1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117
PDF

Abstract

[

Precipitation timing and δ18O for the studied diagenetic carbonates obtained from different temperature datasets (fluid inclusions, ∆).

, Abstract

We investigated calcites and dolomites precipitated during burial diagenesis of the Upper Triassic (Norian) continental siliciclastics from sub‐surface reservoirs of the northern Paris Basin (Chaunoy Formation) that experienced a thermal maximum >100°C during Late Cretaceous times. Relative carbonate precipitation timing was established via petrographic analyses. The diagenetic carbonates were further investigated by fluid inclusion and clumped isotope (Δ) thermometry. The two thermometric datasets were interpreted by evaluating the possible occurrence of inclusion thermal reequilibration and Δ solid‐state reordering, based on the known basin thermal history and the three existing Δ reordering models. By considering the fluid inclusion and Δ datasets obtained and the various Δ reordering models, different carbonate precipitation scenarios, in terms of timing and parent fluid composition (δ18O), were inferred. These results underline that in samples having experienced thermal maximum >100°C, accuracy and interpretation of fluid inclusion and Δ thermometry data (especially on calcite) may be biased by thermal reequilibration and solid‐state reordering. The results converge towards the need of jointly applying fluid inclusion and Δ thermometry on the same carbonate phases to evaluate all the possible precipitation scenarios. The most likely carbonate precipitation scenarios, based on Δ thermometry data, point at the precipitation of two calcite phases during Early to Late Jurassic times and of one dolomite phase during the Late Cretaceous. The parent fluids possibly were original formation waters of the Chaunoy Fm. that mixed with brines migrating from the East, where time equivalent evaporitic deposits occur. The proposed precipitation model for calcites and dolomites, involving different pulses of brine migration, and the dominance of calcite phases were not recorded by previous studies on the Upper Triassic units. These latter results may be of interest to evaluate the reservoir potential of the Chaunoy Fm. in this underexplored portion of the Paris Basin.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12814
2024-01-11
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/bre/36/1/bre12814.html?itemId=/content/journals/10.1111/bre.12814&mimeType=html&fmt=ahah

References

  1. Allan, J. R., & Wiggings, W. D. (1993). Dolomite reservoirs: Geochemical techniques for evaluating origin and distribution. AAPG Continuing Education Course Notes Series, 36, 129.
    [Google Scholar]
  2. Anderson, N. T., Kelson, J. R., Kele, S., Daëron, M., Bonifacie, M., Horita, J., Mackey, T. J., John, C. M., Kluge, T., Petschnig, P., Jost, A. B., Huntington, K. W., Bernasconi, S. M., & Bergmann, K. D. (2021). A unified clumped isotope thermometer calibration (0.5‐1,100°C) using carbonate based standardization. Geophysical Research Letters, 48(7), e92069. https://doi.org/10.1029/2020GL092069
    [Google Scholar]
  3. André, G., Hibsch, C., Fourcade, S., Cathelineau, M., & Buschaert, S. (2010). Chronology of fracture sealing under a meteoric fluid environment: Microtectonic and isotopic evidence of major Cainozoic events in the eastern Paris Basin (France). Tectonophysics, 490(3–4), 214–228. https://doi.org/10.1016/j.tecto.2010.05.016
    [Google Scholar]
  4. Bakker, R. J. (2003). Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1–3), 3–23. https://doi.org/10.1016/S0009‐2541(02)00268‐1
    [Google Scholar]
  5. Bakker, R. J. (2009). Package FLUIDS. Part 3: Correlations between equations of state, thermodynamics and fluid inclusions. Geofluids, 9(1), 63–74. https://doi.org/10.1111/j.1468‐8123.2009.00240.x
    [Google Scholar]
  6. Beaudoin, N., Gasparrini, M., David, M. E., Lacombe, O., & Kohen, D. (2019). Bedding‐parallel stylolites as a tool to unravel maximum burial depth in sedimentary basins: Application to Middle Jurassic carbonate reservoirs in the Paris Basin. GSA Bulletin, 131(7–8), 1239–1254. https://doi.org/10.1130/B32064.1
    [Google Scholar]
  7. Bernasconi, S. M., Daëron, M., Bergmann, K. D., Bonifacie, M., Meckler, A. N., Affek, H. P., Anderson, N., Bajnai, D., Barkan, E., Beverly, E., Blamart, D., Burgener, L., Calmels, D., Chaduteau, C., Clog, M., Davidheiser‐Kroll, B., Davies, A., Dux, F., Eiler, J., … Ziegler, M. (2021). InterCarb: A community effort to improve interlaboratory standardization of the carbonate clumped isotope thermometer using carbonate standards. Geochemistry, Geophysics, Geosystems, 22, e2020GC009588. https://doi.org/10.1029/2020GC009588
    [Google Scholar]
  8. Bernasconi, S. M., Müller, I. A., Bergmann, K. D., Breitenbach, S. F., Fernandez, A., Hodell, D. A., & Ziegler, M. (2018). Reducing uncertainties in carbonate clumped isotope analysis through consistent carbonate‐based standardization. Geochemistry, Geophysics, Geosystems, 19(9), 2895–2914. https://doi.org/10.1029/2017GC007385
    [Google Scholar]
  9. Blaise, T., Barbarand, J., Kars, M., Ploquin, F., Aubourg, C., Brigaud, B., Cathelineau, C., El Albani, A., Gautheron, C., Izart, A., Janots, D., Michels, R., Pagel, M., Pozzi, J., Boiron, M., & Landrein, P. (2014). Reconstruction of low temperature (<100°C) burial in sedimentary basins: A comparison of geothermometer in the intracontinental Paris Basin. Marine and Petroleum Geology, 53, 71–87. https://doi.org/10.1016/j.marpetgeo.2013.08.019
    [Google Scholar]
  10. Bodnar, R. J. (1993). Revised equation and table for determining the freezing point depression of H2O‐NaCl solutions. Geochimica et Cosmochimica Acta, 57(3), 683–684. https://doi.org/10.1016/0016‐7037(93)90378‐A
    [Google Scholar]
  11. Bodnar, R. J. (2003). Reequilibration of fluid inclusions. In I.Samson, A.Anderson, & D.Marshall (Eds.), Fluid inclusions: Analysis and interpretation (Vol. 32, pp. 213–231). Mineralogical Association of Canada Short Course.
