1887
Volume 36, Issue 1
  • E-ISSN: 1365-2117

Abstract

[Abstract

Messina Strait is a narrow fault‐bounded marine basin that separates the Calabrian peninsula from Sicily in southern Italy. It sits in a seismically active region where normal fault scarps and raised Quaternary marine terraces record ongoing extension driven by southeastward rollback of the Calabrian subduction zone. A review of published studies and new data shows that normal faults in the Messina Strait region define a conjugate relay zone where displacement is transferred along strike from NW‐dipping normal faults in the northeast (southern Calabria) to the SE‐dipping Messina‐Taormina normal fault in the southwest (offshore eastern Sicily). The narrow marine strait is a graben undergoing active subsidence within the relay zone, where pronounced curvature of normal faults results from large strain gradients and clockwise rotations related to fault interactions. Based on regional fault geometries and published age constraints, we infer that normal faults in southern Calabria migrated northwest while normal faults in NE Sicily migrated southeast during the past ca. 2–2.5 Myr. This pattern has resulted in tectonic narrowing of the strait through time by inward migration of facing normal faults and rapid mantle‐driven uplift.

,

Normal faults in Messina Strait define an active conjugate relay zone where strain is transferred along strike between facing normal faults in southern Calabria and northeast Sicily. Stratigraphic and geomorphic data record tectonic narrowing of the strait in the past ca. 2.5 Myr by inward migration of facing normal faults and rapid mantle‐driven uplift.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12818
2024-01-11
2024-04-28
Loading full text...

Full text loading...

References

  1. Acocella, V., Faccenna, C., Funiciello, R., & Rossetti, F. (1999). Sand‐box modelling of basement‐controlled transfer zones in extensional domains. Terra Nova, 11, 149–156. https://doi.org/10.1046/j.1365‐3121.1999.00238.x
    [Google Scholar]
  2. Acocella, V., Gudmundsson, A., & Funiciello, R. (2000). Interaction and linkage of extension fractures and normal faults: Examples from the rift zone of Iceland. Journal of Structural Geology, 22, 1233–1246. www.elsevier.nl/locate/jstrugeo
    [Google Scholar]
  3. Acocella, V., Morvillo, P., & Funiciello, R. (2005). What controls relay ramps and transfer faults within rift zones? Insights from analogue models. Journal of Structural Geology, 27, 397–408. https://doi.org/10.1016/j.jsg.2004.11.006
    [Google Scholar]
  4. Aloisi, M., Bruno, V., Cannavò, F., Ferranti, L., Mattia, M., Monaco, C., & Palano, M. (2013). Are the source models of the M 7.11908 Messina Straits earthquake reliable? Insights from a novel inversion and a sensitivity analysis of levelling data. Geophysical Journal International, 192, 1025–1041. https://doi.org/10.1093/gji/ggs062
    [Google Scholar]
  5. Antonioli, F., Calcagnile, L., Ferranti, L., Mastronuzzi, G., Monaco, C., Orrù, P., Quarta, G., Pepe, F., Scardino, G., Scicchitano, G., Stocchi, P., & Taviani, M. (2021). New evidence of mis 3 relative sea level changes from the Messina strait, Calabria (Italy). Water (Switzerland), 13(19), 2647. https://doi.org/10.3390/w13192647
    [Google Scholar]
  6. Antonioli, F., Ferranti, L., Lambeck, K., Kershaw, S., Verrubbi, V., & Dai Pra, G. (2006). Late Pleistocene to Holocene record of changing uplift rates in southern Calabria and northeastern Sicily (southern Italy, Central Mediterranean Sea). Tectonophysics, v. 422, 23–40. https://doi.org/10.1016/j.tecto.2006.05.003
    [Google Scholar]
  7. Antonioli, F., Presti, V. L., Morticelli, M. G., Bonfiglio, L., Mannino, M. A., Palombo, M. R., Sannino, G., Ferranti, L., Furlani, S., Lambeck, K., Canese, S., Catalano, R., Chiocci, F. L., Mangano, G., Scicchitano, G., & Tonielli, R. (2016). Timing of the emergence of the Europe‐Sicily bridge (40–17 cal ka BP) and its implications for the spread of modern humans. Geological Society Special Publication, 411, 111–144. https://doi.org/10.1144/SP411.1
    [Google Scholar]
  8. Argnani, A. (2021). Comment on “New simulations and understanding of the 1908 Messina tsunami for a dual seismic and deep submarine mass failure source” by L. Schambach, S.T. Grilli, D.R. Tappin, M.D. Gangemi, G. Barbaro [Marine geology 421 (2020) 106093]. Marine Geology, 442, 106634. https://doi.org/10.1016/j.margeo.2021.106634
    [Google Scholar]
  9. Argnani, A. (2022). Comment on the paper by Barreca et al: “The strait of Messina: Seismotectonics and the source of the 1908 earthquake”. Earth‐Science Reviews, 226, 103865. https://doi.org/10.1016/j.earscirev.2022.103961
    [Google Scholar]
  10. Argnani, A., Brancolini, G., Bonazzi, C., Rovere, M., Accaino, F., Zgur, F., & Lodolo, E. (2009). The results of the Taormina 2006 seismic survey: Possible implications for active tectonics in the Messina Straits. Tectonophysics, 476, 159–169. https://doi.org/10.1016/j.tecto.2008.10.029
    [Google Scholar]
  11. Argnani, A., & Pino, N. A. (2023). The 1908 Messina Straits earthquake: Cornerstones and the need to step forward. Seismological Research Letters, 94(2A), 557–561. https://doi.org/10.1785/0220220355
    [Google Scholar]
  12. Atzori, P., Ghisetti, F., Pezzino, A., & Vezzani, L. (1983). Carta geologica del bordo occidentale dell'Aspromonte, scale 1: 50000.
