporites and the breakup of the Gulf of Mexico and Proto‐Caribbean seaway. AAPG Annual Convention and Exhibition.
    [Google Scholar]
  74. Pindell, J. L. (1985). Alleghenian reconstruction and subsequent evolution of the Gulf of Mexico, Bahamas, and Proto‐Caribbean. Tectonics, 4(1), 1–39. https://doi.org/10.1029/TC004i001p00001
    [Google Scholar]
  75. Pindell, J. L., & Kennan, L. (2009). Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update. Geological Society Special Publication, 328(1), 1–55. https://doi.org/10.1144/SP328.1
    [Google Scholar]
  76. Posey, H. H., Richard Kyle, J., Jackson, T. J., Hurst, S. D., & Price, P. E. (1987). Multiple fluid components of salt diapirs and salt dome cap rocks, Gulf Coast, U.S.A. Applied Geochemistry, 2(5–6), 523–534. https://doi.org/10.1016/0883‐2927(87)90006‐0
    [Google Scholar]
  77. Pouliquen, G., Connard, G., Kearns, H., Gouiza, M., & Paton, D. (2017). Public domain satellite gravity inversion offshore Somalia combining layered‐earth and voxel based modelling. First Break, 35(9), 73–79.
    [Google Scholar]
  78. Pulham, A. J., Peel, F. J., Rives, T., Delph, B., Salel, J.‐ F., Wu, J., & Requejo, R. (2019). The age of the Louann Salt; insights from historic isotopic analyses in salt stocks from the onshore interior salt basins of the Northern Gulf of Mexico. In GCSSEPM Foundation 37th Annual Perkins‐Rosen Research Conference.
    [Google Scholar]
  79. Rowan, M. G. (2014). Passive‐margin salt basins: Hyperextension, evaporite deposition, and salt tectonics. Basin Research, 26(1), 154–182. https://doi.org/10.1111/bre.12043
    [Google Scholar]
  80. Rowan, M. G. (2018). The South Atlantic and Gulf of Mexico salt basins: Crustal thinning, subsidence and accommodation for salt and presalt strata. Geological Society, London, Special Publications, 476(1), 333–363. https://doi.org/10.1144/sp476.6
    [Google Scholar]
  81. Rowan, M. G., Sumner, H. S., Huston, H., Venkatraman, S., & Dunbar, D. (2012). Constraining interpretations of the crustal architecture of the northern Gulf of Mexico. The Gulf Coast Association of Geological Societies, 62, 605–608.
    [Google Scholar]
  82. Salvador, A. (1987). Late Triassic‐Jurassic paleogeography and origin of Gulf of Mexico basin. American Association of Petroleum Geologists Bulletin, 71(4), 419–451. https://doi.org/10.1306/94886ec5‐1704‐11d7‐8645000102c1865d
    [Google Scholar]
  83. Salvador, A. (1991). Triassic–Jurassic. In A.Salvador (Ed.), The Gulf of Mexico basin (pp. 131–180). Geological Society of America, The Geology of North America.
    [Google Scholar]
  84. Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E., & Francis, R. (2014). New global marine gravity model from CryoSat‐2 and Jason‐1 reveals buried tectonic structure. Science, 346(6205), 65–67. https://doi.org/10.1126/science.1258213
    [Google Scholar]
  85. Schlager, W., Buffler, R. T., Angstadt, D., & Phair, R. (1984). Geologic history of the southeastern Gulf of Mexico. Initial Reports of the Deep Sea Drilling Project, 77, 715–738.
    [Google Scholar]
  86. Smith, W. H. F., & Sandwell, D. T. (1997). Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334), 1956–1962. https://doi.org/10.1126/SCIENCE.277.5334.1956/ASSET/FBFA5CB2‐0680‐4A97‐B98D‐A5648B80563E/ASSETS/GRAPHIC/SE3875739005.JPEG
    [Google Scholar]
  87. Snedden, J. W., & Galloway, W. E. (2019). The Gulf of Mexico sedimentary basin: Depositional evolution and petroleum applications. Cambridge University Press.
    [Google Scholar]
  88. Snedden, J. W., Norton, I. O., Christeson, G. L., & Sanford, J. C. (2014). Interaction of deepwater deposition and a a mid‐ocean spreading center, Eastern Gulf of Mexico Basin, USA. GCAGS, 64, 371–383.
    [Google Scholar]
  89. Steier, A., & Mann, P. (2019). Late Mesozoic gravity sliding and Oxfordian hydrocarbon reservoir potential of the northern Yucatan margin. Marine and Petroleum Geology, 103, 681–701. https://doi.org/10.1016/J.MARPETGEO.2019.03.001
    [Google Scholar]
  90. Thybo, H., & Artemieva, I. M. (2013). Moho and magmatic underplating in continental lithosphere. Tectonophysics, 609, 605–619. https://doi.org/10.1016/j.tecto.2013.05.032
    [Google Scholar]
  91. Toft, P. B., Arkani‐Hamed, J., & Haggerty, S. E. (1990). The effects of serpentinization on density and magnetic susceptibility: A petrophysical model. Physics of the Earth and Planetary Interiors, 65(1–2), 137–157. https://doi.org/10.1016/0031‐9201(90)90082‐9
    [Google Scholar]
  92. Tugend, J., Gillard, M., Manatschal, G., Nirrengarten, M., Harkin, C., Epin, M. E., Sauter, D., Autin, J., Kusznir, N., & McDermott, K. (2018). Reappraisal of the magma‐rich versus magma‐poor rifted margin archetypes. Geological Society, London, Special Publications, 476, 23–47. https://doi.org/10.1144/SP476.9
    [Google Scholar]
  93. van Avendonk, H. J. A., Christeson, G. L., Norton, I. O., & Eddy, D. R. (2015). Continental rifting and sediment infill in the northwestern Gulf of Mexico. Geology, 43(7), 631–634. https://doi.org/10.1130/G36798.1
    [Google Scholar]
  94. White, R., & McKenzie, D. (1989). Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. Journal of Geophysical Research, 94(B6), 7729. https://doi.org/10.1029/JB094iB06p07685
    [Google Scholar]
  95. White, R. S., Smith, L. K., Roberts, A. W., Christie, P. A. F., Kusznir, N. J., Roberts, A. M., Healy, D., Spitzer, R., Chappell, A., Eccles, J. D., Fletcher, R., Hurst, N., Lunnon, Z., Parkin, C. J., & Tymms, V. J. (2008). Lower‐crustal intrusion on the North Atlantic continental margin. Nature, 452(7186), 460–464. https://doi.org/10.1038/nature06687
    [Google Scholar]
/content/journals/10.1111/bre.12812
Loading
/content/journals/10.1111/bre.12812
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): geodynamics; gulf of mexico; rifted margins; sedimentary basins; tectonics

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error