    [Google Scholar]
  12. Bodnar, R. J., & Vityk, M. O. (1994). Interpretation of microthermometric data for H2O‐NaCl fluid inclusions. In B.De Vivo & M. L.Frezzotti (Eds.), Fluid inclusions in minerals: Methods and applications (pp. 117–130). Pontignsno‐Siena.
    [Google Scholar]
  13. Boissavy, C., & Grière, O. (2014). New geothermal targets in the Paris Basin (France). GRC Transactions, 38, 577–582.
    [Google Scholar]
  14. Bonté, D., van Wees, J.‐D., Guillou‐Frottier, L., Bouchot, V., & Serrano, O. (2013). Deep temperatures in the Paris Basin using tectonic‐heat flow modelling. European Geothermal Congress EGC 2013, June 2013, Pise, Italy. 10 p. ffhal‐00842726.
  15. Bourquin, S., Boehm, C., Clermonte, J., Durand, M., & Serra, O. (1993). Facies and sequence‐analysis of the Triassic series in the west‐Central Paris Basin, using wireline logs. Bulletin De La Societe Geologique De France, 164(2), 177–188. https://doi.org/10.1016/0037‐0738(95)00153‐0
    [Google Scholar]
  16. Bourquin, S., Rigollet, C., & Bourges, P. (1998). High‐resolution sequence stratigraphy of an alluvial fan–fan delta environment: Stratigraphic and geodynamic implications–An example from the Keuper Chaunoy Sandstones, Paris Basin. Sedimentary Geology, 121(3–4), 207–237. https://doi.org/10.1016/S0037‐0738(98)00081‐5
    [Google Scholar]
  17. Bourquin, S., Vairon, J., & Le Strat, P. (1997). Three‐dimensional evolution of the Keuper of the Paris basin based on detailed isopach maps of the stratigraphic cycles: Tectonic influences. Geologische Rundschau, 86(3), 670–685. https://doi.org/10.1007/s005310050170
    [Google Scholar]
  18. Brenner, D. C., Passey, B. H., & Stolper, D. A. (2018). Influence of water on clumped‐isotope bond reordering kinetics in calcite. Geochimica et Cosmochimica Acta, 224, 42–63. https://doi.org/10.1016/j.gca.2017.12.026
    [Google Scholar]
  19. Brigaud, B., Bonifacie, M., Pagel, M., Blaise, T., Calmels, D., Haurine, F., & Landrein, P. (2020). Past hot fluid flows in limestones detected by Δ47–(U‐Pb) and not recorded by other geothermometers. Geology, 48(9), 851–856. https://doi.org/10.1130/G47358.1
    [Google Scholar]
  20. Brunet, M. F., & Le Pichon, X. (1982). Subsidence of the Paris basin. Journal of Geophysical Research: Solid Earth, 87(B10), 8547–8560. https://doi.org/10.1029/JB087iB10p08547
    [Google Scholar]
  21. Cavelier, C., & Lorenz, J. (1987). Aspect et évolution geologiques du Bassin Parisien. Bull Inf. Bassin. Paris. hors serie no. 6.
  22. Clauer, N., O'Neil, J. R., & Furlan, S. (1995). Clay minerals as records of temperature conditions and duration of thermal anomalies in the Paris Basin, France. Clay Minerals, 30, 1–13.
    [Google Scholar]
  23. Corrado, S., Vergara Sassarini, N. A., Schito, A., Michel, P., & Gasparrini, M. (2022). New integrated geochemical and petrographic constraints to paleo‐thermal and paleo‐environmental reconstructions from organic matter dispersed in the early Toarcian organic‐rich shales of the Paris Basin (France) [abstract]. SGI‐SIMP Congress; 2022 September 19–21; Torino, Italy. Abstract n. 825 https://doi.org/10.3301/ABSGI.2022.02
  24. Daëron, M., Blamart, D., Peral, M., & Affek, H. P. (2016). Absolute isotopic abundance ratios and the accuracy of Δ47 measurements. Chemical Geology, 442, 83–96. https://doi.org/10.1016/j.chemgeo.2016.08.014
    [Google Scholar]
  25. Dassié, E. P., Genty, D., Noret, A., Mangenot, X., Massault, M., Lebas, N., Duhamel, M., Bonifacie, M., Gasparrini, M., Minster, B., & Michelot, J. L. (2018). A newly designed analytical line to examine fluid inclusion isotopic compositions in a variety of carbonate samples. Geochemistry, Geophysics, Geosystems, 19(4), 1107–1122. https://doi.org/10.1002/2017GC007289
    [Google Scholar]
  26. Delmas, J., Houel, P., & Vially, R. (2002). Paris Basin. Rapport régional d'évaluation pétrolière. IFPEN intern report (pp. 172).