  13. Barreca, G., Gross, F., Scarfì, L., Aloisi, M., Monaco, C., & Krastel, S. (2021). The strait of Messina: Seismotectonics and the source of the 1908 earthquake. Earth‐Science Reviews, 218(2021), 103685. https://doi.org/10.1016/j.earscirev.2021.103685
    [Google Scholar]
  14. Barrier, P. (1984). Evolution tectono‐sédimentaire pliocène et pléistocène du Détroit de Messine (Italie) (PhD Dissertation) (p. 270). Aix‐Marseille University.
    [Google Scholar]
  15. Barrier, P. (1986). Évolution paléogeographique du détroit de Messine au Pliocène et au Pléistocène. Giornale di Geologia, 48, 7–24.
    [Google Scholar]
  16. Barrier, P., Alo, I. T., Geronimo, D. I., & Lanzafame, G. (1986). Rapparti fra tettonica e sedimentazione nell'evoluzione recente dell'Aspromonte occidentale (Calabria). Rivista Italiana di Paleontologia e Stratigrafia, 9, 537–556.
    [Google Scholar]
  17. Barrier, P., Casale, V., Costa, B., di Geronimo, I., Oliveri, O., & Rosso, A. (1987). La sezione plio‐pleistocenica di Pavigliana (Reggio Calabria). Bollettino Della Società Paleontologica Italiana, 25, 107–144.
    [Google Scholar]
  18. Billi, A., Funiciello, R., Minelli, L., Faccenna, C., Neri, G., Orecchio, B., & Presti, D. (2008). On the cause of the 1908 Messina tsunami, southern Italy. Geophysical Research Letters, 35(6), L06301. https://doi.org/10.1029/2008GL033251
    [Google Scholar]
  19. Bizzarri, R., & Baldanza, A. (2020). Integrated stratigraphy of the marine early pleistocene in umbria. Geosciences (Switzerland), 10, 1–25. https://doi.org/10.3390/geosciences10090371
    [Google Scholar]
  20. Bonardi, G., Cavazza, W., Perrone, V., & Rossi, S. (2001). Calabria‐Peloritani terrane and northern Ionian Sea. In G. B.Vai & I. P.Martini (Eds.), Anatomy of an orogen: The Apennines and adjacent Mediterranean basins (pp. 287–306). Kluwer Academic Publishers.
    [Google Scholar]
  21. Boschi, E., Pantosti, D., & Valensise, G. (1989). Modello di sorgente per il terremoto di Messina del 1908 ed evoluzione recente dell'area dello Stretto (pp. 245–258). Atti VIII Convegno G. N.G.T.S.
    [Google Scholar]
  22. Brandt, P., Rubino, A., Quadfasel, D., Alpers, W., Sellschopp, J., & Fiekas, H.‐V. (1999). Evidence for the influence of Atlantic–Ionian stream fluctuations on the tidally induced internal dynamics in the strait of Messina. Journal of Physical Oceanography, 29, 1071–1080. https://doi.org/10.1175/1520‐0485(1999)029<1071:EFTIOA>2.0.CO;2
    [Google Scholar]
  23. Brutto, F., Muto, F., Loreto, M. F., de Paola, N., Tripodi, V., Critelli, S., & Facchin, L. (2016). The Neogene‐quaternary geodynamic evolution of the central Calabrian arc: A case study from the western Catanzaro trough basin. Journal of Geodynamics, 102, 95–114. https://doi.org/10.1016/j.jog.2016.09.002
    [Google Scholar]
  24. Catalano, S., & De Guidi, G. (2003). Late quaternary uplift of northeastern Sicily: Relation with the active normal faulting deformation. Journal of Geodynamics, 36, 445–467. https://doi.org/10.1016/S0264‐3707(02)00035‐2
    [Google Scholar]
  25. Catalano, S., de Guidi, G., Monaco, C., Tortorici, G., & Tortorici, L. (2003). Long‐term behaviour of the late quaternary normal faults in the straits of Messina area (Calabrian arc): Structural and morphological constraints. Quaternary International, 101–102, 81–91.
    [Google Scholar]
  26. Catalano, S., De Guidi, G., Monaco, C., Tortorici, G., & Tortorici, L. (2008). Active faulting and seismicity along the Siculo‐Calabrian rift zone (Southern Italy). Tectonophysics, 453, 177–192. https://doi.org/10.1016/j.tecto.2007.05.008
    [Google Scholar]
  27. Cavazza, W., Blenkinsop, J., DeCelles, P. G., Patterson, R. T., & Reinhardt, E. G. (1997). Stratigraphie et sédimentologie de la séquence sédimentaire Oligocénico‐Quaternaire du bassin Calabro Ionien. Bollettino Della Societā Geologica Italiana, 116, 51–77.
    [Google Scholar]
  28. Cavazza, W., & Ingersoll, R. (2005). Detrital modes of the Ionian forearc basin fill (oligocene‐quaternary) reflect the tectonic evolution of the Calabria‐Peloritani terrane (southern Italy). Journal of Sedimentary Research, 75, 268–279. https://doi.org/10.2110/jsr.2005.020
    [Google Scholar]
  29. Chiarella, D., Capella, W., Longhitano, S. G., & Muto, F. (2021). Fault‐controlled base‐of‐scarp deposits. Basin Research, 33, 1056–1075. https://doi.org/10.1111/bre.12505
    [Google Scholar]
  30. Childs, C., Watterson, J., & Walsh, J. J. (1995). Fault overlap zones within developing normal fault systems. Journal of the Geological Society, 152, 535–549. https://www.lyellcollection.org
    [Google Scholar]
  31. Childs, C., Worthington, R. P., Walsh, J. J., & Roche, V. (2019). Conjugate relay zones: Geometry of displacement transfer between opposed‐dipping normal faults. Journal of Structural Geology, 118, 377–390. https://doi.org/10.1016/j.jsg.2018.11.007
    [Google Scholar]
  32. Cirrincione, R., Fazio, E., Fiannacca, P., Ortolano, G., Pezzino, A., & Punturo, R. (2015). The Calabria‐Peloritani Orogen, a composite terrane in Central Mediterranean; its overall architecture and geodynamic significance for a pre‐alpine scenario around the Tethyan basin. Periodico di Mineralogia, 84, 701–749. https://doi.org/10.2451/2015PM0446
    [Google Scholar]
  33. Civile, D., Zecchin, M., Tosi, L., da Lio, C., Muto, F., Sandron, D., Affatato, A., Accettella, D., & Mangano, G. (2022). The Petilia‐Sosti shear zone (Calabrian arc, southern Italy): An onshore‐offshore regional active structure. Marine and Petroleum Geology, 141, 105693. https://doi.org/10.1016/j.marpetgeo.2022.105693
    [Google Scholar]
  34. Cohen, K. M., Finney, S. C., Gibbard, P. L., & Fan, J.‐X. (2013). The ICS international chronostratigraphic chart. Episodes, 36, 199–204. http://www.stratigraphy.org
    [Google Scholar]
  35. Crippa, G., Azzarone, M., Bottini, C., Crespi, S., Felletti, F., Marini, M., Petrizzo, M. R., Scarponi, D., Raffi, S., & Raineri, G. (2019). Bio‐and lithostratigraphy of lower Pleistocene marine successions in western Emilia (Italy) and their implications for the first occurrence of Arctica islandica in the Mediterranean Sea. Quaternary Research (United States), v. 92, 549–569. https://doi.org/10.1017/qua.2019.20
    [Google Scholar]
  36. Crippa, G., & Raineri, G. (2015). The genera Glycymeris, Aequipecten and Arctica, and associated mollusk fauna of the lower Pleistocene Arda River section (northern Italy). Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy), 121, 61–101.
    [Google Scholar]
  37. Critelli, S., & Martín‐Martín, M. (2022). Provenance, paleogeographic and paleotectonic interpretations of Oligocene‐lower Miocene sandstones of the western‐Central Mediterranean region: A review. Journal of Asian Earth Sciences, 8, 100124. https://doi.org/10.1016/j.jaesx.2022.100124
    [Google Scholar]
  38. Critelli, S., Muto, F., Perri, F., & Tripodi, V. (2017). Interpreting provenance relations from sandstone detrital modes, southern Italy foreland region: Stratigraphic record of the Miocene tectonic evolution. Marine and Petroleum Geology, 87, 47–59. https://doi.org/10.1016/j.marpetgeo.2017.01.026
    [Google Scholar]
  39. Critelli, S., Muto, F., & Tripodi, V. (2016). Note illustrative della Carta Geologica D'Italia alla scala 1: 50.000 foglio 590 Taurianova. https://www.isprambiente.gov.it/Media/carg/note_illustrative/590_Taurianova.pdf
  40. De Guidi, G., Catalano, S., Monaco, C., & Tortorici, L. (2003). Morphological evidence of Holocene coseismic deformation in the Taormina region (NE Sicily). Journal of Geodynamics, 36, 193–211. https://doi.org/10.1016/S0264‐3707(03)00047‐4
    [Google Scholar]
  41. Defant, A. (1940). Scilla e Cariddi e le correnti di marea nello Stretto di Messina. Geofisica Pura e Applicata, 2, 93–112. https://doi.org/10.1007/BF01992625
    [Google Scholar]
  42. del Ben, A., Barnaba, C., & Taboga, A. (2008). Strike‐slip systems as the main tectonic features in the Plio‐quaternary kinematics of the Calabrian arc. Marine Geophysical Research, 29, 1–12. https://doi.org/10.1007/s11001‐007‐9041‐6
    [Google Scholar]
  43. di Stefano, A., & Longhitano, S. (2009). Tectonics and sedimentation of the lower and middle Pleistocene mixed siliciclastic/bioclastic sedimentary successions of the Ionian Peloritani Mts (NE Sicily, southern Italy): The onset of opening of the Messina Strait: Central European. Journal of Geosciences, 1, 33–62. https://doi.org/10.2478/v10085‐009‐0002‐y
    [Google Scholar]
  44. Di Stefano, A., Longhitano, S., & Smedile, A. (2007). Sedimentation and tectonics in a steep shallow‐marine depositional system: Stratigraphic arrangement of the Pliocene‐Pleistocene Rometta succession (NE Sicily, Italy). Geologica Carpathica, 58, 71–87. https://www.researchgate.net/publication/278782708
    [Google Scholar]
  45. Doglioni, C., Ligi, M., Scrocca, D., Bigi, S., Bortoluzzi, G., Carminati, E., Cuffaro, M., D'Oriano, F., Forleo, V., Muccini, F., & Riguzzi, F. (2012). The tectonic puzzle of the Messina area (southern Italy): Insights from new seismic reflection data. Scientific Reports, 2(1), 970. https://doi.org/10.1038/srep00970
    [Google Scholar]
  46. Dumas, B., Gueremy, P., Lhenaff, R., & Raffy, J. (1981). Le soulèvement quaternaire de la Calabrie méridionale. Revue de Géologie Dynamique et de Géographie Physique Paris, 23, 27–40.
    [Google Scholar]
  47. Dumas, B., Gueremy, P., Lhenaff, R., & Raffy, J. (1987). Rates of uplift as shown by raised quaternary shorelines in southern Calabria (Italy). Zeitschrift für Geomorphologie Supplementband, 63, 119–132.