  27. Demars, C. (1994). Évolution diagénétique, paléofluides et paléothermicité dans les réservoirs du Keuper et du Dogger du bassin de Paris (pp. 325). Thesis, INPL.
  28. Demars, C., & Pagel, M. (1994). Paléotempératures et paléosalinités dans les grès du Keuper du Bassin de Paris: Inclusions fluides dans les minéraux authigènes. Comptes Rendus de l'Académie des Sciences. Série 2. Sciences de la Terre et des Planètes, 319(4), 427–434.
    [Google Scholar]
  29. Dennis, K. J., & Schrag, D. P. (2010). Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration. Geochimica et Cosmochimica Acta, 74(14), 4110–4122. https://doi.org/10.1016/j.gca.2010.04.005
    [Google Scholar]
  30. Deschamps, R., Kohler, E., Gasparrini, M., Durand, O., Euzen, T., & Nader, F. H. (2012). Impact of mineralogy and diagenesis on reservoir quality of the Lower Cretaceous Upper Mannville Formation (Alberta, Canada). Oil & Gas Science and Technology, 67(1), 31–58. https://doi.org/10.2516/ogst/2011153
    [Google Scholar]
  31. Dickson, J. A. D. (1966). Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Research, 36(2), 491–505. https://doi.org/10.1306/74D714F6‐2B21‐11D7‐8648000102C1865D
    [Google Scholar]
  32. Eiler, J. M. (2007). “Clumped‐isotope” geochemistry—The study of naturally‐occurring, multiply‐substituted isotopologues. Earth and Planetary Science Letters, 262(3–4), 309–327. https://doi.org/10.1016/j.epsl.2007.08.020
    [Google Scholar]
  33. Espitalié, J., Maxwell, J. R., Chenet, Y., & Marquis, F. (1988). Aspects of hydrocarbon migration in the Mesozoic in the Paris Basin as deduced from an organic geochemical survey. Organic Geochemistry, 15, 467–481. https://doi.org/10.1016/B978‐0‐08‐037236‐5.50054‐3
    [Google Scholar]
  34. Fernandez, A., Müller, I. A., Rodríguez‐Sanz, L., van Dijk, J., Looser, N., & Bernasconi, S. M. (2017). A reassessment of the precision of carbonate clumped isotope measurements: Implications for calibrations and paleoclimate reconstructions. Geochemistry, Geophysics, Geosystems, 18(12), 4375–4386. https://doi.org/10.1002/2017GC007106
    [Google Scholar]
  35. Ferry, J. M., Passey, B. H., Vasconcelos, C., & Eiler, J. M. (2011). Formation of dolomite at 40–80°C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry. Geology, 39, 571–574. https://doi.org/10.1130/G31845.1
    [Google Scholar]
  36. Flügel, E. (2004). Microfacies of carbonate rocks: Analysis, interpretation and application (p. 976). Springer Science and Business Media. https://doi.org/10.1007/978‐3‐662‐08726‐8
    [Google Scholar]
  37. Fontes, J. C., & Matray, J. M. (1993). Geochemistry and origin of formation brines from the Paris Basin, France: 1. Brines associated with Triassic salts. Chemical Geology, 109(1–4), 149–175.
    [Google Scholar]
  38. Gabellone, T., Gasparrini, M., Iannace, A., Invernizzi, C., Mazzoli, S., & D'Antonio, M. (2013). Fluid channelling along thrust zones: The Lagonegro case history, southern Apennines, Italy. Geofluids, 13(2), 140–158. https://doi.org/10.1111/gfl.12020
    [Google Scholar]
  39. Gable, R. (1978). Acquisition et rassemblement de données géothermiques disponibles en France. Contrat 170‐76 egf ‐ projet g/a 5 Bureau de Recherches Géologiques et Minières. Report BRGM/78‐SGN‐284‐GTH, 60 p. 1 pht., 10 maps.