    [Google Scholar]
  48. Ebinger, C. J. (1989). Geometric and kinematic development of border faults and accommodation zones, Kivu‐Rusizi Rift, Africa. Tectonics, 8, 117–133. https://doi.org/10.1029/TC008i001p00117
    [Google Scholar]
  49. Faccenna, C., Jolivet, L., Piromallo, C., & Morelli, A. (2003). Subduction and the depth of convection in the Mediterranean mantle. Journal of Geophysical Research Solid Earth, 108(B2), ETG 9‐13. https://doi.org/10.1029/2001jb001690
    [Google Scholar]
  50. Faccenna, C., Molin, P., Orecchio, B., Olivetti, V., Bellier, O., Funiciello, F., Minelli, L., Piromallo, C., & Billi, A. (2011). Topography of the Calabria subduction zone (southern Italy): Clues for the origin of Mt. Etna. Tectonics, 30(1), TC1003. https://doi.org/10.1029/2010TC002694
    [Google Scholar]
  51. Faccenna, C., Piromallo, C., Crespo‐Blanc, A., Jolivet, L., & Rossetti, F. (2004). Lateral slab deformation and the origin of the western Mediterranean arcs. Tectonics, 23(1), TC1012. https://doi.org/10.1029/2002TC001488
    [Google Scholar]
  52. Ferranti, L., Monaco, C., Morelli, D., Tonielli, R., Tortorici, L., & Badalini, M. (2008). Morphostructural setting and active faults in the Messina Strait: New evidence from marine geological data. Rendiconti Online Societa Geologica Italiana, 1, 86–88.
    [Google Scholar]
  53. Ferrill, D. A., & Morris, A. P. (2001). Displacement gradient and deformation in normal fault systems. Journal of Structural Geology, 23, 619–638. www.elsevier.nl/locate/jstrugeo
    [Google Scholar]
  54. Fu, L., Heidarzadeh, M., Cukur, D., Chiocci, F. L., Ridente, D., Gross, F., Bialas, J., & Krastel, S. (2017). Tsunamigenic potential of a newly discovered active fault zone in the outer Messina Strait, Southern Italy. Geophysical Research Letters, 44, 2427–2435. https://doi.org/10.1002/2017GL072647
    [Google Scholar]
  55. Gallais, F., Graindorge, D., Gutscher, M. A., & Klaeschen, D. (2013). Propagation of a lithospheric tear fault (STEP) through the western boundary of the Calabrian accretionary wedge offshore eastern Sicily (Southern Italy). Tectonophysics, 602, 141–152. https://doi.org/10.1016/j.tecto.2012.12.026
    [Google Scholar]
  56. Gallen, S. F., Seymour, N. M., Glotzbach, C., Stockli, D. F., & O'Sullivan, P. (2023). Calabrian forearc uplift paced by slab–mantle interactions during subduction retreat. Nature Geoscience, 16, 513–520. https://doi.org/10.1038/s41561‐023‐01185‐4
    [Google Scholar]
  57. Gasparini, C., Iannaccone, G., Scandone, P., & Scarpa, R. (1982). Seismotectonics of the Calabrian arc. Tectonophysics, 84, 267–286. https://doi.org/10.1016/0040‐1951(82)90163‐9
    [Google Scholar]
  58. Gawthorpe, R. L., & Hurst, J. M. (1993). Transfer zones in extensional basins: Their structural style and influence on drainage development and stratigraphy. Journal of the Geological Society, 150, 1137–1152. http://jgs.lyellcollection.org/
    [Google Scholar]
  59. Ghisetti, F. (1981). Upper Pliocene‐Pleistocene uplift rates as indicators of neotectonic pattern: An example from southern Calabria (Italy). Zeitschrift Fur Geomorphologie, 40, 93–118.
    [Google Scholar]
  60. Ghisetti, F. (1992). Fault parameters in the Messina Strait (southern Italy) and relations with the seismogenic source. Tectonophysics, 210, 117–133.
    [Google Scholar]
  61. Gibbard, P. L., & Head, M. J. (2010). The newly‐ratified definition of the quaternary system/period and redefinition of the Pleistocene series/epoch, and comparison of proposals advanced prior to formal ratification. Episodes Journal of International Geoscience, 33, 152–158. http://www.stratigraphy.org
    [Google Scholar]
  62. Goes, S., Jenny, S., Hollenstein, C., Kahle, H. G., & Geiger, A. (2004). A recent tectonic reorganization in the south‐Central Mediterranean. Earth and Planetary Science Letters, 226, 335–345. https://doi.org/10.1016/j.epsl.2004.07.038
    [Google Scholar]
  63. Goswami, R., Mitchell, N. C., Argnani, A., & Brocklehurst, S. H. (2014). Geomorphology of the western Ionian Sea between Sicily and Calabria, Italy. Geo‐Marine Letters, 34, 419–433. https://doi.org/10.1007/s00367‐014‐0374‐2
    [Google Scholar]
  64. Goswami, R., Mitchell, N. C., Brocklehurst, S. H., & Argnani, A. (2017). Linking subaerial erosion with submarine geomorphology in the western Ionian Sea (south of the Messina Strait), Italy. Basin Research, 29, 641–658. https://doi.org/10.1111/bre.12196
    [Google Scholar]
  65. Guarnieri, P., di Stefano, A., Carbone, S., Lentini, F., & del Ben, A. (2004). A multidisciplinary approach to the reconstruction of the quaternary evolution of the Messina Strait (including: Geological map of the Messina Strait area, scale 1: 25.000). Mapping Geology of Italy, 2005, 44–50.