  40. Gasparrini, M., Lacombe, O., Rohais, S., Belkacemi, M., & Euzen, T. (2021). Natural mineralized fractures from the Montney‐Doig unconventional reservoirs (Western Canada Sedimentary Basin): Timing and controlling factors. Marine and Petroleum Geology, 124, 104826. https://doi.org/10.1016/j.marpetgeo.2020.104826
    [Google Scholar]
  41. Gasparrini, M., Morad, D., Mangenot, X., Bonifacie, M., Morad, S., Nader, F. H., & Gerdes, A. (2023). Dolomite recrystallization revealed by Δ47/U‐Pb thermochronometry in the Upper Jurassic Arab Formation, United Arab Emirates. Geology, 51(5), 471–475. https://doi.org/10.1130/G50960.1
    [Google Scholar]
  42. Gasparrini, M., Ruggieri, G., & Brogi, A. (2013). Diagenesis versus hydrothermalism and fluid–rock interaction within the Tuscan Nappe of the Monte Amiata CO2‐rich geothermal area (Italy). Geofluids, 13(2), 159–179. https://doi.org/10.1111/gfl.12025
    [Google Scholar]
  43. Gaulier, J. M., & Burrus, J. (1994). Modeling present and past thermal regimes in the Paris Basin: Petroleum implications. In A.Mascle (Ed.), Hydrocarbon and petroleum geology of France (pp. 61–73). Springer. https://doi.org/10.1007/978‐3‐642‐78849‐9_5
    [Google Scholar]
  44. Geisler‐Cussey, D. (1986). Approche sédimentologique et géochimique des mécanismes générateurs de formations évaporitiques actuelles et fossiles. Marais salants de Camargue et du Levant Espagnol, Messinien méditerranéen et Trias lorrain (pp. 268). Thesis, Sci. de la Terre.
  45. Gély, J. P., & Hanot, F. (2014). Le Bassin parisien: Un nouveau regard sur la géologie (Vol. 9, p. 229). https://books.google.it/books/about/Le_bassin_parisien.html?id=tyL‐rQEACAAJ&redir_esc=y
    [Google Scholar]
  46. Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E. A., Schrag, D., & Eiler, J. M. (2006). 13C–18O bonds in carbonate minerals: A new kind of paleothermometer. Geochimica et Cosmochimica Acta, 70(6), 1439–1456. https://doi.org/10.1016/j.gca.2005.11.014
    [Google Scholar]
  47. Goldstein, R. H. (2001). Fluid inclusions in sedimentary and diagenetic systems. Lithos, 55(1–4), 159–193. https://doi.org/10.1016/S0024‐4937(00)00044‐X
    [Google Scholar]
  48. Goldstein, R. H. (2003). Petrographic analysis of fluid inclusions. In I.Samson, A.Anderson, & D.Marshall (Eds.), Fluid inclusions: Analysis and interpretation (Vol. 32, pp. 9–53). Mineralogical Association of Canada.
    [Google Scholar]
  49. Goldstein, R. H., & Reynolds, J. T. (1994). Systematics of fluid inclusions in diagenetic minerals (Vol. 31, pp. 160). SEPM Short Course.
  50. Gonçalvès, J., Pagel, M., Violette, S., Guillocheau, F., & Robin, C. (2010). Fluid inclusions as constraints in a three‐dimensional hydro‐thermo‐mechanical model of the Paris Basin, France. Basin Research, 22(5), 699–716. https://doi.org/10.1111/j.1365‐2117.2009.00428.x
    [Google Scholar]
  51. Guilhaumou, N. (1993). Paleotemperatures inferred from fluid inclusions in diagenetic cements: Implications for the thermal history of the Paris Basin. European Journal of Mineralogy, 5, 1217–1226. https://doi.org/10.1016/j.marpetgeo.2020.104487
    [Google Scholar]
  52. Guilhaumou, N., & Gaulier, J. M. (1991). Détermination de paléotempératures dans les roches‐mères du bassin de Paris: Étude d'inclusions fluides et implications pour l'histoire thermique du bassin. Comptes rendus de l'Académie des Sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre, 313(7), 773–780.
    [Google Scholar]
  53. Guillocheau, F., Robin, C., Allemand, P., Bourquin, S., Brault, N., Dromart, G., Friendenberg, R., Garcia, J. P., Gaulier, J. M., Gaumet, F., Grosdoy, B., Hanot, F., Le Strat, P., Mettraux, M., Nalpas, T., Prijac, C., Rigoltet, C., Serrano, O., & Grandjean, G. (2000). Meso‐Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints. Geodinamica Acta, 13(4), 189–245.
    [Google Scholar]
  54. Hanor, J. S. (1984). Variation in chemical composition of oil field brines with depth in northern Louisiana and southern Arkansas: Implications for mechanisms and rates of mass transport and diagenetic reaction. AAPG Bulletin, 68(9), 1212–1213. https://doi.org/10.1306/AD4617F0‐16F7‐11D7‐8645000102C1865D
    [Google Scholar]
  55. Hemingway, J. D. (2020). Isotopylog: Open‐source tools for clumped isotope kinetic data analysis. https://doi.org/10.5281/zenodo.4005822
    [Google Scholar]
  56. Hemingway, J. D., & Henkes, G. A. (2021). A disordered kinetic model for clumped isotope bond reordering in carbonates. Earth and Planetary Science Letters, 566, 116962. https://doi.org/10.1016/j.epsl.2021.116962
    [Google Scholar]
  57. Henkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J., Pérez‐Huerta, A., & Yancey, T. E. (2014). Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. Geochimica et Cosmochimica Acta, 139, 362–382. https://doi.org/10.1016/j.gca.2014.04.040
    [Google Scholar]
  58. Honlet, R., Gasparrini, M., Muchez, P., Swennen, R., & John, C. M. (2018). A new approach to geobarometry by combining fluid inclusion and clumped isotope thermometry in hydrothermal carbonates. Terra Nova, 30(3), 199–206. https://doi.org/10.1111/ter.12326
    [Google Scholar]
  59. Horita, J. (2014). Oxygen and carbon isotope fractionation in the system dolomite–water–CO2 to elevated temperatures. Geochimica et Cosmochimica Acta, 129, 111–124. https://doi.org/10.1016/j.gca.2013.12.027
    [Google Scholar]
  60. Huntington, K. W., & Petersen, S. V. (2023). Frontiers of carbonate clumped isotope thermometry. Annual Review of Earth and Planetary Sciences, 51, 611–641. https://doi.org/10.1146/annurev‐earth‐031621‐085949
    [Google Scholar]
  61. Jaudin, F. (2009). French geothermal resources survey. BRGM contribution to the market study in the LOW‐BIN project (pp. 57583). BRGM Report.
  62. Jautzy, J. J., Savard, M. M., Lavoie, D., Ardakani, O. H., Dhillon, R. S., Defliese, W. F., & Castagner, A. (2021). Clumped isotope geothermometry of an Ordovician carbonate mound, Hudson Bay Basin. Journal of the Geological Society, 178(1), 2020–2102. https://doi.org/10.1144/jgs2020‐102
    [Google Scholar]
  63. John, C. M., & Bowen, D. (2016). Community software for challenging isotope analysis: First applications of ‘Easotope’ to clumped isotopes. Rapid Communications in Mass Spectrometry, 30(21), 2285–2300. https://doi.org/10.1002/rcm.7720
    [Google Scholar]
  64. Kharaka, Y. K., & Hanor, J. S. (2003). 5.16 Deep fluids in the continents: 1. Sedimentary basins. In H. D.Holland & K. K.Turekian (Eds.), Treatise on geochemistry (pp. 1–48). ISBN 9780080437514). Elsevier Science. https://doi.org/10.1016/B0‐08‐043751‐6/05085‐4
    [Google Scholar]
  65. Krumgalz, B. S., Pogorelsky, R., & Pitzer, K. S. (1996). Volumetric properties of single aqueous electrolytes from zero to saturation concentration at 298.15 K represented by Pitzer's ion‐interaction equations. Journal of Physical and Chemical Reference Data, 25(2), 663–689. https://doi.org/10.1063/1.555981
    [Google Scholar]
  66. Lawson, M., Shenton, B. J., Stolper, D. A., Eiler, J. M., Rasbury, E. T., Becker, T. P., Pottorf, R., Grey, G. G., Yurewicz, D., & Gournay, J. (2018). Deciphering the diagenetic history of the El Abra formation of eastern Mexico using reordered clumped isotope temperatures and U‐Pb dating. GSA Bulletin, 130(3–4), 617–629. https://doi.org/10.1130/B31656.1
    [Google Scholar]
  67. Ledésert, B. A., Hébert, R. L., Trullenque, G., Genter, A., Dalmais, E., & Herisson, J. (2022). Editorial of special issue “enhanced geothermal systems and other deep geothermal applications throughout Europe: The MEET project”. Geosciences, 2022(12), 341. https://doi.org/10.3390/geosciences12090341
    [Google Scholar]
  68. Lloyd, M. K. (2020). ClumpyCool. OSF. https://doi.org/10.17605/OSF.IO/JYHSW
  69. Lloyd, M. K., Eiler, J. M., & Nabelek, P. I. (2017). Clumped isotope thermometry of calcite and dolomite in a contact metamorphic environment. Geochimica et Cosmochimica Acta, 197, 323–344. https://doi.org/10.1016/j.gca.2016.10.037
    [Google Scholar]
  70. Lloyd, M. K., Ryb, U., & Eiler, J. M. (2018). Experimental calibration of clumped isotope reordering in dolomite. Geochimica et Cosmochimica Acta, 242, 1–20. https://doi.org/10.1016/j.gca.2018.08.036
    [Google Scholar]
  71. MacDonald, J. M., John, C. M., & Girard, J. P. (2018). Testing clumped isotopes as a reservoir characterization tool: A comparison with fluid inclusions in a dolomitized sedimentary carbonate reservoir buried to 2–4 km. Geological Society, London, Special Publications, 468(1), 189–202. https://doi.org/10.1144/SP468.7
    [Google Scholar]
  72. Mangenot, X., Bonifacie, M., Gasparrini, M., Götz, A., Ader, M., & Rouchon, V. (2017). Coupling Δ47 and fluid inclusion thermometry on carbonate cements to precisely reconstruct the temperature, salinity and δ18O of paleo‐groundwater in sedimentary basins. Chemical Geology, 472, 44–57. https://doi.org/10.1016/j.chemgeo.2017.10.011
    [Google Scholar]
  73. Mangenot, X., Deconinck, J.‐F., Bonifacie, M., Rouchon, V., Collin, P. Y., Quesne, D., Gasparrini, M., & Sizun, J.‐P. (2019). Thermal and exhumation histories of the northern subalpine chains (Bauges and Bornes – France): Evidence from forward thermal modeling coupling clay mineral diagenesis, organic maturity and carbonate clumped isotope (Δ47) data. Basin Research, 31(2), 361–379. https://doi.org/10.1111/bre.12324
    [Google Scholar]
  74. Mangenot, X., Gasparrini, M., Gerdes, A., Bonifacie, M., & Rouchon, V. (2018). An emerging thermo‐chronometer for carbonate bearing‐rocks: Δ47/(U‐Pb). Geology, 46(12), 1067–1070. https://doi.org/10.1130/G45196.1
    [Google Scholar]
  75. Mangenot, X., Gasparrini, M., Rouchon, V., & Bonifacie, M. (2018). Basin scale thermal and fluid‐flow histories revealed by carbonate clumped isotopes (Δ47)—Middle Jurassic of the Paris Basin depocenter. Sedimentology, 65, 123–150. https://doi.org/10.1111/sed.12427
    [Google Scholar]
  76. Matray, J. M., Meunier, A., Thomas, M., & Fontes, J. C. (1989). Les eaux de formation du Trias et du Dogger du bassin parisien: Histoire et effets diagénétiques sur les réservoirs. Bulletin Des Centres de Recherches Exploration‐Production Elf‐Aquitaine, 13(2), 483–504.