    [Google Scholar]
  66. Gutscher, M. A., Dominguez, S., de Lepinay, B. M., Pinheiro, L., Gallais, F., Babonneau, N., Cattaneo, A., Le Faou, Y., Barreca, G., Micallef, A., & Rovere, M. (2016). Tectonic expression of an active slab tear from high‐resolution seismic and bathymetric data offshore Sicily (Ionian Sea). Tectonics, 35, 39–54. https://doi.org/10.1002/2015TC003898
    [Google Scholar]
  67. Gutscher, M. A., Kopp, H., Krastel, S., Bohrmann, G., Garlan, T., Zaragosi, S., Klaucke, I., Wintersteller, P., Loubrieu, B., Le Faou, Y., Pedro, L. S., Dominguez, S., Rovere, M., de Lepinay, B. M., Ranero, C., & Sallares, V. (2017). Active tectonics of the Calabrian subduction revealed by new multi‐beam bathymetric data and high‐resolution seismic profiles in the Ionian Sea (Central Mediterranean). Earth and Planetary Science Letters, 461, 61–72. https://doi.org/10.1016/j.epsl.2016.12.020
    [Google Scholar]
  68. Head, M. J., Gibbard, P., & Salvador, A. (2008). The quaternary: Its character and definition. Episodes Journal of International Geoscience, 31, 234–238. https://doi.org/10.1029/2004PA001071
    [Google Scholar]
  69. Imber, J., Tuckwell, G. W., Childs, C., Walsh, J. J., Manzocchi, T., Heath, A. E., Bonson, C. G., & Strand, J. (2004). Three‐dimensional distinct element modelling of relay growth and breaching along normal faults. Journal of Structural Geology, 26, 1897–1911. https://doi.org/10.1016/j.jsg.2004.02.010
    [Google Scholar]
  70. Jacques, E., Monaco, C., Tapponnier, P., Tortorici, L., & Winter, T. (2001). Faulting and earthquake triggering during the 1783 Calabria seismic sequence. Geophysical Journal International, 147, 499–516. https://academic.oup.com/gji/article/147/3/499/601343
    [Google Scholar]
  71. Jolivet, L., Menant, A., Roche, V., le Pourhiet, L., Maillard, A., Augier, R., do Couto, D., Gorini, C., Thinon, I., & Canva, A. (2021). Transfer zones in Mediterranean back‐arc regions and tear faults. BSGF – Earth Sciences Bulletin, 192(1). https://doi.org/10.1051/bsgf/2021006
    [Google Scholar]
  72. Lentini, F., Catalano, S., & Carbone, S. (2000). Geological map of Messina province (NE Sicily), scale 1:50.000.
  73. Longhitano, S. G. (2011). The record of tidal cycles in mixed silici‐bioclastic deposits: Examples from small Plio‐Pleistocene peripheral basins of the microtidal Central Mediterranean Sea. Sedimentology, 58, 691–719. https://doi.org/10.1111/j.1365‐3091.2010.01179.x
    [Google Scholar]
  74. Longhitano, S. G. (2013). A facies‐based depositional model for ancient and modern, tectonically‐confined tidal straits. Terra Nova, 25, 446–452. https://doi.org/10.1111/ter.12055
    [Google Scholar]
  75. Longhitano, S. G. (2018a). Between Scylla and Charybdis (part 1): The sedimentary dynamics of the modern Messina Strait (Central Mediterranean) as analogue to interpret the past. Earth‐Science Reviews, 185, 259–287. https://doi.org/10.1016/j.earscirev.2018.06.008
    [Google Scholar]
  76. Longhitano, S. G. (2018b). Between Scylla and Charybdis (part 2): The sedimentary dynamics of the ancient, early Pleistocene Messina Strait (Central Mediterranean) based on its modern analogue. Earth‐Science Reviews, 179, 248–286. https://doi.org/10.1016/j.earscirev.2018.01.017
    [Google Scholar]
  77. Longhitano, S. G., & Chiarella, D. (2020). Tidal straits: Basic criteria for recognizing ancient systems from the rock record. In N.Scarselli, J.Adam, D.Chiarella, D. G.Roberts, & A. W.Bally (Eds.), Regional geology and tectonics (pp. 365–415). Elsevier. https://doi.org/10.1016/B978‐0‐444‐64134‐2.00014‐6
    [Google Scholar]
  78. Longhitano, S. G., Chiarella, D., Di Stefano, A., Messina, C., Sabato, L., & Tropeano, M. (2012). Tidal signatures in Neogene to quaternary mixed deposits of southern Italy straits and bays. Sedimentary Geology, 279, 74–96. https://doi.org/10.1016/j.sedgeo.2011.04.019
    [Google Scholar]
  79. Longhitano, S. G., Chiarella, D., Gugliotta, M., & Ventra, D. (2021). Coarse‐grained deltas approaching shallow‐water canyon heads: A case study from the lower Pleistocene Messina Strait. Southern Italy: Sedimentology, 68, 2523–2562. https://doi.org/10.1111/sed.12866
    [Google Scholar]
  80. Longhitano, S. G., Chiarella, D., & Muto, F. (2014). Three‐dimensional to two‐dimensional cross‐strata transition in the lower Pleistocene Catanzaro tidal strait transgressive succession (southern Italy). Sedimentology, 61, 2136–2171. https://doi.org/10.1111/sed.12138
    [Google Scholar]
  81. Loreto, M. F., Zitellini, N., Ranero, C. R., Palmiotto, C., & Prada, M. (2021). Extensional tectonics during the Tyrrhenian back‐arc basin formation and a new morpho‐tectonic map. Basin Research, 33, 138–158. https://doi.org/10.1111/bre.12458
    [Google Scholar]
  82. Maesano, F. E., Tiberti, M. M., & Basili, R. (2020). Deformation and fault propagation at the lateral termination of a subduction zone: The Alfeo fault system in the Calabrian arc, Southern Italy. Frontiers in Earth Science, 8, 107. https://doi.org/10.3389/feart.2020.00107
    [Google Scholar]
  83. Martorelli, E., Casalbore, D., Falcini, F., Bosman, A., Falese, F. G., & Chiocci, F. L. (2023). Large‐ and medium‐scale morphosedimentary features of the Messina Strait: Insights into bottom‐current‐controlled sedimentation and interaction with downslope processes. Geological Society, London, Special Publications, 523, 229–254. https://doi.org/10.1144/sp523‐2021‐77
    [Google Scholar]
  84. McClay, K. R., Dooley, T., Whitehouse, P., & Mills, M. (2002). 4‐D evolution of rift systems: Insights from scaled physical models. AAPG Bulletin, 86(6), 935–960.