    [Google Scholar]
  77. Ménétrier, C., Élie, M., Martinez, L., Le Solleuz, A., Disnar, J. R., Robin, C., Guillocheau, F., & Rigollet, C. (2005). Estimation of the maximum burial palaeotemperature for Toarcian and Callovo‐Oxfordian samples in the central part of the Paris Basin using organic markers. Comptes Rendus Géoscience, 337, 15–1323. https://doi.org/10.1016/j.crte.2005.07.004
    [Google Scholar]
  78. Montano, D., Gasparrini, M., Gerdes, A., Della Porta, G., & Albert, R. (2021). In‐situ U‐Pb dating of Ries Crater lacustrine carbonates (Miocene, South‐West Germany): Implications for continental carbonate chronostratigraphy. Earth and Planetary Science Letters, 568, 117001. https://doi.org/10.1016/j.epsl.2021.117011
    [Google Scholar]
  79. Montano, D., Gasparrini, M., Rohais, S., Albert, R., & Gerdes, A. (2022). Depositional age models in lacustrine systems from zircon and carbonate U‐Pb geochronology. Sedimentology, 69, 2507–2534. https://doi.org/10.1111/sed.13000
    [Google Scholar]
  80. Monticone, B., Duval, M., Knispel, R., Wojciak, P., & Dubille, M. H. (2011). Shale oil potential of the Paris Basin, France. 10384. AAPG Int. Conf. Exhib. AAPG.
    [Google Scholar]
  81. Moore, C. H. (2001). Carbonate reservoirs, porosity evolution and diagenesis in a sequence stratigraphic framework (Vol. 55, p. 444). Development in Sedimentology.
    [Google Scholar]
  82. Morad, S. (1998). Carbonate cementation in sandstones: Distribution patterns and geochemical evolution. In S.Morad (Ed.), Carbonate cementation in sandstones. Wiley‐Blackwell. https://doi.org/10.1002/9781444304893.ch1; https://www.wiley‐vch.de/en/areas‐interest/natural‐sciences/carbonate‐cementation‐in‐sandstones‐978‐0‐632‐04777‐2
    [Google Scholar]
  83. Morse, J. W., & Mckenzie, F. T. (1990). Geochemistry of sedimentary carbonates. Developments in Sedimentology, 48, 760.
    [Google Scholar]
  84. Müller, I. A., Fernandez, A., Radke, J., Van Dijk, J., Bowen, D., Schwieters, J., & Bernasconi, S. M. (2017). Carbonate clumped isotope analyses with the long‐integration dual‐inlet (LIDI) workflow: Scratching at the lower sample weight boundaries. Rapid Communications in Mass Spectrometry, 31(12), 1057–1066. https://doi.org/10.1002/rcm.7878
    [Google Scholar]
  85. Müller, I. A., Violay, M. E., Storck, J. C., Fernandez, A., Van Dijk, J., Madonna, C., & Bernasconi, S. M. (2017). Clumped isotope fractionation during phosphoric acid digestion of carbonates at 70 C. Chemical Geology, 449, 1–14. https://doi.org/10.1016/j.chemgeo.2016.11.030
    [Google Scholar]
  86. Naylor, H. N., Defliese, W. F., Grossman, E. L., & Maupin, C. R. (2019). Investigation of the thermal history of the Delaware Basin (West Texas, USA) using carbonate clumped isotope thermometry. Basin Research, 32(5), 1140–1155. https://doi.org/10.1111/bre.12419
    [Google Scholar]
  87. O'Neil, J. R., Clayton, R. N., & Mayeda, T. K. (1969). Oxygen isotope fractionation in divalent metal carbonates. The Journal of Chemical Physics, 51(12), 5547–5558. https://doi.org/10.1063/1.1671982
    [Google Scholar]
  88. Pages, L. (1987). Exploration of the Paris basin. In J.Brooks & K.Glennie (Eds.), Petroleum geology of north West Europe (pp. 87–93). Graham and Trotman.
    [Google Scholar]
  89. Passey, B. H., & Henkes, G. A. (2012). Carbonate clumped isotope bond reordering and geospeedometry. Earth and Planetary Science Letters, 351, 223–236. https://doi.org/10.1016/j.epsl.2012.07.021
    [Google Scholar]
  90. Perrodon, A., & Zabek, J. (1991). Interior cratonic basins. Analog basins: Paris Basin. AAPG Memoir, 51, 663–679.
    [Google Scholar]
  91. Pomerol, C. (1989). Stratigraphy of the Palaeogene: Hiatuses and transitions. Proceedings of the Geologists' Association, 100(3), 313–324. https://doi.org/10.1016/S0016‐7878(89)80051‐3
    [Google Scholar]
  92. Poulet, M., & Espitalié, J. (1987). Hydrocarbon migration in the Paris Basin. In B.Doligez (Ed.), Migration of hydrocarbons in sedimentary basins (Vol. 45, pp. 131–171). Institute Francais Du Petrole Publications, Editions Technip.
    [Google Scholar]
  93. Roberts, N. M., Drost, K., Horstwood, M. S., Condon, D. J., Chew, D., Drake, H., Milodowski, E. A., McLean, M. N., Smye, E. J., Wlaker, R. J., Haslam, R., Hodson, K., Imber, J., Beaudoin, N., & Lee, J. K. (2020). Laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) U–Pb carbonate geochronology: Strategies, progress, and limitations. Geochronology, 2(1), 33–61. https://doi.org/10.5194/gchron‐2‐33‐2020
    [Google Scholar]
  94. Roedder, E., & Bodnar, R. J. (1980). Geologic pressure determinations from fluid inclusion studies. Annual Review of Earth and Planetary Sciences, 8(1), 263–301. https://doi.org/10.1146/annurev.ea.08.050180.001403
    [Google Scholar]
  95. Ronchi, P., Jadoul, F., Ceriani, A., Di Giulio, A., Scotti, P., Ortenzi, A., & Previde Massara, E. (2011). Multistage dolomitization and distribution of dolomitized bodies in Early Jurassic carbonate platforms (Southern Alps, Italy). Sedimentology, 58(2), 532–565. https://doi.org/10.1111/j.1365‐3091.2010.01174
    [Google Scholar]
  96. Rosenbaum, J., & Sheppard, S. M. F. (1986). An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochimica et Cosmochimica Acta, 50(6), 1147–1150. https://doi.org/10.1016/0016‐7037(86)90396‐0
    [Google Scholar]
  97. Ryb, U., Lloyd, M. K., Stolper, D. A., & Eiler, J. M. (2017). The clumped‐isotope geochemistry of exhumed marbles from Naxos, Greece. Earth and Planetary Science Letters, 470, 1–12. https://doi.org/10.1016/j.epsl.2017.04.026
    [Google Scholar]
  98. Schauble, E. A., Ghosh, P., & Eiler, J. M. (2006). Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first‐principles lattice dynamics. Geochimica et Cosmochimica Acta, 70(10), 2510–2529. https://doi.org/10.1016/j.gca.2006.02.011
    [Google Scholar]
  99. Sengelen, X., Robion, P., Bourquin, S., Regnet, J.‐B., Barnes, C., & Ledésert, B. (2021). Geothermal exploration of upper Triassic deposits in the Paris Basin: Comparison of the sedimentary records and petrophysical properties between in‐situ and analogue site (Ardeche, France). Proceedings World Geothermal Congress 2020+1, Reykjavik, Iceland, April–October 2021.
  100. Sengelen, X., Robion, P., Ledésert, B., Hébert, R., Regnet, J. B., Bourquin, S., Gasparrini, M., Margueret, S., & Barnes, C. (2019). Petrophysical characterization of Triassic and basement formations for geothermal purposes in the Paris basin: From sub‐surface data to reservoir outcrop analogue. European Geothermal Congress, 11–14 June, Den Haag, the Netherlands.
  101. Sharp, Z. D., & Kirschner, D. L. (1994). Quartz‐calcite oxygen isotope thermometry: A calibration based on natural isotopic variations. Geochimica et Cosmochimica Acta, 58, 4491–4501.
    [Google Scholar]
  102. Shenton, B. J., Grossman, E. L., Passey, B. H., Henkes, G. A., Becker, T. P., Laya, J. C., Perez‐Huerta, A., Becker, P. S., & Lawson, M. (2015). Clumped isotope thermometry in deeply buried sedimentary carbonates: The effects of bond reordering and recrystallization. GSA Bulletin, 127(7–8), 1036–1051. https://doi.org/10.1130/B31169.1
    [Google Scholar]
  103. Sibley, D. F., & Gregg, J. M. (1987). Classification of dolomite rock textures. Journal of Sedimentary Research, 57(6), 967–975. https://doi.org/10.1306/212F8CBA‐2B24‐11D7‐8648000102C1865D
    [Google Scholar]
  104. Spötl, C. (1996). Clay minerals as records of temperature conditions and duration of thermal anomalies in the Paris Basin, France. Clay Minerals, 31, 203–208.