    [Google Scholar]
  85. Meschis, M., Roberts, G. P., Mildon, Z. K., Robertson, J., Michetti, A. M., & Faure Walker, J. P. (2019). Slip on a mapped normal fault for the 28th December 1908 Messina earthquake (mw 7.1) in Italy. Scientific Reports, 9(1), 6481. https://doi.org/10.1038/s41598‐019‐42,915‐2
    [Google Scholar]
  86. Meschis, M., Roberts, G. P., Robertson, J., Mildon, Z. K., Sahy, D., Goswami, R., Sgambato, C., Walker, J. F., Michetti, A. M., & Iezzi, F. (2022). Out of phase Quaternary uplift‐rate changes reveal normal fault interaction, implied by deformed marine palaeoshorelines. Geomorphology, 416, 108432. https://doi.org/10.1016/j.geomorph.2022.108432
    [Google Scholar]
  87. Meschis, M., Teza, G., Serpelloni, E., Elia, L., Lattanzi, G., di Donato, M., & Castellaro, S. (2022). Refining rates of active crustal deformation in the upper plate of subduction zones, Implied by geological and geodetic data: The E‐dipping West Crati Fault, southern Italy. Remote Sensing, 14(21), 5303. https://doi.org/10.3390/rs14215303
    [Google Scholar]
  88. Miyauchi, T., Dai Pra, G., & Sylos Labini, S. (1994). Geochronology of Pleistocene marine terraces and regional tectonics in the Tyrrhenian coast of South Calabria. Il Quaernario, 7, 17–34.
    [Google Scholar]
  89. Monaco, C., Barreca, G., & Di Stefano, A. (2017). Quaternary marine terraces and fault activity in the northern mainland sectors of the Messina Strait (southern Italy). Italian Journal of Geosciences, 136, 337–346. https://doi.org/10.3301/IJG.2016.10
    [Google Scholar]
  90. Monaco, C., Tapponnier, P., Tortorici, L., & Gillot, P. Y. (1997). Late quaternary slip rates on the Acireale‐Piedimonte normal faults and tectonic origin of Mt. Etna (Sicily). Earth and Planetary Science Letters, 147(1–4), 125–139.
    [Google Scholar]
  91. Monaco, C., & Tortorici, L. (2000). Active faulting in the Calabrian arc and eastern Sicily. Journal of Geodynamics, 29(3–5), 407–424.
    [Google Scholar]
  92. Monaco, C., Tortorici, L., Nicolich, R., Cemobori, L., & Costa, M. (1996). From collisional to rifted basins: An example from the southern Calabrian arc (Italy). Tectonophysics, 266(1–4), 233–249.
    [Google Scholar]
  93. Montenat, C., Barrier, P., & Ott D'estevou, P. (1991). Some aspects of the recent tectonics in the strait of Messina, Italy. Tectonophysics, 194, 203–215.
    [Google Scholar]
  94. Morley, C. K. (1995). Developments in the structural geology of rifts over the last decade and their impact on hydrocarbon exploration. Geological Society Special Publication, 80, 1–32. https://www.lyellcollection.org
    [Google Scholar]
  95. Morley, C. K., Nelson, R. A., Patton, T. L., & Munn, S. G. (1990). Transfer zones in the east African rift system and their relevance to hydrocarbon exploration in rifts. AAPG Bulletin, 74, 1234–1253. https://www.researchgate.net/publication/248149866
    [Google Scholar]
  96. Palano, M., Ferranti, L., Monaco, C., Mattia, M., Aloisi, M., Bruno, V., Cannav, F., & Siligato, G. (2012). GPS velocity and strain fields in Sicily and southern Calabria, Italy: Updated geodetic constraints on tectonic block interaction in the Central Mediterranean. Journal of Geophysical Research: Solid Earth, 117(B7), B07401. https://doi.org/10.1029/2012JB009254
    [Google Scholar]
  97. Palano, M., Piromallo, C., & Chiarabba, C. (2017). Surface imprint of toroidal flow at retreating slab edges: The first geodetic evidence in the Calabrian subduction system. Geophysical Research Letters, 44, 845–853. https://doi.org/10.1002/2016GL071452
    [Google Scholar]
  98. Palano, M., Schiavone, D., Loddo, M., Neri, M., Presti, D., Quarto, R., Totaro, C., & Neri, G. (2015). Active upper crust deformation pattern along the southern edge of the Tyrrhenian subduction zone (NE Sicily): Insights from a multidisciplinary approach. Tectonophysics, 657, 205–218. https://doi.org/10.1016/j.tecto.2015.07.005
    [Google Scholar]
  99. Pavano, F., Pazzaglia, F. J., & Catalano, S. (2016). Knickpoints as geomorphic markers of active tectonics: A case study from northeastern Sicily (southern Italy). Lithosphere, 8, 633–648. https://doi.org/10.1130/L577.1
    [Google Scholar]
  100. Pavano, F., Romagnoli, G., Tortorici, G., & Catalano, S. (2015). Active tectonics along the Nebrodi‐Peloritani boundary in northeastern Sicily (southern Italy). Tectonophysics, 659, 1–11. https://doi.org/10.1016/j.tecto.2015.07.024
    [Google Scholar]
  101. Peacock, D. C., & Sanderson, D. J. (1994). Geometry and development of relay ramps in normal fault systems. AAPG Bulletin, 78, 147–165.
    [Google Scholar]
  102. Pino, N. A., Giardini, D., & Boschi, E. (2000). The December 28, 1908, Messina Straits, southern Italy, earthquake: Waveform modeling of regional seismograms. Journal of Geophysical Research: Solid Earth, 105, 25473–25492. https://doi.org/10.1029/2000jb900259
    [Google Scholar]
  103. Pino, N. A., Piatanesi, A., Valensise, G., & Boschi, E. (2009). The 28 december 1908 Messina straits earthquake (mw 7.1): A great earthquake throughout a century of seismology. Seismological Research Letters, 80, 243–259. https://doi.org/10.1785/gssrl.80.2.243
    [Google Scholar]
  104. Pirrotta, C., Barbano, M. S., & Monaco, C. (2016). Evidence of active tectonics in southern Calabria (Italy) by geomorphic analysis: The examples of the Catona and Petrace rivers: Italian. Journal of Geosciences, 135, 142–156. https://doi.org/10.3301/IJG.2015.20
    [Google Scholar]
  105. Pirrotta, C., Barberi, G., Barreca, G., Brighenti, F., Carnemolla, F., de Guidi, G., Monaco, C., Pepe, F., & Scarfì, L. (2021). Recent activity and kinematics of the bounding faults of the Catanzaro trough (Central calabria, Italy): New morphotectonic, geodetic and seismological data. Geosciences (Switzerland), 11(10), 405. https://doi.org/10.3390/geosciences11100405
    [Google Scholar]
  106. Pirrotta, C., Parrino, N., Pepe, F., Tansi, C., & Monaco, C. (2022). Geomorphological and morphometric analyses of the Catanzaro trough (central Calabrian arc, southern Italy): Seismotectonic implications. Geosciences (Switzerland), 12(9), 324. https://doi.org/10.3390/geosciences12090324
    [Google Scholar]
  107. Polonia, A., Torelli, L., Mussoni, P., Gasperini, L., Artoni, A., & Klaeschen, D. (2011). The Calabrian arc subduction complex in the Ionian Sea: Regional architecture, active deformation, and seismic hazard. Tectonics, 30, TC5018. https://doi.org/10.1029/2010TC002821
    [Google Scholar]
  108. Presti, D., Totaro, C., Neri, G., & Orecchio, B. (2019). New earthquake data in the calabrian subduction zone, Italy, suggest revision of the presumed dynamics in the upper part of the subducting slab. Seismological Research Letters, 90, 1994–2004. https://doi.org/10.1785/0220190024
    [Google Scholar]
  109. Quye‐Sawyer, J., Whittaker, A. C., Roberts, G. G., & Rood, D. H. (2021). Fault throw and regional uplift histories from drainage analysis: Evolution of southern Italy. Tectonics, 40(4), e2020TC006076. https://doi.org/10.1029/2020TC006076
    [Google Scholar]
  110. Ridente, D., Martorelli, E., Bosman, A., & Chiocci, F. L. (2014). High‐resolution morpho‐bathymetric imaging of the Messina Strait (southern Italy). New insights on the 1908 earthquake and tsunami. Geomorphology, 208, 149–159. https://doi.org/10.1016/j.geomorph.2013.11.021
    [Google Scholar]
  111. Rio, D., Raffi, I., Villa, G., & Kastens, K. A. (1990). Pliocene‐Pleistocene calcareous nannofossil distribution patterns in the Western Mediterranean. In Proceedings of the ocean drilling program, scientific results (Vol. 107, pp. 513–533). Ocean Drilling Program.
    [Google Scholar]
  112. Roberts, G. P., Meschis, M., Houghton, S., Underwood, C., & Briant, R. M. (2013). The implications of revised quaternary palaeoshoreline chronologies for the rates of active extension and uplift in the upper plate of subduction zones. Quaternary Science Reviews, 78, 169–187. https://doi.org/10.1016/j.quascirev.2013.08.006
    [Google Scholar]
  113. Roda‐Boluda, D. C., & Whittaker, A. C. (2017). Structural and geomorphological constraints on active normal faulting and landscape evolution in Calabria, Italy. Journal of the Geological Society, 174, 701–720. https://doi.org/10.6084/m9.figshare.c.3689464
    [Google Scholar]
  114. Rohais, S., Bailleul, J., Brocheray, S., Schmitz, J., Paron, P., Kezirian, F., & Barrier, P. (2021). Depositional model for Turbidite lobes in complex slope settings along transform margins: The Motta san Giovanni formation (Miocene—Calabria, Italy). Frontiers in Earth Science, 9, 1–23. https://doi.org/10.3389/feart.2021.766946
    [Google Scholar]
  115. Romagny, A., Jolivet, L., Menant, A., Bessière, E., Maillard, A., Canva, A., Gorini, C., & Augier, R. (2020). Detailed tectonic reconstructions of the Western Mediterranean region for the last 35 ma, insights on driving mechanisms. BSGF ‐ Earth Sciences Bulletin, 191, 37. https://doi.org/10.1051/bsgf/2020040
    [Google Scholar]
  116. Rosenbaum, G., & Lister, G. S. (2004). Neogene and quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides. Tectonics, 23(1), TC1013. https://doi.org/10.1029/2003TC001518
    [Google Scholar]
  117. Rosenbaum, G., Lister, G. S., & Duboz, C. (2002). Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. Journal of the Virtual Explorer, 8, 107–130. https://doi.org/10.3809/jvirtex.2002.00053
    [Google Scholar]
  118. Rosendahl, B. R. (1987). Architecture of continental rifts with special reference to East Africa. Annual Review of Earth and Planetary Sciences, 15, 445–503. www.annualreviews.org
    [Google Scholar]
  119. Rossetti, F., Faccenna, C., Goffé, B., Monié, P., Argentieri, A., Funiciello, R., & Mattei, M. (2001). Alpine structural and metamorphic signature of the Sila piccola massif nappe stack (Calabria, Italy): Insights for the tectonic evolution of the calabrian arc. Tectonics, 20, 112–133. https://doi.org/10.1029/2000TC900027
    [Google Scholar]
  120. Rossi, V. M., Longhitano, S. G., Mellere, D., Dalrymple, R. W., Steel, R. J., Chiarella, D., & Olariu, C. (2017). Interplay of tidal and fluvial processes in an early Pleistocene, delta‐fed, strait margin (Calabria, southern Italy). Marine and Petroleum Geology, 87, 14–30. https://doi.org/10.1016/j.marpetgeo.2017.02.021