    [Google Scholar]
  105. Spötl, C., Matter, A., & Brevart, O. (1993). Diagenesis and pore water evolution in the Keuper reservoir, Paris Basin (France). Journal of Sedimentary Research, 63(5), 909–928. https://doi.org/10.1306/D4267C44‐2B26‐11D7‐8648000102C1865D
    [Google Scholar]
  106. Spötl, C., & Pitman, J. K. (1998). Saddle (baroque) dolomite in carbonates and sandstones: A reappraisal of a burial‐diagenetic concept. In Carbonate cementation in sandstones: Distribution patterns and geochemical evolution (Vol. 26, pp. 437–460). Wiley. https://www.wiley.com/en‐us/Carbonate+Cementation+in+Sandstones:+Distribution+Patterns+and+Geochemical+Evolution‐p‐9780632047772
    [Google Scholar]
  107. Spötl, C., & Wright, V. P. (1992). Groundwater dolocretes from the Upper Triassic of the Paris Basin, France: A case study of an arid, continental diagenetic facies. Sedimentology, 39(6), 1119–1136. https://doi.org/10.1111/j.1365‐3091.1992.tb02000.x
    [Google Scholar]
  108. Stolper, D. A., & Eiler, J. M. (2015). The kinetics of solid‐state isotope‐exchange reactions for clumped isotopes: A study of inorganic calcites and apatites from natural and experimental samples. American Journal of Science, 315(5), 363–411. https://doi.org/10.2475/05.2015.01
    [Google Scholar]
  109. Swart, P. K. (2015). The geochemistry of carbonate diagenesis: The past, present and future. Sedimentology, 62(5), 1233–1304. https://doi.org/10.1111/sed.12205
    [Google Scholar]
  110. Telès, V., Fornel, A., Houel, P., Delmas, J., Mengus, J. M., Michel, A., & Maurand, N. (2014). Coupling basin and reservoir simulators for an improved CO2 injection flow model. Energy Procedia, 63, 3665–3675. https://doi.org/10.1016/j.marpetgeo.2020.104487
    [Google Scholar]
  111. Torelli, M., Traby, R., Telès, V., & Ducros, M. (2020). Thermal evolution of the intracratonic Paris Basin: Insights from 3D basin modelling. Marine and Petroleum Geology, 119, 104487. https://doi.org/10.1016/j.marpetgeo.2020.104487
    [Google Scholar]
  112. Tournier, F., Pagel, M., Portier, E., Wazir, I., & Fiet, N. (2010). Relationship between deep diagenetic quartz cementation and sedimentary facies in a late Ordovician glacial environment (Sbaa Basin, Algeria). Journal of Sedimentary Research, 80(12), 1068–1084. https://doi.org/10.2110/jsr.2010.094
    [Google Scholar]
  113. Uriarte, J. A. (1997). Maturité thermique des sédiments de la bordure sud‐est du Bassin de Paris, University of Geneva (pp. 146, PhD Thesis).
  114. Van Geldern, R., Hayashi, T., Böttcher, M. E., Mottl, M. J., Barth, J. A., & Stadler, S. (2013). Stable isotope geochemistry of pore waters and marine sediments from the New Jersey shelf: Methane formation and fluid origin. Geosphere, 9(1), 96–112. https://doi.org/10.1130/GES00859.1
    [Google Scholar]
  115. Vergara Sassarini, N. A. (2022). New approaches for sedimentary basins thermal calibration: Towards integration of source rocks Raman spectroscopy and carbonate thermometry (pp. 262, PhD Thesis). Università Roma Tre – Sorbonne Université.
  116. Vergara Sassarini, N. A., Schito, A., Gasparrini, M., Michel, P., & Corrado, S. (2023). Automatic organofacies identification by means of machine learning on Raman spectra. International Journal of Coal Geology, 271, 104237.
    [Google Scholar]
  117. Worden, R. H., Armitage, P. J., Butcher, A. R., Churchill, J. M., Csoma, A. E., Hollis, C., Lander, R. H., & Omma, J. E. (2018). Petroleum reservoir quality prediction: Overview and contrasting approaches from sandstone and carbonate communities. Geological Society, London, Special Publications, 435(1), 1–31. https://doi.org/10.1144/SP435.2
    [Google Scholar]
  118. Worden, R. H., Coleman, M. L., & Matray, J. M. (1999). Basin scale evolution of formation waters: A diagenetic and formation water study of the Triassic Chaunoy Formation, Paris Basin. Geochimica et Cosmochimica Acta, 63(17), 2513–2528. https://doi.org/10.1016/S0016‐7037(99)00121‐0
    [Google Scholar]
  119. Worden, R. H., & Matray, J. M. (1995). Cross formational flow in the Paris Basin. Basin Research, 7(1), 53–66. https://doi.org/10.1111/j.1365‐2117.1995.tb00095.x
    [Google Scholar]
  120. Worden, R. H., & Matray, J. M. (1998). Carbonate cement in the Triassic Chaunoy Formation of the Paris Basin: Distribution and effect on flow properties. Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution, 163–177. Wiley. https://www.wiley.com/en‐us/Carbonate+Cementation+in+Sandstones:+Distribution+Patterns+and+Geochemical+Evolution‐p‐9780632047772; https://doi.org/10.1002/9781444304893.ch7
    [Google Scholar]
  121. Ziegler, P. A. (1990). Geological atlas of Western and Central Europe (pp. 130). Shell Inter‐nationale Petroleum Maatschappij.
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12814
Loading
/content/journals/10.1111/bre.12814
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error