    [Google Scholar]
  121. Santoro, V. C., Amore, E., Cavallaro, L., & de Lauro, M. (2004). Evolution of sand waves in the Messina Strait, Italy. Ocean Dynamics, 54, 392–398. https://doi.org/10.1007/s10236‐003‐0087‐y
    [Google Scholar]
  122. Scarfì, L., Barberi, G., Barreca, G., Cannavò, F., Koulakov, I., & Patanè, D. (2018). Slab narrowing in the Central Mediterranean: The Calabro‐Ionian subduction zone as imaged by high resolution seismic tomography. Scientific Reports, 8(1), 5178. https://doi.org/10.1038/s41598‐018‐23543‐8
    [Google Scholar]
  123. Schambach, L., Grilli, S. T., Tappin, D. R., Gangemi, M. D., & Barbaro, G. (2020). New simulations and understanding of the 1908 Messina tsunami for a dual seismic and deep submarine mass failure source. Marine Geology, 421, 106093. https://doi.org/10.1016/j.margeo.2019.106093
    [Google Scholar]
  124. Serpelloni, E., Bürgmann, R., Anzidei, M., Baldi, P., Mastrolembo Ventura, B., & Boschi, E. (2010). Strain accumulation across the Messina Straits and kinematics of Sicily and Calabria from GPS data and dislocation modeling. Earth and Planetary Science Letters, 298, 347–360. https://doi.org/10.1016/j.epsl.2010.08.005
    [Google Scholar]
  125. Sgroi, T., Polonia, A., Barberi, G., Billi, A., & Gasperini, L. (2021). New seismological data from the Calabrian arc reveal arc‐orthogonal extension across the subduction zone. Scientific Reports, 11, 473. https://doi.org/10.1038/s41598‐020‐79,719‐8
    [Google Scholar]
  126. Tansi, C., Muto, F., Critelli, S., & Iovine, G. (2007). Neogene‐quaternary strike‐slip tectonics in the central Calabrian arc (southern Italy). Journal of Geodynamics, 43, 393–414. https://doi.org/10.1016/j.jog.2006.10.006
    [Google Scholar]
  127. Tortorici, G., Bianca, M., de Guidi, G., Monaco, C., & Tortorici, L. (2003). Fault activity and marine terracing in the Capo Vaticano area (southern Calabria) during the Middle‐Late Quaternary. Quaternary International, 101–102, 269–278.
    [Google Scholar]
  128. Tortorici, L., Monaco, C., Tansi, C., & Cocina, O. (1995). Recent and active tectonics in the Calabrian arc (Southern Italy). Tectonophysics, 243(1–2), 37–55.
    [Google Scholar]
  129. Tripodi, V., Gervasi, A., La Rocca, M., Lucà, F., & Muto, F. (2022). Seismotectonics of southern Calabria terrane (South Italy). Journal of Mountain Science, 19, 3148–3162. https://doi.org/10.1007/s11629‐022‐7354‐1
    [Google Scholar]
  130. Tripodi, V., Muto, F., Brutto, F., Perri, F., & Critelli, S. (2018). Neogene‐quaternary evolution of the forearc and backarc regions between the serre and Aspromonte massifs, Calabria (southern Italy). Marine and Petroleum Geology, 95, 328–343. https://doi.org/10.1016/j.marpetgeo.2018.03.028
    [Google Scholar]
  131. Tripodi, V., Muto, F., & Critelli, S. (2013). Structural style and tectono‐stratigraphic evolution of the Neogene‐quaternary Siderno Basin, southern Calabrian arc, Italy. International Geology Review, 55, 468–481. https://doi.org/10.1080/00206814.2012.723859
    [Google Scholar]
  132. Valensise, G., & Pantosti, D. (1992). A 125 Kyr‐long geological record of seismic source repeatability: The Messina Straits (southern Italy) and the 1908 earthquake (Ms 7.5). Terra Nova, 4, 472–483.
    [Google Scholar]
  133. Van Dijk, J. P., Bello, M., Brancaleoni, G. P., Cantarella, G., Costa, V., Frixa, A., Golfetto, F., Merlini, S., Riva, M., Torricelli, S., Toscano, C., & Zerilli, A. (2000). A regional structural model for the northern sector of the Calabrian arc (southern Italy). Tectonophysics, 324, 267–320. https://doi.org/10.1016/S0040‐1951(00)00139‐6
    [Google Scholar]
  134. van Hinsbergen, D. J. J., Torsvik, T. H., Schmid, S. M., Maţenco, L. C., Maffione, M., Vissers, R. L. M., Gürer, D., & Spakman, W. (2020). Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research, 81, 79–229. https://doi.org/10.1016/j.gr.2019.07.009
    [Google Scholar]
  135. Vercelli, F. (1925). Il regime delle correnti e delle maree nello Stretto di Messina: Commissione Internazionale del Mediterraneo, Campagne della R. Nave Marsigli negli anni 1922 e 1923, 1–209.
  136. Vitale, S., & Ciarcia, S. (2013). Tectono‐stratigraphic and kinematic evolution of the southern Apennines/Calabria‐Peloritani terrane system (Italy). Tectonophysics, 583, 164–182. https://doi.org/10.1016/j.tecto.2012.11.004
    [Google Scholar]
  137. Viti, M., Mantovani, E., Babbucci, D., Tamburelli, C., Caggiati, M., & Riva, A. (2021). Basic role of extrusion processes in the late cenozoic evolution of the western and central mediterranean belts. Geosciences (Switzerland), 11, 499. https://doi.org/10.3390/geosciences11120499
    [Google Scholar]
  138. Westaway, R. (1993). Quaternary uplift of southern Italy. Journal of Geophysical Research, 98, 21741–21772. https://doi.org/10.1029/93jb01566
    [Google Scholar]
  139. Wortel, M. J. R., & Spakman, W. (2000). Subduction and slab detachment in the Mediterranean‐Carpathian region. Science, 290, 1910–1917. https://www.science.org
    [Google Scholar]
  140. Zecchin, M., Praeg, D., Ceramicola, S., & Muto, F. (2015). Onshore to offshore correlation of regional unconformities in the Plio‐Pleistocene sedimentary successions of the Calabrian arc (Central Mediterranean). Earth‐Science Reviews, 142, 60–78. https://doi.org/10.1016/j.earscirev.2015.01.006
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12818
Loading
/content/journals/10.1111/bre.12818
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): extension; Messina Strait; normal faults; Pleistocene; relay zone

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error